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Abstract. The Hilbert geometry in an open bounded convex set in
Rn is a classical example of a projective Finsler space. We construct
explicitly a positive measure on the space of lines in a polytopal Hilbert
geometry which yields an integral geometric representation of Crofton
type for the Holmes-Thompson area of hypersurfaces.
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1. Introduction

There have recently been efforts to extend classical integral-geometric Crofton
formulas to projective Finsler spaces. This was partly motivated by the integral-
geometric approach to Hilbert’s fourth problem, and by Busemann’s generaliza-
tion of the problem, asking for notions of areas in affine spaces for which flats are
minimizing. Another impetus came from the work of Gelfand and Smirnov [10]
on Crofton densities, aiming at bridging the gap between the integral geometries
of Blaschke-Chern-Santaló on one side and that of Radon type transforms on the
other.

A Crofton formula in Rn, in a simple case, is of the form∫
A(n,n−k)

card(E ∩M) ηn−k(dE) = volk(M). (1)

Here k ∈ {1, . . . , n− 1}, A(n, j) is the affine Grassmannian of j-dimensional flats
(affine subspaces) in Rn, and M is a k-dimensional convex set (we restrict our-
selves to this special case, since the generality of the admissible subsets M is not
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an issue here). The classical version of formula (1) is the case where Rn is equipped
with a Euclidean metric, volk denotes the k-dimensional Euclidean volume, and
ηn−k is the rigid motion invariant measure on A(n, n−k), with a suitable normal-
ization. Recent investigations are concerned with the case where Rn or an open
convex subset thereof is endowed with a projective Finsler metric and volk is the
k-dimensional Holmes-Thompson area. For smooth projective Finsler spaces, it
was shown by Álvarez and Fernandes [4], and with different approaches in [5, 7]
(see also the surveys [6] and [8]), that a signed measure ηn−k exists so that (1)
holds for the Holmes-Thompson area volk. Such a signed measure is called a
Crofton measure for volk. The line measure η1 is always positive, but generally
not the measure ηj for j = 2, . . . , n − 1. If the metric induced by the Finsler
metric is a hypermetric, then all the measures ηj, j = 1, . . . , n − 1, are positive.
For the case of hypermetric Minkowski spaces (a Minkowski space is here a finite
dimensional real normed space), the existence of positive Crofton measures for the
Holmes-Thompson area was already proved in [15]. No smoothness assumption
on the norm was made in that case. As a consequence, the obtained Crofton mea-
sures in general do not have densities (with respect to a Haar measure, say). For
example, the line measure in a Minkowski space with a polytopal norm is concen-
trated on a lower-dimensional subset of A(n, 1). The existence of positive Crofton
measures for general hypermetric projective Finsler spaces, without smoothness
assumptions, was proved in [12]. There it was further shown that a positive line
measure, that is, a positive Crofton measure for voln−1, exists also without the
hypermetric assumption. The employed approximation method ensures only the
existence and does not yield an explicit description of the measures obtained.

In the present paper, we will explicitly construct the positive line measure for
the Holmes-Thompson (n − 1)-area in an n-dimensional Hilbert geometry in the
interior of a convex polytope. Hilbert geometries are, besides Minkowski spaces,
the second classical example of complete projective metrics, already mentioned
(though not under this name) by Hilbert in the formulation of his fourth problem.
The line measure in a polytopal Hilbert geometry shows similar features to that
in a Minkowski space with a polytopal unit ball. For Hilbert geometries in planar
polygons, the line measure was described briefly by Alexander [1] and more ex-
plicitly by Alexander, Berg and Foote [3]. The higher-dimensional case requires a
different approach. Our constructed line measure is given by (16) together with
(13); the details are explained below.

2. Preliminaries

We work in Rn (n ≥ 2), where we choose a scalar product 〈·, ·〉, with induced
norm | · |. The results will not depend on the choice of this auxiliary Euclidean
structure, but its availability makes some calculations easier.

In the following, P ⊂ Rn is a fixed convex polytope, with nonempty interior
denoted by C. For x, y ∈ C, x 6= y, let a, b be the points where the line through
x and y intersects the boundary of C, such that x is between a and y. Then

d(x, y) := ln
|x− b||y − a|
|y − b||x− a|

(2)
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defines a metric d on C. It is projective, or linearly additive, which means that
d(x, z) = d(x, y) + d(y, z) if x, y, z are on a line and y is between x and z. The
pair (C, d) is the Hilbert geometry in C.

