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Abstract. The spectrum ω(G) of a finite group G is the set of element
orders of G. If Ω is a non-empty subset of the set of natural numbers,
h(Ω) stands for the number of isomorphism classes of finite groups G
with ω(G) = Ω and put h(G) = h(ω(G)). We say that G is recognizable
(by spectrum ω(G)) if h(G) = 1. The group G is almost recognizable
(resp. nonrecognizable) if 1 < h(G) < ∞ (resp. h(G) = ∞). In the
present paper, we focus our attention on the projective general linear
groups PGL(2, pn), where p = 2α3β + 1 is a prime, α ≥ 0, β ≥ 0 and
n ≥ 1, and we show that these groups cannot be almost recognizable, in
other words h(PGL(2, pn)) ∈ {1,∞}. It is also shown that the projective
general linear groups PGL(2, 7) and PGL(2, 9) are nonrecognizable. In
this paper a computer program has also been presented in order to find
out the primitive prime divisors of an − 1.
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1. Introduction

Throughout the paper, all the groups under consideration are finite and simple
groups are non-Abelian. For a group G, we denote the set of orders of all elements
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in G by ω(G) which has been recently called the spectrum of G. Obviously ω(G)
is a subset of the set N of natural numbers, and it is closed and partially ordered
by divisibility, hence, it is uniquely determined by µ(G), the subset of its maximal
elements.

One of the most interesting concepts in finite group theory which has recently
attracted several researchers is the problem of characterizing finite groups by
element orders. Let Ω be a non-empty subset of N. Now, we can put forward the
following questions:

Is there any group G with ω(G) = Ω? If the answer is affirmative then how many
non-isomorphic groups exist with the above set of element orders?

Certainly, if there exists such a group, Ω must contain 1 and furthermore Ω must
be closed and partially ordered under the divisibility relation. These conditions are
necessary but not sufficient, for example if Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then there
does not exist any group G with ω(G) = Ω. In fact, R. Brandl and W. J. Shi
in [1] have classified all groups whose element orders are consecutive integers and
in that paper they have shown that if ω(G) = {1, 2, 3, . . . , n}, for some group G,
then n ≤ 8.

For a set Ω of natural numbers, define h(Ω) to be the number of isomorphism
classes of groups G such that ω(G) = Ω, and put h(G) = h(ω(G)). Evidently,
h(G) ≥ 1. Now we give a “new classification” for groups using the h function.
A group G is called recognizable (resp. almost recognizable or nonrecognizable) if
h(G) = 1 (resp. 1 < h(G) < ∞ or h(G) = ∞). Some list of simple groups that
are presently known to be recognizable, almost recognizable or nonrecognizable is
given in [13]. In particular, it was previously known that the projective general
linear groups PGL(2, 2n) with n ≥ 2 are recognizable and PGL(2, 2) ∼= S3 is
nonrecognizable (see [16], Theorem 2). In [12], V. D. Mazurov proved the following
result: Let P be a field which is the union of an ascending series of finite fields
of orders 2mi ,mi > 1, i ∈ N. If there exists a natural number s such that 2s

does not divide mi for any i ∈ N then h(PGL(2, P )) = 1. In all other cases
h(PGL(2, P )) = ∞. Also he proved the following result in [11]: If p, r are odd
primes, p−1 is divisible by r but not by r2, and s is a natural number non-divisible
by r, then h(PGL(r, ps)) = ∞.

Let q = pn where p is a prime. In this paper, we focus our attention on the
projective general linear groups PGL(2, q). The structure of Aut(L2(q)) is well
known, it is isomorphic to the semidirect product of PGL(2, q) by a cyclic group
of order n. On the other hand we know µ(L2(q)) = { q−1

ε
, p, q+1

ε
}, ε = (2, q − 1),

and µ(PGL(2, q)) = {q − 1, p, q + 1}.
A group G is called Cpp-group if p is a prime divisor of |G| and the centralizer of

any non-trivial p-element inG is a p-group. Evidently, the projective general linear
groups PGL(2, q) where q = pn, are Cpp-groups. In [3], the second author has
classified the simple Cpp-groups, where p is prime and p = 2α3β +1, α ≥ 0, β ≥ 0
(see Lemma 8 and Table 1). Using these results, we prove the following theorem.

Theorem 1. Let p = 2α3β + 1 (α ≥ 0, β ≥ 0) be a prime. Then the projective
general linear groups PGL(2, pn) cannot be almost recognizable. In other words,
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h(PGL(2, pn)) ∈ {1,∞}.

In 1994, R. Brandl and W. J. Shi in [2] showed that all projective special
linear groups L2(q) with q 6= 9 are recognizable and L2(9) is nonrecognizable.

Here, we similarly prove that:

Theorem 2. The projective general linear group PGL(2, 9) is nonrecognizable.

For us it was interesting to face with some groups G such that µ(G) contain
three consecutive natural numbers in the form {p − 1, p, p + 1} where p ≥ 5 is
a prime. Such sets appear for almost simple groups PGL(2, p), where p ≥ 5 is
a prime, in fact we proved in [14] that h(PGL(2, p)) ∈ {1,∞}. For ∞ we have
found an example. It has been proved in [1] that PGL(2, 5) ∼= S5 has ∞ for its
h function. Here we also give another example of groups of type PGL(2, p) with
value ∞ for its h function.

