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Abstract. We study the ideals, in particular, the maximal spectrum
and the set of idempotent elements, in rings of Hurwitz series.
Let A be a commutative ring with identity. The elements of the ringHA

of Hurwitz series over A are formal expressions of the type f =
∞∑
i=0

aiX
i

where ai ∈ A for all i. Addition is defined termwise. The product of f

by g =
∞∑
i=0

biX
i is defined by f ∗ g =

∞∑
n=0

cnX
n where cn =

n∑
k=0

(n
k)akbn−k

and (n
k) is a binomial coefficient. Recently, many authors turned to

this ring and discovered interesting applications in it. See for example
[1] and [2]. The natural homomorphism ε : HA −→ A, is defined by
ε(f) = a0.

1. Generalities

1.1. Proposition. HA is an integral domain if and only if A is an integral
domain with zero characteristic.

Proof. ⇐= See [1, Corollary 2.8].

=⇒ Since A ⊂ HA, then A is a domain. Suppose that A has a positive charac-
teristic m. Then X ∗Xm−1 = (m−1+1

1 )Xm = mXm = 0.

1.2. Proposition. Let I be an ideal of A. Then HA/ε−1(I) ' A/I and
HA/HI ' H(A/I). In particular

a) ε−1(I) is a radical ideal of HA ⇐⇒ I is a radical ideal of A.
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b) ε−1(I) ∈ Spec(HA) ⇐⇒ I ∈ Spec(A).

c) ε−1(I) ∈ Max (HA) ⇐⇒ I ∈ Max (A).

d) HI ∈ Spec(HA) ⇐⇒ I ∈ Spec(A) and A/I has zero characteristic.

Proof. The map ψ : HA −→ A/I, defined by ψ = τ ◦ ε where τ is the canonical
surjection of A onto A/I, is a surjective homomorphism with ker ψ = ε−1(I), so
HA/ε−1(I) ' A/I.

The map φ : HA −→ H(A/I), defined for f =
∑∞

i=0 aiX
i by φ(f) =

∑∞
i=0 āiX

i,
is a surjective homomorphism, with ker φ = HI, so HA/HI ' H(A/I).

Now (a), (b) and (c) follow from the first isomorphism.

(d) HI ∈ Spec(HA) ⇐⇒ HA/HI an integral domain ⇐⇒ H(A/I) an integral
domain ⇐⇒ A/I an integral domain with zero characteristic ⇐⇒ I ∈ Spec(A)
and A/I has zero characteristic.

The inverse implication in (d) of the proposition was proved in [1, Prop. 2.7].

Example. Let A = Fq be the finite field of q elements. Since X∗Xq−1 = qXq = 0,
then H0 = 0 is not prime in HFq.

1.3. Corollary. The set of maximal ideals of HA is Max (HA)={ε−1(M) : M ∈
Max (A)}. In particular, the Jacobson radical Rad(HA) = ε−1(Rad(A)). The ring
HA is local (resp. quasi local) if and only if A is local (resp. quasi local).

Proof. By the part (c) of the preceding proposition, we have only to prove that
for any M ∈ Max (HA) there is M ∈ Max (A) such that M = ε−1(M). The
set M = ε(M) is an ideal of A and M 6= A since in the contrary case, by [1,
Proposition 2.5], M contains a unit of HA. Therefore M ⊆ ε−1(M) ⊂ HA and
by the maximality of M, M = ε−1(M). By Proposition 1.2 (c), M ∈ Max (A).

Examples. 1) Max (HZ) = {ε−1(pZ) : p prime integer}.

2) For any field K, HK is local with maximal ideal ε−1(0).

3) Contrary to the case of the ring of usual formal power series over a field, the
elementX does not generate the maximal ideal ε−1(0) ofHF2. Indeed, for any f =
∞∑

n=0

anX
n ∈ HF2, X ∗ f =

∞∑
n=0

(n+1
1 )anX

n+1 =
∞∑

n=0

(n+ 1)anX
n+1 =

∞∑
k=0

a2kX
2k+1.

