Ideal Structure of Hurwitz Series Rings

Ali Benhissi

Department of Mathematics, Faculty of Sciences 5000 Monastir, Tunisia e-mail: ali_benhissi@yahoo.fr

Abstract. We study the ideals, in particular, the maximal spectrum and the set of idempotent elements, in rings of Hurwitz series.

Let A be a commutative ring with identity. The elements of the ring HA of Hurwitz series over A are formal expressions of the type $f = \sum_{i=0}^{\infty} a_i X^i$ where $a_i \in A$ for all i. Addition is defined termwise. The product of f by $g = \sum_{i=0}^{\infty} b_i X^i$ is defined by $f * g = \sum_{n=0}^{\infty} c_n X^n$ where $c_n = \sum_{k=0}^{n} {n \choose k} a_k b_{n-k}$ and ${n \choose k}$ is a binomial coefficient. Recently, many authors turned to this ring and discovered interesting applications in it. See for example [1] and [2]. The natural homomorphism $\epsilon : HA \longrightarrow A$, is defined by $\epsilon(f) = a_0$.

1. Generalities

1.1. Proposition. *HA* is an integral domain if and only if *A* is an integral domain with zero characteristic.

Proof. \Leftarrow See [1, Corollary 2.8].

 \implies Since $A \subset HA$, then A is a domain. Suppose that A has a positive characteristic m. Then $X * X^{m-1} = {\binom{m-1+1}{1}} X^m = mX^m = 0$.

1.2. Proposition. Let I be an ideal of A. Then $HA/\epsilon^{-1}(I) \simeq A/I$ and $HA/HI \simeq H(A/I)$. In particular

a) $\epsilon^{-1}(I)$ is a radical ideal of $HA \iff I$ is a radical ideal of A.

0138-4821/93 $2.50 \odot 2007$ Heldermann Verlag

- b) $\epsilon^{-1}(I) \in Spec(HA) \iff I \in Spec(A).$ c) $\epsilon^{-1}(I) \in Max(HA) \iff I \in Max(A).$
- d) $HI \in Spec(HA) \iff I \in Spec(A)$ and A/I has zero characteristic.

Proof. The map $\psi : HA \longrightarrow A/I$, defined by $\psi = \tau \circ \epsilon$ where τ is the canonical surjection of A onto A/I, is a surjective homomorphism with $\ker \psi = \epsilon^{-1}(I)$, so $HA/\epsilon^{-1}(I) \simeq A/I$.

The map $\phi : HA \longrightarrow H(A/I)$, defined for $f = \sum_{i=0}^{\infty} a_i X^i$ by $\phi(f) = \sum_{i=0}^{\infty} \bar{a}_i X^i$, is a surjective homomorphism, with $ker \ \phi = HI$, so $HA/HI \simeq H(A/I)$.

Now (a), (b) and (c) follow from the first isomorphism.

(d) $HI \in Spec(HA) \iff HA/HI$ an integral domain $\iff H(A/I)$ an integral domain $\iff A/I$ an integral domain with zero characteristic $\iff I \in Spec(A)$ and A/I has zero characteristic.

The inverse implication in (d) of the proposition was proved in [1, Prop. 2.7].

Example. Let $A = \mathbb{F}_q$ be the finite field of q elements. Since $X * X^{q-1} = qX^q = 0$, then H0 = 0 is not prime in $H\mathbb{F}_q$.

1.3. Corollary. The set of maximal ideals of HA is $Max(HA) = \{\epsilon^{-1}(M) : M \in Max(A)\}$. In particular, the Jacobson radical $Rad(HA) = \epsilon^{-1}(Rad(A))$. The ring HA is local (resp. quasi local) if and only if A is local (resp. quasi local).

Proof. By the part (c) of the preceding proposition, we have only to prove that for any $\mathcal{M} \in Max(HA)$ there is $M \in Max(A)$ such that $\mathcal{M} = \epsilon^{-1}(M)$. The set $M = \epsilon(\mathcal{M})$ is an ideal of A and $M \neq A$ since in the contrary case, by [1, Proposition 2.5], \mathcal{M} contains a unit of HA. Therefore $\mathcal{M} \subseteq \epsilon^{-1}(M) \subset HA$ and by the maximality of \mathcal{M} , $\mathcal{M} = \epsilon^{-1}(M)$. By Proposition 1.2 (c), $M \in Max(A)$.