Theorem 3. There exists an extension G of a 7-group by 2.S4 such that µ(G) =
µ(PGL(2, 7)) = {6, 7, 8}. In particular, the projective general linear group PGL
(2, 7) is nonrecognizable.

Notation. Our notation and terminology are standard (see [4]). Given a group
G, denote by π(G) the set of all prime divisors of the order of G. If m and n
are natural numbers and p is a prime, then we let π(n) be the set of all primes
dividing n, and r[n] the largest prime not exceeding n. Note that π(G) = π(|G|).
The notation pm ‖ n means that pm|n and pm+1 - n. The expression G = K : C
denotes the split extension of a normal subgroup K of G by a complement C.

2. Some preliminary results

First, we collect some results from Elementary Number Theory which will be
useful tools for our further investigations in this paper. We start with a famous
theorem due to Zsigmondy.

Zsigmondy’s Theorem (see [19]). Let a and n be integers greater than 1. Then
there exists a primitive prime divisor of an − 1, that is a prime s dividing an − 1
and not dividing ai − 1 for 1 ≤ i ≤ n− 1, except if

(1) a = 2 and n = 6, or

(2) a is a Merssene prime and n = 2.

We denote by an one of these primitive prime divisors of an − 1. Evidently, if an

is a primitive prime divisor of an − 1, then a has order n modulo an and so an ≡ 1
(mod n). Thus an ≥ n+ 1.

The next elementary result will be needed later.

Lemma 1. Let p and q be two primes and m be a natural number, where p, q and
m satisfying one of the following conditions. Then, for every n ≥ m, there exists
a primitive prime divisor pn > q.
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(1) p = 7, m = 5 and q = 13,
(2) p = 13, m = 5 and q = 19,
(3) p = 17, m = 4 and q = 19,
(4) p = 19, m = 7 and q = 37,
(5) p = 37, m = 7 and q = 109,
(6) p = 73, m = 5 and q = 127.

Proof. In all cases, if n ≤ q, the result is straightforward. Therefore, we may
assume that n > q. Since

π(q!) ⊆ π(p

q−1∏
i=1

(pi − 1)) ⊂ π(p
n∏

i=1

(pi − 1)),

by Zsigmondy’s theorem we deduce that there exists a primitive prime divisor
pn > q, completing the proof. �

Function for finding the primitive prime divisors. In the following we
submit a GAP program [5], which determines all the primitive prime divisors in
the sequence ai − 1 (i = 1, 2, . . . , n) for some a and n.

gap> PPD:=function(a,n)

local b,i,j,s1,s2,s;

for i in [1..n] do

s1:=Set(Factors(a∧i-1));

s2:=[];

for j in [1..(i-1)] do

b:=Set(Factors(a∧j-1));

Append(s2,b);

od;

s:=Difference(s1,s2);

Print(i," ",s,"\n");
od;

end;

Using this programme we list all primitive prime divisors pn for p = 7, 13, 17 and
2 ≤ n ≤ 19, in Table 1. Using Table 1, the reader can easily check the proof of
Lemma 1 (1)–(3) for n ≤ q.

Lemma 2. Let p and q be two primes and m,n be natural numbers such that
pm = qn + 1. Then one of the following holds:

(1) n = 1, m is a prime number, p = 2 and q = 2m − 1 is a Mersenne prime;

(2) m = 1, n is a power of 2, q = 2 and p = 2n + 1 is a Fermat prime;

(3) p = n = 3 and q = m = 2.

Proof. Well known exercise using the Zsigmondy’s theorem. �

The set ω(G) defines the prime graph GK(G) of G whose vertex-set is π(G) and
two primes p and q in π(G) are adjacent (we write p ∼ q) if and only if pq ∈ ω(G).
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n 7n 13n 17n

2 – 7 3
3 19 61 307
4 5 5, 17 5, 29
5 2801 30941 88741
6 43 157 7, 13
7 29, 4733 5229043 25646167
8 1201 14281 41761
9 37, 1063 1609669 19, 1270657
10 11, 191 11, 2411 11, 71, 101
11 1123, 23, 419, 2141993519227

293459 859, 18041
12 13, 181 28393 83233
13 16148168401 53, 264031 212057,

1803647 2919196853
14 113, 911 29, 22079 22796593
15 31, 159871 4651, 161971 6566760001
16 17, 169553 407865361 18913,

184417
17 14009 103, 443, 10949,

2767631689 15798461357509 1749233,
2699538733

18 117307 19, 271, 1423,
937 5653

19 419 12865927, 229, 1103,
4534166740403 9468940004449 202607147,

291973723

Table 1. The primitive prime divisors pn where p ∈ {7, 13, 17} and 2 ≤ n ≤ 19.

The number of connected components of GK(G) is denoted by t(G), and the
connected components are denoted by πi = πi(G), i = 1, 2, . . . , t(G). If 2 ∈ π(G)
we always assume 2 ∈ π1. Denote by µi(G) the set of all n ∈ µ(G) such that
π(n) ⊆ πi.

The Gruenberg-Kegel Theorem (see [18]). If G is a group with disconnected
graph GK(G) then one of the following holds:

(1) t(G) = 2, G is Frobenius or 2-Frobenius.