1.4. Proposition. If P ⊂ Q are consecutive prime ideals in A, then ε−1(P ) ⊂
ε−1(Q) are consecutive prime ideals in HA.

Proof. Let R ∈ Spec(HA) such that ε−1(P ) ⊂ R ⊆ ε−1(Q). There is an f =
a0 + a1X + · · · ∈ R \ ε−1(P ). Then a0 6∈ P and a0 = f − (a1X + · · ·) ∈ R since
a1X + · · · ∈ ε−1(P ) ⊂ R. Therefore a0 ∈ R ∩ A and P = ε−1(P ) ∩ A ⊂ R ∩ A ⊆
ε−1(Q)∩A = Q. Since P ⊂ Q are consecutive, then R∩A = Q. For any element
g = b0 + b1X + · · · ∈ ε−1(Q), b0 ∈ Q ⊂ R and b1X + · · · ∈ ε−1(P ) ⊆ R, so g ∈ R
and ε−1(Q) = R.
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2. Idempotent elements in Hurwitz series ring

For f ∈ HA, the ideal c(f) generated by the coefficients of f in A is called the
content of f .

2.1. Proposition. Suppose that for any P ∈ Spec(A), A/P has zero character-
istic. If f and g ∈ HA are such that f ∗g = 0, then c(f)c(g) ⊆ Nil(A). Moreover,
if A is reduced, then each coefficient of f annihilates g.

Proof. By Proposition 1.2, for any P ∈ Spec(A), HP ∈ Spec(HA). Since f ∗ g =
0 ∈ HP , then f or g ∈ HP . If a is a coefficient of f and b a coefficient of g, then
ab ∈ P . So ab ∈

⋂
{P : P ∈ Spec(A)} = Nil(A) and c(f)c(g) ⊆ Nil(A).

Example. The result is not true in general. Suppose for example that A has
positive characteristic n. Then X ∗Xn−1 = (n−1+1

1 )Xn = nXn = 0, with c(X) =
c(Xn−1) = A, so c(X)c(Xn−1) = A 6⊆ Nil(A).

As usual, Bool(A) will mean the set of idempotent elements in the ring A.

2.2. Corollary. Suppose A is reduced and A/P has zero characteristic, for every
P ∈ Spec(A). Then Bool(HA) = Bool(A).

Proof. Let f =
∑∞

i=0 aiX
i ∈ HA, with f∗f = f . Then f−1 = (a0−1)+

∑∞
i=1 aiX

i

and f∗(f−1) = 0. By Proposition 2.1, for i ≥ 1, a2
i = 0, so ai = 0 and f = a0 ∈ A.

More generally, we have the following result.

2.3. Proposition. For any ring A, Bool(HA) = Bool(A).

Proof. Let f =
∑∞

i=0 aiX
i ∈ HA be such that f ∗ f = f . Then a2

0 = a0 and
2a0a1 = a1 =⇒ 2a2

0a1 = a0a1 =⇒ 2a0a1 = a0a1 =⇒ a0a1 = 0. Suppose by
induction that a0ai = 0, for 1 ≤ i < n. The coefficient of Xn in f ∗ f = f is∑n

i=0(
n
i )aian−i = an =⇒ a0(

∑n
i=0(

n
i )aian−i) = a0an =⇒ a0((

n
0 )a0an + (n

n)ana0) =
a0an =⇒ 2a2

0an = a0an =⇒ 2a0an = a0an =⇒ a0an = 0. So for each i ≥ 1,
a0ai = 0. Suppose that f 6∈ A and let k = inf{i ∈ N∗ : ai 6= 0}, g =

∑∞
i=k aiX

i,
then k ≥ 1, ak 6= 0, f = a0 + g, a0 ∗ g =

∑∞
i=k a0aiX

i = 0. Since f ∗ f = f ,
then (a0 + g) ∗ (a0 + g) = a0 + g =⇒ a2

0 + g ∗ g = a0 + g =⇒ g ∗ g = g =⇒
(2k
k )a2

kX
2k + · · · = akX

k + · · · =⇒ ak = 0, which is impossible. So f = a0 ∈ A.