Examples. 1) $Max(H\mathbb{Z}) = \{\epsilon^{-1}(p\mathbb{Z}): p \text{ prime integer}\}.$

2) For any field K, HK is local with maximal ideal $\epsilon^{-1}(0)$.

3) Contrary to the case of the ring of usual formal power series over a field, the element X does not generate the maximal ideal $\epsilon^{-1}(0)$ of $H\mathbb{F}_2$. Indeed, for any $f = \sum_{n=0}^{\infty} a_n X^n \in H\mathbb{F}_2$, $X * f = \sum_{n=0}^{\infty} {n+1 \choose 1} a_n X^{n+1} = \sum_{n=0}^{\infty} {n+1 \choose 2} a_n X^{n+1} = \sum_{k=0}^{\infty} a_{2k} X^{2k+1}$.

1.4. Proposition. If $P \subset Q$ are consecutive prime ideals in A, then $\epsilon^{-1}(P) \subset \epsilon^{-1}(Q)$ are consecutive prime ideals in HA.

Proof. Let $R \in Spec(HA)$ such that $\epsilon^{-1}(P) \subset R \subseteq \epsilon^{-1}(Q)$. There is an $f = a_0 + a_1X + \cdots \in R \setminus \epsilon^{-1}(P)$. Then $a_0 \notin P$ and $a_0 = f - (a_1X + \cdots) \in R$ since $a_1X + \cdots \in \epsilon^{-1}(P) \subset R$. Therefore $a_0 \in R \cap A$ and $P = \epsilon^{-1}(P) \cap A \subset R \cap A \subseteq \epsilon^{-1}(Q) \cap A = Q$. Since $P \subset Q$ are consecutive, then $R \cap A = Q$. For any element $g = b_0 + b_1X + \cdots \in \epsilon^{-1}(Q)$, $b_0 \in Q \subset R$ and $b_1X + \cdots \in \epsilon^{-1}(P) \subseteq R$, so $g \in R$ and $\epsilon^{-1}(Q) = R$.

2. Idempotent elements in Hurwitz series ring

For $f \in HA$, the ideal c(f) generated by the coefficients of f in A is called the content of f.

2.1. Proposition. Suppose that for any $P \in Spec(A)$, A/P has zero characteristic. If f and $g \in HA$ are such that f * g = 0, then $c(f)c(g) \subseteq Nil(A)$. Moreover, if A is reduced, then each coefficient of f annihilates g.

Proof. By Proposition 1.2, for any $P \in Spec(A)$, $HP \in Spec(HA)$. Since $f * g = 0 \in HP$, then f or $g \in HP$. If a is a coefficient of f and b a coefficient of g, then $ab \in P$. So $ab \in \bigcap \{P : P \in Spec(A)\} = Nil(A)$ and $c(f)c(g) \subseteq Nil(A)$.

Example. The result is not true in general. Suppose for example that A has positive characteristic n. Then $X * X^{n-1} = \binom{n-1+1}{1}X^n = nX^n = 0$, with $c(X) = c(X^{n-1}) = A$, so $c(X)c(X^{n-1}) = A \not\subseteq Nil(A)$.

As usual, Bool(A) will mean the set of idempotent elements in the ring A.

2.2. Corollary. Suppose A is reduced and A/P has zero characteristic, for every $P \in Spec(A)$. Then Bool(HA) = Bool(A).

Proof. Let $f = \sum_{i=0}^{\infty} a_i X^i \in HA$, with f * f = f. Then $f - 1 = (a_0 - 1) + \sum_{i=1}^{\infty} a_i X^i$ and f * (f - 1) = 0. By Proposition 2.1, for $i \ge 1$, $a_i^2 = 0$, so $a_i = 0$ and $f = a_0 \in A$. More generally, we have the following result.