There is a Finsler metric inducing the metric d. A (generalized) Finsler metric
on C is a continuous function F : C × Rn → [0,∞) such that F (x, ·) =: ‖ · ‖x is
a norm on Rn for each x ∈ C. The Finsler metric inducing d (which means that
d(x, y) is the infimum of the Finsler lengths of all piecewise C1 curves connecting
x and y) is given by

F (x, u) := h((P − x)o, u) + h((P − x)o,−u), (3)

where h denotes the support function and (P −x)o is the polar body of P −x, the
translate of P by the vector x. (The easy calculation can be found, e.g., in the
survey article [14].) For each x ∈ C, the norm F (x, ·) = ‖ · ‖x has the unit ball

Bx := {u ∈ Rn : ‖u‖x ≤ 1},

and its polar is
Bo

x := {ξ ∈ Rn : 〈ξ, u〉 ≤ 1 ∀u ∈ Bx}.
Writing (P − x)o =: P x, we see from (3) and the general relation ‖ · ‖x = h(Bo

x, ·)
that

Bo
x = P x − P x = DP x, (4)

where D denotes the difference body operator.
For an introduction to the Holmes-Thompson area in Minkowski spaces, we

refer to [16], and for the Holmes-Thompson area in Finsler spaces to the survey
[8]; see also [13]. Holmes-Thompson areas appearing below always refer to the
projective Finsler space (C,F ).

In the following, we denote by M the set of all (n− 1)-dimensional relatively
open bounded convex sets contained in C. This is a sufficiently rich class of
submanifolds for studying Crofton measures for the Holmes-Thompson (n − 1)-
area. For M ∈ M , we denote by TM the linear subspace parallel to the affine
hull of M and by uM one of the two unit normal vectors of TM .

For M ∈M, the Holmes-Thompson (n− 1)-area of M can be represented in
the form

voln−1(M) =
1

κn−1

∫
M

λn−1(B
o
x|TM)λn−1(dx), (5)

where λn−1 is the (n − 1)-dimensional Lebesgue measure and |TM denotes or-
thogonal projection to TM . The constant κn−1 is the (n − 1)-volume of the
(n− 1)-dimensional Euclidean unit ball. The representation (5) involves the aux-
iliary Euclidean structure in several ways, but voln−1(M) is independent of its
choice.

A Crofton measure for voln−1 is a signed measure η1 on the Borel sets of the
space A(n, 1) of lines which is locally finite (that is, finite on compact sets) and
satisfies ∫

A(n,1)

card(L ∩M) η1(dL) = voln−1(M) (6)
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for all M ∈M. There is at most one such signed measure (see [12]). In the next
section, we construct a positive Crofton measure for voln−1.

We will need conjugate faces of polar polytopes. Let Q ⊂ Rn be a polytope
with 0 in its interior, so that the polar polytope Qo is defined. Let G be a face
of Qo and u a unit vector such that G = F (Qo, u) (as usual, F (K, u) denotes the
support set of the convex body K with outer normal vector u; there is no danger
of confusion with the Finsler metric). The ray {λu : λ ≥ 0} meets the boundary
of Q in a point which is in the relative interior of a unique face F of Q (depending
only on G, for fixed Q); we denote this face by R(Q, u). It is independent of the
choice of the vector u with G = F (Qo, u). Since F is the face of Q of smallest
dimension containing a point λu with λ > 0, the faces F and G are conjugate to
each other under the duality of Q and Qo; we denote this fact by F ∗ = G, thus

R(Q, u)∗ = F (Qo, u). (7)

Let v1, . . . , vk be the outer unit normal vectors of the facets of Q containing F .
Then

F ∗ = conv

{
v1

h(Q, v1)
, . . . ,

vk

h(Q, vk)

}
, (8)

where h denotes the support function (this follows from [11, p. 99]).

3. Construction of the line measure

Our starting point is the representation (5) of the Holmes-Thompson (n−1)-area.
Let M ∈ M be given. Let x ∈ C. The polar unit ball Bo

x = DP x is a polytope
with 0 as centre of symmetry. Let S1, . . . , Sk be the facets of DP x. Then

λn−1(B
o
x|TM) =

1

2

k∑
i=1

λn−1(Si|TM). (9)

Let i ∈ {1, . . . , k}, and let ui be the outer unit normal vector of DP x at its facet
Si. We have

Si = F (DP x, ui) = F (P x, ui) +F (−P x, ui) = F ((P − x)o, ui)−F ((P − x)o,−ui).