A ring A is called PS if the socle Soc(AA) is projective. By [3, Theorem 2.4], a
ring A is PS if and only if for every maximal ideal M of A there is an idempotent
e of A such that (0 : M) = eA. In [2, Theorem 3.2], Zhongkui Liu proved the
following result:

“If A has zero characteristic and if A is a PS-ring, then HA is a PS-ring”.

His proof is not correct, it uses in many places the wrong fact:

“If A has zero characteristic, n ∈ N∗ and x ∈ A, then nx = 0 implies x = 0”.

But this is not true. Take for example: A = Z × Z/nZ, n ≥ 2 an integer and
x = (0, 1̄). When I wrote to Liu, he proposed to replace the condition “A has
zero characteristic” by “A is Z-torsion free”. With this change the proof becomes
correct.
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In the next proposition, I avoid the hypothesis “A is a PS-ring” in the theorem
of Liu and I give a short and simple proof.

2.4. Proposition. If A is torsion free as a Z-module, then HA is a PS-ring.

Proof. If M ∈ Max (HA), there is M ∈ Max (A) such that M = ε−1(M) by
Corollary 1.3, so X ∈ M. Let f =

∑∞
i=0 aiX

i ∈ (0 : M), then 0 = X ∗ f =∑∞
i=0(

i+1
1 )aiX

i+1 =
∑∞

i=0(i + 1)aiX
i+1. For each i ∈ N, (i + 1)ai = 0, but A is

Z-torsion free, then ai = 0 and f = 0.

2.5. Lemma. Suppose that A is reduced and A/P has zero characteristic for any
P ∈ Spec(A). For f ∈ HA, let If = (0 : c(f)). Then:

a) For every f ∈ HA, (0 : f) = HIf .

b) If J is an ideal of HA and L =
∑

f∈J c(f), then (0 : J) = H(0 : L).

Proof. a) Put f =
∑∞

i=0 aiX
i. By Proposition 2.1, g =

∑∞
i=0 biX

i ∈ (0 : f) ⇐⇒
f ∗ g = 0 ⇐⇒ ∀i, j ∈ N, aibj = 0 ⇐⇒ ∀j ∈ N, bj ∈ (0 : c(f)) = If ⇐⇒ g ∈ HIf .
b) By part a), (0 : J) =

⋂
f∈J(0 : f) =

⋂
f∈J HIf = H(

⋂
f∈J If ). But

⋂
f∈J If =⋂

f∈J (0 : c(f)) = (0 :
∑

f∈J c(f)) = (0 : L). So (0 : J) = H(0 : L).

2.6. Proposition. If A is reduced with A/P has zero characteristic for every
P ∈ Spec(A), then HA is a PS-ring.

Proof. Let M ∈ Max (HA). By Corollary 1.3, X ∈ M, then
∑
f∈M

c(f) = A. By

the preceding lemma, (0 : M) = H(0 : A) = H0 = (0).

Conjecture. In [4, Proposition 4], Xue showed that the ring A[[X]] is always PS,
for any ring A. In the light of this theorem and the preceding results I conjecture
that the ring HA is also PS.

2.7. Definition. A quasi-Baer ring is a ring A such that for any ideal I of A
there is an idempotent e of A with (0 : I) = eA.

The following lemma is well known. We include its proof for the sake of the reader.

2.8. Lemma. Any quasi-Baer ring is reduced.

Proof. Let a be a nilpotent element of the quasi-Baer ring A and n ≥ 1 the
smallest integer such that an = 0. Let (0 : aA) = eA, with e ∈ A and e2 = e.
If n ≥ 2, then an−1 ∈ eA, put an−1 = eb, with b ∈ A. Since ae = 0, then
0 = an−1e = be2 = be = an−1, which is impossible.

2.9. Proposition. If A is a quasi-Baer ring with A/P has zero characteristic
for every P ∈ Spec(A), then HA is a quasi-Baer ring.
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Proof. Let J be an ideal of HA and L =
∑
f∈J

c(f). There is e ∈ Bool(A) such that

(0 : L) = eA. By Lemma 2.5, (0 : J) = H(0 : L) = H(eA) = e ∗HA.