(2) G is an extension of a π1(G)-group N by a group G1, where S ≤ G1 ≤
Aut(S), S is a simple group and G1/S is a π1(G)-group. Moreover t(S) ≥
t(G) and for every i, 2 ≤ i ≤ t(G), there exists j, 2 ≤ j ≤ t(S) such that
µj(S) = µi(G).
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Lemma 3. Let S be a simple group with disconnected prime graph GK(S). Then
|µi(S)| = 1 for 2 ≤ i ≤ t(S). Let ni(S) be a unique element of µi(S) for i ≥ 2.
Then value for S, π1(S) and ni(S) for 2 ≤ i ≤ t(S) are the same as in Tables
2a–2c of [13].

Proof. The simple groups S and the sets of πi(S) are described in [18] and [7];
the rest is proved in Lemma 4 of [8]. The values of the numbers ni(S), i ≥ 2 are
listed in Table 2a–2c of [13]. �

We also use the following lemma (see [11], Lemma 1).

Lemma 4. If a group G contains a soluble minimal normal subgroup then G is
nonrecognizable. In particular, if G is a soluble group then G is nonrecognizable.

The following result of V. D. Mazurov will be used several times.

Lemma 5. (see [10]) Let G be a group, N a normal subgroup of G, and G/N a
Frobenius group with Frobenius kernel F and cyclic complement C. If (|F |, |N |) =
1 and F is not contained in NCG(N)/N , then p|C| ∈ ω(G) for some prime divisor
p of |N |.

The following lemma is taken from [16], Theorem 2.

Lemma 6. Let G be a group such that

µ(G) = µ(PGL(2, 2n)) = {2n − 1, 2, 2n + 1}.

Then, the following statements hold:

(1) If n ≥ 2, then G ∼= PGL(2, 2n).

(2) If n = 1, then G ∼= S3 has ∞ for its h function.

We are now ready to prove the following lemma.

Lemma 7. Let G be a group such that

µ(G) = µ(PGL(2, pn)) = {pn − 1, p, pn + 1},

where p is an odd prime, n ≥ 2. Then, the following statements hold:

(1) If (p, n) 6= (3, 2), then item (2) of the Gruenberg-Kegel theorem holds. More-
over, S is isomorphic to none of the following simple groups:

(a) alternating groups on n ≥ 5 letters,

(b) sporadic simple groups,

(c) L2(p
k) where k 6= n, or

(d) L2(2p
m ± 1), m ≥ 1, where 2pm ± 1 is a prime.

(2) If (p, n) = (3, 2), then there exists a soluble group G such that µ(G) =
µ(PGL(2, 32)).
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Proof. (1) First of all, we show that G is insoluble. Assume the contrary. If π(pn−
1) = {2}, then by Lemma 2 we obtain (p, n) = (3, 2) which is a contradiction.
Hence, there exists a prime 2 6= r ∈ π(pn−1). On the other hand, we consider the
primitive prime divisor s = p2n. Now assume that H is a {p, r, s}-Hall subgroup
of G. Since G has no elements of order pr, ps and rs, it follows that H is a soluble
group all of whose elements are of prime power orders. By [6], Theorem 1, we
must have |π(H)| ≤ 2, which is a contradiction.

Since t(G) = 2, G satisfies the conditions of the Gruenberg-Kegel theorem.
Now we show that G is neither Frobenius nor 2-Frobenius. Evidently, G can not
be a 2-Frobenius group, because G is insoluble. Suppose G = KC is a Frobenius
group with kernel K and complement C. Clearly C is insoluble, π(C) = π1(G) =
π(p2n − 1), π(K) = π2(G) = {p} and by [15], Theorem 18.6 C has a normal
subgroup C0 of index ≤ 2 such that C0

∼= SL(2, 5) × Z, where every Sylow
subgroup of Z is cyclic and π(Z) ∩ π(30) = ∅. Therefore GK(C) can be obtained
from the complete graph on π(C) by deleting the edge {3, 5}. On the other
hand, if there exist primes 2 6= r ∈ π(pn − 1) and 2 6= s ∈ π(pn + 1), then
since rs /∈ ω(G) it follows that rs /∈ ω(C). Hence, we must have Z = 1 and
π(p2n−1) = π(SL2(5)) = {2, 3, 5} and since {2, 3, 5} ⊂ π(p4−1), by Zsigmondy’s
theorem we obtain that n = 2. Now, it is easy to see that π(p2 − 1) = {2, 3}
and π(p2 + 1) = {2, 5}. From π(p2 − 1) = {2, 3}, we infer that p is a Mersenne
prime or a Fermat prime. In the first case we obtain p = 7, and in the latter case
p = 17. If p = 17, then 29 ∈ π(p2 + 1), a contradiction. If p = 7, then C contains
an element of order 16, which is a contradiction.