According to (7), it follows that

Si = R(P − x, ui)
∗ −R(P − x,−ui)

∗.

Writing R(P − x, ui) =: F − x and R(P − x,−ui) =: G− x, so that F and G are
faces of P , we have dimF +dimG ≤ n−1, since dim[(F −x)∗− (G−x)∗] = n−1.
There are numbers λ, µ > 0 with x + λui ∈ F and x − µui ∈ G, hence the point
x lies on a segment with one endpoint in F and the other in G. We set

∆(F,G) := C ∩ conv(F ∪G)

and denote by T the set of all triples (F,G, y) consisting of two distinct faces F,G
of P with dimF + dimG ≤ n − 1 and a point y ∈ ∆(F,G). If the pair of faces
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F,G is complementary, which means that the dimensions of F and G add up to
n− 1 and together they affinely span Rn, then every point y ∈ ∆(F,G) lies on a
unique segment with one endpoint in F and the other in G.

For (F,G, x) ∈ T , let

QF,G
x := (F − x)∗ − (G− x)∗

where (F − x)∗ denotes the face of the polar polytope (P − x)o that is conjugate
to F −x. Thus, each facet Si of DP x is of the form Si = QF,G

x with (F,G, x) ∈ T .
Conversely, if (F,G, x) ∈ T , then QF,G

x is a face of DP x, but λn−1(Q
F,G
x ) = 0 if it

is not a facet. From (5) and (9) it now follows that

voln−1(M) =
1

κn−1

∫
M

1

2

∑
(F,G,x)∈T

λn−1(Q
F,G
x |TM)1∆(F,G)(x)λn−1(dx)

=
1

2

∑
(F,G)

1

κn−1

∫
M

λn−1(Q
F,G
x |TM)1∆(F,G)(x)λn−1(dx),

where the last sum extends over all pairs (F,G) of distinct faces of P with dimF+
dimG ≤ n− 1. Here we need only sum over the complementary pairs (F,G). In
fact, suppose that F and G are faces of P for which S := aff(F ∪ G) 6= Rn. If
M 6⊂ S, then dimM ∩ S < n− 1, hence∫

M

1∆(F,G)(x)λn−1(dx) = 0.

If M ⊂ S and x ∈M , then the normal cones of aff(F − x)∗ and aff(G− x)∗, and
hence that of aff[(F − x)∗ − (G − x)∗], are subspaces of S − x. It follows that
dimQF,G

x |TM < n− 1 and hence λn−1(Q
F,G
x |TM) = 0.

For every ordered pair (F,G) of complementary faces, we define a partial area
volF,G by

volF,G(M) :=
1

κn−1

∫
M

λn−1(Q
F,G
x |TM)1∆(F,G)(x)λn−1(dx), (10)

for M ∈M. Thus, we have shown that

voln−1(M) =
1

2

∑
(F,G)

volF,G(M), (11)

where the sum extends over all ordered pairs (F,G) of complementary faces of P .
For a pair (F,G) of complementary faces of P we denote by A(F,G) ⊂ A(n, 1)

the set of all lines that meet F and G.
We will show that there exists a positive measure ηF,G on A(n, 1) which is

concentrated on A(F,G) and satisfies

volF,G(M) =

∫
A(n,1)

card(L ∩M) ηF,G(dL) (12)
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for M ∈ M. We fix a complementary pair (F,G) and explain how the measure
ηF,G is constructed.

Let x ∈ ∆(F,G). By Carathéodory’s theorem, there is a representation

x =
m∑

i=0

αiai with αi ≥ 0, ai ∈ F ∪G for i = 0, . . . ,m,
m∑

i=0

αi = 1,

where a0, . . . , am are affinely independent; without loss of generality, a0, . . . , aj ∈
F and aj+1, . . . , am ∈ G, with j ∈ {0, . . . ,m − 1}. The number µ :=

∑m
i=j+1 αi

satisfies µ /∈ {0, 1}, since x /∈ F ∪G. With

y :=
m∑

i=0

αi

1− µ
ai, z :=

m∑
i=j+1

αi

µ
ai

we have y ∈ F , z ∈ G and x = (1−µ)y+µz. The representation x = (1−µ)y+µz
with y ∈ aff F , z ∈ aff G and µ ∈ (0, 1) is unique. Thus, every point x ∈ ∆(F,G)
lies on a unique line L(x) ∈ A(F,G), meeting F in a point y = yx and G in a
point z = zx.