3. Hurwitz series over a noetherian ring

3.1. Lemma. Let I be an ideal of A. Then HI = I ∗ HA if and only if for
any countable subset S of I there is a finitely generated ideal F of A such that
S ⊆ F ⊆ I.

Proof. =⇒ A countable subset of I is a sequence (ai)i∈N of elements of I. Let

f =
∞∑
i=0

aiX
i ∈ HI = I ∗HA. There are b1, . . . , bn ∈ I and g1, . . . , gn ∈ HA such

that f = b1 ∗ g1 + · · ·+ bn ∗ gn. If F = b1A+ · · ·+ bnA, then {ai : i ∈ N} ⊆ F .

⇐= Since I ⊂ HI, then I ∗HA ⊆ HI. Now, let f =
∞∑
i=0

aiX
i ∈ HI. There is a

finitely generated ideal F = b1A+ · · ·+ bnA of A such that {ai : i ∈ N} ⊆ F ⊆ I.

For each i ∈ N, ai =
n∑

j=1

aijbj, with aij ∈ A. So f =
∞∑
i=0

(
n∑

j=1

aijbj)X
i =

n∑
j=1

bj ∗

(
∞∑
i=0

aijX
i) ∈ I ∗HA.

Example. Let (A,M) be a non-discrete valuation domain of rank one, defined
by a valuation v with group G. We can suppose that G is a dense subgroup of
R. Let (αi)i∈N be a strictly decreasing sequence of elements of G converging to

zero. For each i ∈ N, there is ai ∈ M , with v(ai) = αi. Let f =
∞∑
i=0

aiX
i ∈ HM .

Suppose that f ∈ M ∗ HA, there is b ∈ M and g =
∞∑
i=0

ciX
i ∈ HA such that

f = b ∗ g. For each i ∈ N, ai = bci, so αi = v(ai) = v(b) + v(ci) ≥ v(b), which is
impossible.

3.2. Corollary. If I is a finitely generated ideal, then HI = I ∗HA.

3.3. Proposition. The ring A is noetherian if and only if for each ideal I of A,
HI = I ∗HA.

Proof. Suppose that A is not noetherian and let (Ii)i∈N be a strictly increasing

sequence of ideals of A and put I =
∞⋃
i=0

Ii. For each i ∈ N∗, there is ai ∈ Ii \ Ii−1.

Since HI = I ∗HA, there is a finitely generated ideal F = b1A + · · · + bnA of A
such that {ai : i ∈ N∗} ⊆ F ⊆ I. Since the sequence (Ii)i∈N is increasing, there
is k ∈ N such that b1, . . . , bn ∈ Ik so F ⊆ Ik and {ai : i ∈ N∗} ⊆ Ik, which is
impossible.
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Example. Let K be a commutative field and {Yi : i ∈ N} a sequence of
indeterminates. The ring A = K[Yi : i ∈ N] is not noetherian because its ideal
I = (Yi : i ∈ N) is not finitely generated. Suppose that HI = I ∗HA, by Lemma
3.1, there is a finitely generated ideal F of A such that {Yi : i ∈ N} ⊆ F ⊆ I, so
I = F , which is impossible.

3.4. Proposition. Let I and J be ideals of the ring A, with HJ = J ∗HA and
J ⊆

√
I. Then there is n ∈ N∗ such that Jn ⊆ I.

Proof. Suppose that for each m ∈ N∗, Jm 6⊆ I, there are bm1, . . . , bmm ∈ J such
that the product bm1 · · · bmm 6∈ I. Let C be the ideal of A generated by the
countably subset {bmi : m ∈ N∗, 1 ≤ i ≤ m}, then C ⊆ J and Cm 6⊆ I for every
m ∈ N∗. Since HJ = J ∗HA, by Lemma 3.1, there is a finitely generated ideal F
of A such that C ⊆ F ⊆ J ⊆

√
I, so F ⊆

√
I. But F is finitely generated, there

is n ∈ N∗ such that F n ⊆ I, so Cn ⊆ I, which is impossible.
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