Therefore, by the Gruenberg-Kegel theorem, G is an extension of a π1(G)-
group N by a group G1, where S ≤ G1 ≤ Aut(S), S is a simple group and G1/S
is a π1(G)-group. Now, we show that S is not isomorphic to an alternating group,
a sporadic simple group, a linear group L2(p

k) where k 6= n or L2(2p
m±1), m ≥ 1,

where 2pm ± 1 is a prime.
Before beginning we recall that in the prime graph of G the connected compo-

nent π1(G) consists of the primes in π(pn − 1) which form a complete subsection
and also the primes in π(pn +1) which forms another complete subsection. More-
over, every odd vertex in π(pn − 1) is not joined to any odd vertex in π(pn + 1).

(a) Assume that S ∼= Am, m ≥ 5. By Lemma 3, m = p, p + 1, p + 2. Suppose
S ∼= Ap, p ≥ 5. We have that in the prime graph GK(Ap) the vertex 3 is joined
to 2, 5, 7, . . . , r[p−3]. If 3 divides p − 1, then by the remark mentioned in the
previous section, we conclude that 2, 3, 5, . . . , r[p−3] belong to π(pn − 1). Now, if
there exists a prime s ∈ π(pn + 1)\π(Ap) then s ∈ π(N), because Ap

∼= S ≤
G/N ≤ Aut(S) ∼= Sp. On the other hand, A4 = 22 : 3 ≤ Ap and by Lemma 5
it follows that s ∼ 3 which is a contradiction. Hence, π(pn + 1) ⊆ π(Ap). As
(pn − 1, pn + 1) = 2 and 2, 3, 5, 7, . . . , r[p−3] ∈ π(pn − 1), the only possible cases
are: π(pn + 1) = {2} or π(pn + 1) = {2, p − 2} in which in the latter case p − 2
is a prime. Evidently, the first case will never occur. So, we consider the case
π(pn + 1) = {2, p − 2}, i.e., pn + 1 = 2l(p − 2)k. Now, if k > 1 then since
(p − 2)k ∈ ω(G) and (p − 2)k /∈ ω(Aut(S)) = ω(Sp) we obtain (p − 2) ∈ π(N)
and again since Ap contains a Frobenius subgroup of shape 22 : 3 by Lemma 5,
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we get p − 2 ∼ 3 which is a contradiction. Finally, we have k = 1 and l > 1.
Moreover 2 ‖ pn − 1 which implies that n must be odd. But in this case we
have pn + 1 = (p + 1)(pn−1 − pn−2 + · · · − p + 1) = 2l(p − 2) for which it follows
that pn−1 − pn−2 + · · · − p + 1 = p − 2, giving no solution for p ≥ 5. This final
contradiction shows that S 6∼= Ap. The case when 3 divides p+ 1, is similar. The
other cases are settled similarly.

(b) Suppose S is isomorphic to one of the sporadic simple groups, for instance
S ∼= J2. Since p ∈ π2(G), by Lemma 3 it follows that p = 7. If n ≥ 5, then we
choose the primitive prime divisors 7n, 72n in π(G). Evidently, 72n ∈ π(pn + 1),
and so G does not contain an element of order 7n.72n. On the other hand since
π(Aut(S)) = {2, 3, 5, 7} ⊂ π(7

∏4
i=1(7

i − 1)), it follows that 7n, 72n /∈ π(Aut(S)).
Therefore 7n, 72n ∈ π(N), and since N is nilpotent we obtain that 7n.72n ∈ ω(N),
which is a contradiction. Thus n ≤ 4. If n = 4, then µ(G) = {25.3.52, 7, 2.1201}.
Because, there does not exist any element of order 1201 in Aut(S), 1201 divides the
order of N . Without loss of generality we may assume that N 6= 1 is an elementary
Abelian 1201-group. Now since S contains the Frobenius group A4 = 22 : 3,
from Lemma 5 we infer that G contains an element of order 1201.3, which is a
contradiction. If n = 2 or 3, then 5 ∈ π(S)\π(G), which is impossible.

The other sporadic simple groups are examined similarly.

(c) Assume that S ∼= L2(p
k), where k 6= n. In this case we must have k < n,

since otherwise by Zsigmondy’s Theorem we get p2k ∈ π(S)\π(G), which is a
contradiction. Now, we choose the primitive prime divisors pn and p2n in π(G).
Since p2n ∈ π(pn+1), G does not contain an element of order pn.p2n. On the other
hand, since pn > n > k we have pn, p2n /∈ π(Aut(S)) = π(PGL(2, pk)oZk), and so
pn, p2n ∈ π(N). Now, since N is nilpotent we obtain that pn.p2n ∈ ω(N) ⊂ ω(G),
which is a contradiction.

(d) Suppose that S ∼= L2(2p
m ± 1), m ≥ 1, where 2pm ± 1 is a prime. By the

structure of µ(G), we see that p ∈ ω(G) and p2 6∈ ω(G). So, if S ∼= L2(2p
m ±

1), where 2pm ± 1 is a prime and m ≥ 1, then we deduce m = 1, because in
this case pm ∈ ω(L2(2p