2.3. Proposition. For any ring A, Bool(HA) = Bool(A).

Proof. Let $f = \sum_{i=0}^{\infty} a_i X^i \in HA$ be such that f * f = f. Then $a_0^2 = a_0$ and $2a_0a_1 = a_1 \Longrightarrow 2a_0^2a_1 = a_0a_1 \Longrightarrow 2a_0a_1 = a_0a_1 \Longrightarrow a_0a_1 = 0$. Suppose by induction that $a_0a_i = 0$, for $1 \leq i < n$. The coefficient of X^n in f * f = f is $\sum_{i=0}^{n} {n \choose i} a_i a_{n-i} = a_n \Longrightarrow a_0 (\sum_{i=0}^{n} {n \choose i} a_i a_{n-i}) = a_0a_n \Longrightarrow a_0({n \choose 0} a_0a_n + {n \choose n} a_na_0) = a_0a_n \Longrightarrow 2a_0^2a_n = a_0a_n \Longrightarrow 2a_0a_n = a_0a_n \Longrightarrow a_0a_n = 0$. So for each $i \geq 1$, $a_0a_i = 0$. Suppose that $f \notin A$ and let $k = \inf\{i \in \mathbb{N}^* : a_i \neq 0\}, g = \sum_{i=k}^{\infty} a_i X^i$, then $k \geq 1$, $a_k \neq 0$, $f = a_0 + g$, $a_0 * g = \sum_{i=k}^{\infty} a_0a_i X^i = 0$. Since f * f = f, then $(a_0 + g) * (a_0 + g) = a_0 + g \Longrightarrow a_0^2 + g * g = a_0 + g \Longrightarrow g * g = g \Longrightarrow ({}^{2k}_k)a_k^2X^{2k} + \cdots = a_kX^k + \cdots \Longrightarrow a_k = 0$, which is impossible. So $f = a_0 \in A$.

A ring A is called PS if the socle $Soc(_AA)$ is projective. By [3, Theorem 2.4], a ring A is PS if and only if for every maximal ideal M of A there is an idempotent e of A such that (0 : M) = eA. In [2, Theorem 3.2], Zhongkui Liu proved the following result:

"If A has zero characteristic and if A is a PS-ring, then HA is a PS-ring".

His proof is not correct, it uses in many places the wrong fact:

"If A has zero characteristic, $n \in \mathbb{N}^*$ and $x \in A$, then nx = 0 implies x = 0".

But this is not true. Take for example: $A = \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, $n \ge 2$ an integer and $x = (0, \overline{1})$. When I wrote to Liu, he proposed to replace the condition "A has zero characteristic" by "A is Z-torsion free". With this change the proof becomes correct.

In the next proposition, I avoid the hypothesis "A is a PS-ring" in the theorem of Liu and I give a short and simple proof.

2.4. Proposition. If A is torsion free as a \mathbb{Z} -module, then HA is a PS-ring.

Proof. If $\mathcal{M} \in Max(HA)$, there is $M \in Max(A)$ such that $\mathcal{M} = \epsilon^{-1}(M)$ by Corollary 1.3, so $X \in \mathcal{M}$. Let $f = \sum_{i=0}^{\infty} a_i X^i \in (0 : \mathcal{M})$, then $0 = X * f = \sum_{i=0}^{\infty} {i+1 \choose 1} a_i X^{i+1} = \sum_{i=0}^{\infty} (i+1)a_i X^{i+1}$. For each $i \in \mathbb{N}$, $(i+1)a_i = 0$, but A is \mathbb{Z} -torsion free, then $a_i = 0$ and f = 0.

2.5. Lemma. Suppose that A is reduced and A/P has zero characteristic for any $P \in Spec(A)$. For $f \in HA$, let $I_f = (0 : c(f))$. Then:

a) For every $f \in HA$, $(0:f) = HI_f$.

b) If J is an ideal of HA and $L = \sum_{f \in J} c(f)$, then (0:J) = H(0:L).