With x, y, z as before, let tx be the unit vector which is a positive multiple of
y − z. The local polar unit ball Bo

x has a facet QF,G
x with outer normal vector tx,

and this facet is given by

QF,G
x = R(P − x, tx)

∗ −R(P − x,−tx)∗,

where R(P − x, tx) = F − x and R(P − x,−tx) = G− x.
Let H be the hyperplane parallel to aff F + aff G and at the same distance

from F and G. Then every point x ∈ H ∩∆(F,G) has the unique representation
x = (y+ z)/2 with y ∈ L(x)∩F , z ∈ L(x)∩G. For L ∈ A(F,G), let π(L) be the
point in L ∩H. The map π : A(F,G) → H is injective.

For a Borel set B ⊂ A(n, 1) of lines, we define

ηF,G(B) :=
1

κn−1

∫
H

λn−1(Q
F,G
x |H)1π(B∩A(F,G))(x)λn−1(dx). (13)

Then ηF,G is a positive measure, concentrated on A(F,G). We assert that it
satisfies (12).

To prove this, let M ∈ M and E := affM . For a line L, the intersection
L∩M is either empty or contains one or infinitely many points; in the latter case,
L ⊂ E. Set

L(M) := {L ∈ A(F,G) : card(L ∩M) = ∞}.
If x ∈ π(L(M)), then the line L(x) is contained in E, hence x ∈ H ∩E. It follows
that λn−1(π(L(M))) = 0 and hence, by (13), that ηF,G(L(M)) = 0.

We write

M ′ := (M ∩∆(F,G)) \ {x ∈ ∆(F,G) : L(x) ∈ L(M)}

and
MH := {x ∈ H : L(x) ∩M ′ 6= ∅}.



R. Schneider: Crofton Measures in Polytopal Hilbert Geometries 485

There is a bijective mapping
α : MH →M ′

such that α(x) is the intersection point of the line L(x) with E.
Denoting the right-hand side of (12) by I(M), we have, by definition (13),

I(M) =

∫
A(F,G)\L(M)

card(L ∩M) ηF,G(dL)

=
1

κn−1

∫
MH

λn−1(Q
F,G
x |H)λn−1(dx). (14)

We assert that also

I(M) =
1

κn−1

∫
M ′
λn−1(Q

F,G
w |E)λn−1(dw). (15)

By (10), the right-hand side is equal to volF,G(M). In fact, if x ∈ (M ∩∆(F,G))\
M ′, then L(x) ⊂ E and, hence, λn−1(Q

F,G
x |E) = 0. Thus, if (15) is established,

then (12) follows.
To prove (15), we use the map α to transform (14) in an integral over M ′.

For this, we first relate λn−1(Q
F,G
x ) to λn−1(Q

F,G
w ) if L(x) = L(w).

Let x ∈ ∆(F,G), let y ∈ L(x) ∩ F , z ∈ L(x) ∩G. Let

H−
ui,〈y,ui〉 := {p ∈ Rn : 〈p, ui〉 ≤ 〈y, ui〉}, i = 1, . . . ,m

be the supporting halfspaces of P that contain F in their boundary, and let

H−
vi,〈z,vi〉, i = 1, . . . , l

be the supporting halfspaces of P that contain G in their boundary. By (8), the
face of (P − x)o that is conjugate to the face F − x of P − x is given by

(F − x)∗ = conv

{
u1

〈y − x, u1〉
, . . . ,

um

〈y − x, um〉

}
.

Similarly,

(G− x)∗ = conv

{
v1

〈z − x, v1〉
, . . . ,

vl

〈z − x, vl〉

}
.

We write q := y − z, then y − x = µq with µ ∈ (0, 1) and x− z = (1− µ)q. Since

QF,G
x = (F − x)∗ − (G− x)∗,

we obtain, with dimF =: j and dimG = n− 1− j,

λn−1(Q
F,G
x ) = λn−1−j((F − x)∗)λj((G− x)∗)s(F,G) =

1

µn−1−j

1

(1− µ)j
· V (x)

where s(F,G) depends only on the relative position of aff F and aff G, and where

V (x) :=

s(F,G)λn−1−j

(
conv

{
ui

〈q, ui〉
: i = 1, . . . ,m

})
λj

(
conv

{
vi

〈q, vi〉
: i = 1, . . . , l

})
.
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Let w ∈ L(x), y − w = νq, w − z = (1− ν)q. Then it follows that

λn−1(Q
F,G
x )

λn−1(Q
F,G
w )

=

(
ν

µ

)n−1−j (
1− ν

1− µ

)j

.