m ± 1)) = ω(S) ⊆ ω(G). On the other hand, we know
|Aut(S)| = 22p(p ± 1)(2p ± 1), where 2p ± 1 is a prime, and so π(Aut(S)) =
{p, 2p± 1} ∪ π(p± 1). If n = 2, then (2p± 1, |G|) = 1, which is a contradiction.
Therefore n ≥ 3. Now, we consider the primitive prime divisors pn and p2n.
Since (pn, p2n) = (pn, p ± 1) = (p2n, p ± 1) = 1, it follows that pn /∈ π(Aut(S))
or p2n /∈ π(Aut(S)), thus we may assume N is a pn-subgroup or a p2n-subgroup.
First, we assume that 2p + 1 is a prime. Let P be a Sylow (2p + 1)-subgroup of
S, then NS(P ), the normalizer of P in S, is a Frobenius group of order (2p+ 1)p,
with cyclic complement of order p. Now, by Lemma 5, we deduce that pn ∼ p or
p2n ∼ p, which is a contradiction. Next, we assume that 2p − 1 is a prime. In
this case, if there exists a prime s ∈ π(pn + 1)\π(Aut(S)) then s ∈ π(N), because
G/N ≤ Aut(S). Moreover, if Q is a Sylow (2p − 1)-subgroup of S, then NS(Q)
is a Frobenius group of order (2p − 1)(p − 1), with cyclic complement of order
p − 1. Now, as previous case we get s.(p − 1) ∈ ω(G), which is a contradiction.
Hence, π(pn + 1) ⊆ π(Aut(S)). As (pn − 1, pn + 1) = 2, the only possible case
is π(pn + 1) = {2, 2p − 1}, i.e., pn + 1 = 2l(2p − 1)k for some l and k in N.



W. Shi et al.: The Number of Finite Groups Whose Element Orders is Given 471

Now, if k > 1 then since (2p− 1)k ∈ ω(G) and (2p− 1)k /∈ ω(Aut(S)) we obtain
(2p− 1) ∈ π(N). On the other hand, it is easy to see that pn ∈ π(G)\π(Aut(S)),
and so pn ∈ π(N). Since N is nilpotent, we deduce that pn ∼ (2p − 1), which is
a contradiction. Finally, we have k = 1 and since (p, n) 6= (3, 2), we obtain that
l > 1. Moreover 2 ‖ pn− 1 which implies that n must be odd. But in this case we
have pn + 1 = (p+ 1)(pn−1 − pn−2 + · · · − p+ 1) = 2l(2p− 1) for which it follows
that pn−1 − pn−2 + · · · − p + 1 = 2p − 1, giving no solution for p ≥ 3. This final
contradiction shows that S 6∼= L2(2p

m ± 1).

(2) Consider the group H = 〈a, b|a8 = b5 = 1, ba = ab2〉 ∼= Z5 : Z8. For
this group we have µ(H) = {8, 10}. Now, we assume that G is an extension of
elementary Abelian 3-group K of order 340l by H, and the generators a, b of H
act on K cyclically. Then G is a soluble group and ω(G) = ω(PGL(2, 32)) =
{1, 2, 3, 4, 5, 8, 10}. �

The following lemma gives a classification of simple Cpp-groups, where p is a prime
of form p = 2α3β + 1, α ≥ 0, β ≥ 0.

Lemma 8. (see [3]) Let p be a prime and p = 2α3β + 1, α ≥ 0, β ≥ 0. Then any
simple Cpp-group is given by Table 2.

The next lemma gives the maximal odd factors set ψ(F4(q)) of µ(F4(q)), q = 2e.

Lemma 9. Let S ∼= F4(q), where q = 2e, e ≥ 1. Then ψ(S) = {q4−1, q4 +1, q4−
q2 + 1, (q − 1)(q3 + 1), (q + 1)(q3 − 1)}.

Proof. The 2′-elements of S is contained in the maximal tori of S. From [17]
we see that µ(F4(q)) contains 25 maximal tori H(1), H(2), . . ., H(25). Since
(q − 1, q3 + 1) = 1, (q + 1, q3 − 1) = 1, H(13) and H(15) are all cyclic. The
conclusion holds. �

3. Main results

In this section we prove the statement of Theorems 1, 2 and 3.

Proof of Theorem 1. Let G be a group and

µ(G) = µ(PGL(2, pn)) = {pn − 1, p, pn + 1},

where p = 2α3β + 1 is a prime, and n is a natural numbers. If α = β = 0, then
p = 2 and the result is correct by Lemma 6. Also for n = 1, the result holds by
[14], and so from now on we assume that p is an odd prime and n ≥ 2. Then
t(G) = 2, in fact we have

π1(G) = π(p2n − 1) and π2(G) = {p}.
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Lemma 6(1) shows that G is an extension of a π1(G)-group N by a group G1,
where S ≤ G1 ≤ Aut(S), S is a simple group of Lie type (except L2(p

k), k 6= n
and L2(2p

m ± 1) where m ≥ 1 and 2pm ± 1 is a prime) and G1/S is a π1(G)-
group. Moreover, there exists 2 ≤ j ≤ t(S) such that µj(S) = {p}, in fact S is a
simple Cpp-group. Using the results summarized in Table 2, we will show that S
is isomorphic to L2(p

n).

Step 1. S ∼= L2(q), q = pn, n ≥ 2.

In the following case by case analysis we assume that S � L2(p
n) and try to obtain

a contradiction. Moreover, as S is always a Cpp-group for some appropriate prime
p, we make use of the results summarized in Table 2 and Lemma 7 and omit the
details of the argument.

Case 1. q = 3n, n ≥ 2.