Proof. a) Put $f = \sum_{i=0}^{\infty} a_i X^i$. By Proposition 2.1, $g = \sum_{i=0}^{\infty} b_i X^i \in (0:f) \iff f * g = 0 \iff \forall i, j \in \mathbb{N}, a_i b_j = 0 \iff \forall j \in \mathbb{N}, b_j \in (0:c(f)) = I_f \iff g \in HI_f$. b) By part a), $(0:J) = \bigcap_{f \in J} (0:f) = \bigcap_{f \in J} HI_f = H(\bigcap_{f \in J} I_f)$. But $\bigcap_{f \in J} I_f = \bigcap_{f \in J} (0:c(f)) = (0:\sum_{f \in J} c(f)) = (0:L)$. So (0:J) = H(0:L).

2.6. Proposition. If A is reduced with A/P has zero characteristic for every $P \in Spec(A)$, then HA is a PS-ring.

Proof. Let $\mathcal{M} \in Max(HA)$. By Corollary 1.3, $X \in \mathcal{M}$, then $\sum_{f \in \mathcal{M}} c(f) = A$. By the preceding lemma, $(0: \mathcal{M}) = H(0: A) = H0 = (0)$.

Conjecture. In [4, Proposition 4], Xue showed that the ring A[[X]] is always PS, for any ring A. In the light of this theorem and the preceding results I conjecture that the ring HA is also PS.

2.7. Definition. A quasi-Baer ring is a ring A such that for any ideal I of A there is an idempotent e of A with (0:I) = eA.

The following lemma is well known. We include its proof for the sake of the reader.

2.8. Lemma. Any quasi-Baer ring is reduced.

Proof. Let a be a nilpotent element of the quasi-Baer ring A and $n \ge 1$ the smallest integer such that $a^n = 0$. Let (0 : aA) = eA, with $e \in A$ and $e^2 = e$. If $n \ge 2$, then $a^{n-1} \in eA$, put $a^{n-1} = eb$, with $b \in A$. Since ae = 0, then $0 = a^{n-1}e = be^2 = be = a^{n-1}$, which is impossible.

2.9. Proposition. If A is a quasi-Baer ring with A/P has zero characteristic for every $P \in Spec(A)$, then HA is a quasi-Baer ring.

Proof. Let J be an ideal of HA and $L = \sum_{f \in J} c(f)$. There is $e \in Bool(A)$ such that (0:L) = eA. By Lemma 2.5, (0:J) = H(0:L) = H(eA) = e * HA.

3. Hurwitz series over a noetherian ring

3.1. Lemma. Let I be an ideal of A. Then HI = I * HA if and only if for any countable subset S of I there is a finitely generated ideal F of A such that $S \subseteq F \subseteq I$.

 $\begin{array}{l} Proof. \implies A \text{ countable subset of } I \text{ is a sequence } (a_i)_{i \in \mathbb{N}} \text{ of elements of } I. \text{ Let} \\ f = \sum_{i=0}^{\infty} a_i X^i \in HI = I \ast HA. \text{ There are } b_1, \ldots, b_n \in I \text{ and } g_1, \ldots, g_n \in HA \text{ such} \\ \text{that } f = b_1 \ast g_1 + \cdots + b_n \ast g_n. \text{ If } F = b_1A + \cdots + b_nA, \text{ then } \{a_i: i \in \mathbb{N}\} \subseteq F. \\ \Leftarrow \text{ Since } I \subset HI, \text{ then } I \ast HA \subseteq HI. \text{ Now, let } f = \sum_{i=0}^{\infty} a_i X^i \in HI. \text{ There is a} \\ \text{finitely generated ideal } F = b_1A + \cdots + b_nA \text{ of } A \text{ such that } \{a_i: i \in \mathbb{N}\} \subseteq F \subseteq I. \\ \text{For each } i \in \mathbb{N}, a_i = \sum_{j=1}^n a_{ij}b_j, \text{ with } a_{ij} \in A. \text{ So } f = \sum_{i=0}^{\infty} (\sum_{j=1}^n a_{ij}b_j)X^i = \sum_{j=1}^n b_j \ast \\ (\sum_{i=0}^{\infty} a_{ij}X^i) \in I \ast HA. \end{array}$