Now suppose that the hyperplane H has unit normal vector u and the hyperplane
E has unit normal vector v. Let x ∈MH and w = α(x). Then we obtain

λn−1(Q
F,G
x |H)

λn−1(Q
F,G
w |E)

=
λn−1(Q

F,G
x )|〈t, u〉|

λn−1(Q
F,G
w )|〈t, v〉|

=

(
ν

µ

)n−1−j (
1− ν

1− µ

)j |〈t, u〉|
|〈t, v〉|

,

where t = tx = tw := (y − z)/|y − z| and µ = 1/2.
The map α : MH →M ′ is a diffeomorphism. We have to determine the factor

D(α, x) by which it distorts the Euclidean (n − 1)-volume at a point x (i.e., the
absolute determinant of the differential of α at x, with respect to the Euclidean
metrics in the tangent spaces). For this, we fix a point x0 ∈ MH , with image
α(x0) = w0 and corresponding parameter ν0. We represent α as the composition
of two differentiable maps ϕ and ψ. The map ϕ is defined by

ϕ(x) := (1− ν0)y + ν0z,

where x = (1−µ)y+µz with y ∈ F , z ∈ G and µ = 1/2. Thus, ϕ(MH) lies in the
hyperplane H0 through w0 parallel to H. Instead of x, we may equivalently use
y, z as independent variables. Writing ϕ(x) =: x, we have, in a self-explanatory
notation,

λn−1(dx) = (1− ν0)
jνn−1−j

0 s(F,G)λj(dy)λn−1−j(dz),

where s(F,G) depends only on the relative position of F and G, and

λn−1(dx) = (1− µ)jµn−1−js(F,G)λj(dy)λn−1−j(dz),

hence

D(ϕ, x) =

(
ν0

µ

)n−1−j (
1− ν0

1− µ

)j

.

The map ψ : ϕ(MH) →M ′ is defined by letting ψ(x) be the intersection point of
the line L(x) = L(x) with E. One finds that

D(ψ,w0) =
|〈t, u〉|
|〈t, v〉|

with t := tx0 = tw0 . For this, it is convenient to choose in the tangent space to H0

at w0 an orthonormal basis with one vector orthogonal to the ((n−2)-dimensional)
direction of the intersection of H0 and E. The distortion factor of the length of
this vector under the differential of ψ at w0 is then easily determined using the
sine rule; the lengths of the other basis vectors remain unchanged. Altogether we
get

D(α, x0) = D(ψ,w0)D(ϕ, x0) =

(
ν0

µ

)n−1−j (
1− ν0

1− µ

)j |〈t, u〉|
|〈t, v〉|

=
λn−1(Q

F,G
x0
|H)

λn−1(Q
F,G
w0 |E)

.
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Since x0 ∈MH was arbitrary, this shows that (15) holds.

Remark. For x ∈ ∆(F,G) and vectors ξ1, . . . , ξn−1 ∈ Rn, we may define

γ(x, ξ1, . . . , ξn−1) := λn−1(Q
F,G
x )| det(tx, ξ1, . . . , ξn−1)|.

Since the right-hand side depends only on the simple (n−1)-vector ξ1∧· · ·∧ξn−1,
this defines a (smooth) (n− 1)-density γ on the n-manifold ∆(F,G) (we identify
every tangent space TxRn with Rn). For M ∈ M, with unit normal vector uM ,
we see from the preceding result that∫

M

γ =

∫
M

λn−1(Q
F,G
x )|〈tx, uM〉|λn−1(dx)

=

∫
M

λn−1(Q
F,G
x |TM)|λn−1(dx)

= volF,G(M).

Finally, we define a measure η1 on A(n, 1) by

η1 :=
1

2

∑
(F,G)

ηF,G), (16)

where the sum extends over all ordered pairs (F,G) of complementary faces of P .
Then (11) and (12) together show that

voln−1(M) =

∫
A(n,1)

card(L ∩M) η1(dL)

for M ∈ M. Thus, η1 is a (positive) Crofton measure for the Holmes-Thompson
area voln−1. As shown in [12], it is uniquely determined.

We observe that the line measure in a polytopal Hilbert geometry has a similar
singularity property as the line measure in a polytopal Minkowski space: the
measure η1 is concentrated on a subset of A(n, 1) of dimension n − 1, whereas
A(n, 1) itself has dimension 2(n− 1).
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