In this case S can only be isomorphic to one of the following simple groups:
L2(2

3), L3(2
2). Since G does not contain an element of order 9, S can not be

isomorphic to L2(2
3). If S ∼= L3(2

2), then since 7 ∈ π(S) we obtain that n ≥ 6.
Assume first that n = 6. In this case we have π(G) = {2, 3, 5, 7, 13, 73}. Evidently
13, 73 /∈ π(Aut(S)) and 13 � 73. Hence {13, 73} ⊆ π(N), and since N is nilpotent
we get 13.73 ∈ ω(N), which is a contradiction. Next we suppose that n ≥ 7.

Now we choose the primitive prime divisors 3n and 32n in π(G). Evidently 32n ∈
π(3n +1), and so 3n � 32n. Moreover, since {2, 3, 5, 7, 11, 13} = π(3

∏6
i=1(3

i− 1)),
3n, 32n /∈ π(Aut(S)), and hence 3n, 32n ∈ π(N). Again since N is nilpotent, N
contains an element of order 3n.32n, which is of course impossible.

Case 2. q = 5n, n ≥ 2.

In this case we see that S can only be isomorphic to one of the following simple
groups: L2(7

2), L3(2
2), S4(3), S4(7), U4(3), Sz(23) or Sz(25). Since G has no

element of order 25, S can not be isomorphic to L2(7
2) or Sz(25). If S is isomorphic

to one of the simple groups: L3(2
2), S4(7), U4(3), or Sz(23), then 7 ∈ π(S) and

so we must have n ≥ 6. Also note that

π(S) ⊂ {2, 3, 5, 7, 11, 13} ⊂ π(5
6∏

i=1

(5i − 1)).

If n = 6, then 31, 601 ∈ π(G)\π(Aut(S)) and thus 31, 601 ∈ π(N). Therefore N
contains an element of order 31.601, which is a contradiction as 31.601 /∈ ω(G).
For case n ≥ 7, since by Zsigmondy’s Theorem 5n, 52n > 13, a similar argument
with the primitive prime divisors 5n, 52n ∈ π(G) also leads to a contradiction.
Similarly, S can not be isomorphic to S4(3).

Case 3. q = 7n, n ≥ 2.
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p simple Cpp-groups

2 A5, A6, L2(q) where q is a Fermat prime, a Mersenne prime or
q = 2m, m ≥ 3, L3(2

2), Sz(22m+1), m ≥ 1.

3 A5, A6, L2(q), q = 23, 3m or 2.3m ± 1, which is a prime, m ≥ 1,
L3(2

2)

5 A5, A6, A7, M11, M22, L2(q), q = 72, 5m or 2.5m ± 1, which is
a prime, m ≥ 1, L3(2

2), S4(q), q = 3, 7, U4(3), Sz(q), q = 23, 25.

7 A7, A8, A9, M22, J1, J2, HS, L2(q), q = 23, 7m or 2.7m − 1,
which is a prime, m ≥ 1, L3(2

2), S6(2), O+
8 (2), G2(q), q = 3, 19,

U3(q), q = 3, 5, 19, U4(3), U6(2), Sz(23).

13 A13, A14, A15, Suz, Fi22, L2(q), q = 33, 52, 13m or 2.13m − 1,
which is a prime, m ≥ 1, L3(3), L4(3), O7(3), S4(5), S6(3),
O+

8 (3), G2(q), q = 22, 3, F4(2), U3(q), q = 22, 23, Sz(23),
3D4(2),

2E6(2),
2F4(2)′.

17 A17, A18, A19, J3, He, Fi23, Fi
′
24, L2(q), q = 24, 17m or

2.17m ± 1, which is a prime ,m ≥ 1, S4(4), S8(2), F4(2),
O−

8 (2), O−
10(2), 2E6(2).

19 A19, A20, A21, J1, J3, O
′N , Th, HN , L2(q), q = 19m

or 2.19m − 1, which is a prime, m ≥ 1, L3(7), U3(2
3),

R(33), 2E6(2).

37 A37, A38, A39, J4, Ly, L2(q), q = 37m or 2.37m − 1,
which is a prime, m ≥ 1, U3(11), R(33), 2F4(2

3).

73 A73, A74, A75, L2(q), q = 73m or 2.73m − 1, which is a prime,
m ≥ 1, L3(2

3), S6(2
3), G2(q), q = 23, 32, F4(3), E6(2), E7(2),

U3(3
2), 3D4(3).

109 A109, A110, A111, L2(q), q = 109m or 2.109m − 1, which is
a prime, m ≥ 1, 2F4(2

3).

p = Ap, Ap+1, Ap+2, L2(q), q = 2m, pk, 2pk ± 1, which is a prime,
2m + 1, k ≥ 1, Sa(2

b), a = 2c+1 and b = 2d, c ≥ 1, c+ d = s, F4(2
e),

m = 2s e ≥ 1, 4e = 2s, O−
2(m+1)(2), s ≥ 2, O−

a (2b), a = 2c+1 and b = 2d,

c ≥ 2, c+ d = s.
Other Ap, Ap+1, Ap+2, L2(q), q = pm or 2pm − 1, which is a prime,

m ≥ 1.