Example. Let (A, M) be a non-discrete valuation domain of rank one, defined by a valuation v with group G. We can suppose that G is a dense subgroup of \mathbb{R} . Let $(\alpha_i)_{i\in\mathbb{N}}$ be a strictly decreasing sequence of elements of G converging to zero. For each $i \in \mathbb{N}$, there is $a_i \in M$, with $v(a_i) = \alpha_i$. Let $f = \sum_{i=0}^{\infty} a_i X^i \in HM$. Suppose that $f \in M * HA$, there is $b \in M$ and $g = \sum_{i=0}^{\infty} c_i X^i \in HA$ such that f = b * g. For each $i \in \mathbb{N}$, $a_i = bc_i$, so $\alpha_i = v(a_i) = v(b) + v(c_i) \ge v(b)$, which is impossible.

3.2. Corollary. If I is a finitely generated ideal, then HI = I * HA.

3.3. Proposition. The ring A is noetherian if and only if for each ideal I of A, HI = I * HA.

Proof. Suppose that A is not noetherian and let $(I_i)_{i\in\mathbb{N}}$ be a strictly increasing sequence of ideals of A and put $I = \bigcup_{i=0}^{\infty} I_i$. For each $i \in \mathbb{N}^*$, there is $a_i \in I_i \setminus I_{i-1}$. Since HI = I * HA, there is a finitely generated ideal $F = b_1A + \cdots + b_nA$ of A such that $\{a_i : i \in \mathbb{N}^*\} \subseteq F \subseteq I$. Since the sequence $(I_i)_{i\in\mathbb{N}}$ is increasing, there is $k \in \mathbb{N}$ such that $b_1, \ldots, b_n \in I_k$ so $F \subseteq I_k$ and $\{a_i : i \in \mathbb{N}^*\} \subseteq I_k$, which is impossible.

Example. Let K be a commutative field and $\{Y_i : i \in \mathbb{N}\}$ a sequence of indeterminates. The ring $A = K[Y_i : i \in \mathbb{N}]$ is not noetherian because its ideal $I = (Y_i : i \in \mathbb{N})$ is not finitely generated. Suppose that HI = I * HA, by Lemma 3.1, there is a finitely generated ideal F of A such that $\{Y_i : i \in \mathbb{N}\} \subseteq F \subseteq I$, so I = F, which is impossible.

3.4. Proposition. Let I and J be ideals of the ring A, with HJ = J * HA and $J \subseteq \sqrt{I}$. Then there is $n \in \mathbb{N}^*$ such that $J^n \subseteq I$.

Proof. Suppose that for each $m \in \mathbb{N}^*$, $J^m \not\subseteq I$, there are $b_{m1}, \ldots, b_{mm} \in J$ such that the product $b_{m1} \cdots b_{mm} \notin I$. Let C be the ideal of A generated by the countably subset $\{b_{mi} : m \in \mathbb{N}^*, 1 \leq i \leq m\}$, then $C \subseteq J$ and $C^m \not\subseteq I$ for every $m \in \mathbb{N}^*$. Since HJ = J * HA, by Lemma 3.1, there is a finitely generated ideal F of A such that $C \subseteq F \subseteq J \subseteq \sqrt{I}$, so $F \subseteq \sqrt{I}$. But F is finitely generated, there is $n \in \mathbb{N}^*$ such that $F^n \subseteq I$, so $C^n \subseteq I$, which is impossible.

Acknowledgment. I am indebted to Professor Zhongkui Liu for making known to me the paper [4] of W. Xue.

References

- Keigher, W. F.: On the ring of Hurwitz series. Commun. Algebra 25(6) (1997), 1845–1859.
 Zbl 0884.13013
- [2] Liu, Z.: Hermite and PS-rings of Hurwitz series. Commun. Algebra 28(1) (2000), 299–305.
 Zbl 0949.16043
- [3] Nicholson, W. K.; Watters, J. F.: *Rings with projective socle.* Proc. Am. Math. Soc. **102**(3) (1988), 443–450.
 Zbl 0657.16015
- [4] Xue, W.: Modules with projective socles. Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311–315.
 Zbl 0806.16004

Received May 3, 2006