Table 2. Simple Cpp-groups, p = 2α3β + 1, α ≥ 0, β ≥ 0.
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In this case the possibilities for S are: L2(2
3), L3(2

2), S6(2), O
+
8 (2), G2(3), G2(19),

U3(3), U3(5), U3(19), U4(3), U6(2) or Sz(23). First of all, since G has no element of
order 49, S � G2(19) or U3(19). Next, we note that π(S) ⊂ π(13!) and by Lemma
1 we see that for every n ≥ 5 there exists a primitive prime divisor 7n ≥ 13.
Therefore for n ≥ 5, as previous cases a similar argument with the primitive
prime divisors 7n and 72n, leads to a contradiction.

If n = 4, then µ(G) = {25.3.52, 7, 2.1201}. In this case S can only be L2(2
3),

L3(2
2), S6(2), O+

8 (2), U3(3), U3(5), or U4(3) by checking their prime divisors
sets. On the other hand, since the simple groups L2(2

3), S6(2), O
+
8 (2) and U4(3)

contain an element of order 9 and 9 /∈ ω(G), S can only be L3(2
2), U3(3) or U3(5).

Moreover, since there does not exist any element of order 1201 in Aut(S), 1201
divides the order of N . Without loss of generality we may assume that N 6= 1
is an elementary Abelian 1201-group. Because A4 = 22 : 3 < A6 < L3(2

2),
7 : 3 < L2(7) < U3(3) and A4 = 22 : 3 < A7 < U3(5), in all cases S contains a
Frobenius group of shape 22 : 3 or 7 : 3 , and so G contains an element of order
1201.3 by Lemma 5, which is a contradiction.

If n = 3, then µ(G) = {2.32.19, 7, 23.43}. In this case, S can only be L2(2
3)

by checking their element orders sets. As 43 6∈ π(Aut(S)) we have 43 ∈ π(N).
Now, we may assume that N 6= 1 is an elementary Abelian 43-group. Since
23 : 7 < L2(2

3) we get 43.7 ∈ ω(G) by Lemma 5, which is a contradiction.
If n = 2, then µ(G) = {24.3, 7, 2.52}. In this case, by checking element orders S

can only be L3(2
2), U3(3) or U3(5). If S ∼= L3(2

2) or U3(5), then 5 divides the order
of N since 25 /∈ ω(Aut(S)). Without loss of generality we may assume that N 6= 1
is an elementary Abelian 5-group. Since S contains a Frobenius subgroup of shape
22 : 3 (in fact we have A4 = 22 : 3 ≤ A6 ≤ L3(4) and A4 = 22 : 3 ≤ A7 ≤ U3(5)),
we get 5.3 ∈ ω(G) by Lemma 5, a contradiction. If S ∼= U3(3), then 5 ∈ π(N),
because 5 /∈ π(Aut(S)). Again, since 7 : 3 ≤ L2(7) ≤ U3(3) we get 5.3 ∈ ω(G) by
Lemma 5, a contradiction.

Case 4. q = 13n, n ≥ 2.

In this case S can only be isomorphic to one of the following simple groups:
L2(3

3), L2(5
2), L3(3), L4(3), O7(3), S4(5), S6(3), O+

8 (3), G2(2
2), G2(3), F4(2),

U3(2
2), U3(23), Sz(23), 3D4(2), 2E6(2) or 2F4(2)′. Since 132 /∈ ω(G), and U3(23)

contains an element of order 132, S � U3(23). Moreover, we have π(S) ⊆ π(19!).
Now since, by Lemma 1, for every n ≥ 5, there exists a primitive prime divisor
13n > 19. we can consider the primitive prime divisors 13n and 132n, and we get
a contradiction as before cases. Henceforth, we may assume that n ≤ 4.

If n = 4, then µ(G) = {24.3.5.7.17, 13, 2.14281}. In this case, by comparing
element orders, we conclude that S can only be L2(3

3), L2(5
2), L3(3), L4(3), O7(3),

S4(5), O
+
8 (3), G2(2

2), G2(3), F4(2), U3(2
2), Sz(23), 3D4(2), or 2F4(2)

′. In all above
cases, except S ∼= F4(2) , since 17, 14281 6∈ π(Aut(S)), we have 17, 14281 ∈ π(N),
and so 17.14281 ∈ ω(N), which is a contradiction. If S ∼= F4(2), then 14281
divides the order of N , and since S contains a Frobenius group 22 : 3 (note that
22 : 3 = A4 < S10 < S8(2) < F4(2)), G must contain an element of order 14281.3,
by Lemma 5, which is not possible. If n = 3, then µ(G) = {22.32.61, 13, 2.7.157}.
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In this case we have 61, 157 6∈ π(Aut(S)) and so 61, 157 ∈ π(N), hence we get
61.157 ∈ ω(N) ⊂ ω(G), which is impossible.

Case 5. q = 17n, n ≥ 2.

In this case S can only be isomorphic to one of the following simple groups:
L2(2

4), S4(4), S8(2), F4(2), O
−
8 (2), O−

10(2) or 2E6(2). First of all, since 5 ∈ π(S),
we deduce n ≥ 4. Moreover, we have π(S) ⊆ π(19!). From Lemma 1, for every
n ≥ 4, there exists a primitive prime divisor 17n > 19. Now, for the primitive
prime divisors 17n and 172n, a similar argument as before leads to a contradiction.

Case 6. q = 19n, n ≥ 2.

In this case S can only be isomorphic to one of the following simple groups: L3(7),
U3(2

3), R(33) or 2E6(2). Evidently π(S) ⊆ π(37!). Since 7 ∈ π(S), 3|n. If n > 7,
then by Lemma 1 there exists a primitive prime divisor 19n > 37. Now we consider
the primes 19n and 192n, and we get a contradiction as previous cases. If n = 6,
then we have

µ(G) = {23.33.5.7.127, 19, 2.132.181.769}.

In this case we consider the primes 127, 769 ∈ π(G), and we obtain a contradiction
as before. If n = 3, then µ(G) = {2.33.127, 19, 22.5.73}. In this case S can be only
L3(7) or U3(2

3), and since 5, 127 6∈ π(Aut(S)), we get a contradiction.

Case 7. q = 37n, n ≥ 2.

In this case S can only be isomorphic to one of the following simple groups: U3(11),
R(33) or 2F4(2

3). Evidently, π(S) ⊆ {2, 3, 5, 7, 11, 13, 19, 37, 73, 109}. If n ≥ 7,
then by Lemma 1 there exists a primitive prime divisors 37n > 109, and hence
we consider the primes 37n, 372n ∈ π(G), and we get a contradiction as before.
Therefore we may assume that n ≤ 6. Since

π(G) = {2, 3, 5, 7, 13, 19, 31, 37, 43, 67, 137, 144061}, n = 6,
π(G) = {2, 3, 11, 19, 37, 41, 4271, 1824841}, n = 5,
π(G) = {2, 3, 5, 19, 37, 89, 137, 10529}, n = 4,
π(G) = {2, 3, 7, 19, 31, 37, 43, 67}, n = 3,
π(G) = {2, 3, 5, 19, 37, 137}, n = 2,

it is easy to see that 109 /∈ π(G), and so S � 2F4(2
3). Moreover, since 55 ∈

ω(U3(11))\ω(G)), S � U3(11). Finally, if S ∼= R(33), since 13 ∈ π(R(33)), we
must have n = 6. Yet, in this case, we can choose the primes 67, 144061 ∈
π(G)\π(Aut(S)), and we get a contradiction as before (note that 67.144061 /∈
ω(G)).

Case 8. q = 73n, n ≥ 2.

In this case S can only be L2(73n), L3(2
3), S6(2

3), G2(2
3), G2(3

2), F4(3), E6(2),
E7(2), U3(3

2) or 3D4(3). We assume that S � L2(73n). It is not difficult to see
that π(S) ⊆ π(19!) ∪ {31, 41, 43, 73, 127}. Let n ≥ 5. Then by Lemma 1(6),
73n, 732n > 127. Evidently 73n.732n /∈ ω(G), as 732n ∈ π(73n + 1). On the
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other hand, since 73n, 732n /∈ π(Aut(S)), 73n, 732n ∈ π(N) which implies that
73n, 732n ∈ ω(N) ⊆ ω(G), a contradiction. Hence n ≤ 4. Because

ω(G) = {25.32.5.13.37.41, 73, 2.14199121}, n = 4,
ω(G) = {23.33.1801, 73, 2.7.37.751}, n = 3,
ω(G) = {24.32.37, 73, 2.5.13.41}, n = 2,

by checking the sets of element orders for each simple group, the only possibility
for S is U3(3

2), when n = 4. In this case, we consider the primes 41 and 14199121
in π(G). Since 41 ∈ π(734 − 1) and 14199121 ∈ π(734 + 1), 41 � 14199121 and
also 41, 14199121 /∈ π(Aut(S)), which implies that 41, 14199121 ∈ π(N). Now
by the nilpotency of N , we obtain that 41.14199121 ∈ ω(N) ⊂ ω(G), which is a
contradiction.

Case 9. q = 109n, n ≥ 2.

The proof of this case follows immediately from Lemmas 7(1) and 8.

Case 10. q = (2m + 1)n, where 2m + 1 is a prime and n ≥ 2.

In this case S can only be isomorphic to: L2(2
m), Sa(2

b), a = 2c+1, c ≥ 1, and
b = 2d, c + d = s, F4(2

e), e ≥ 1, 4e = 2s, O−
2(m+1)(2), s > 1, or O−

a (2b), a = 2c+1,

c ≥ 2, and b = 2d, c+ d = s.
If S ∼= L2(2

m), then µ(Aut(S)) = {m, 2m − 1, 2m + 1} = {m, p− 2, p}. First,
assume that n is odd. In this case we have (p − 2, pn − 1) = 1, in fact if (p −
2, pn− 1) = d then d divides 2n− 1, and so d | (p− 2, 2n− 1) = (2m− 1, 2n− 1) =
2(m,n) − 1 = 1. Now since π(S) ⊆ π(G), it follows that π(p − 2) ⊂ π(pn + 1).
Moreover, it is easy to see that 2m−1 + 1 divides pn + 1 and (p− 2, 2m−1 + 1) = 3.
Now we consider the primitive prime divisors

r := pn ∈ π(pn − 1) and s := 22(m−1) ∈ π(2m−1 + 1).

Evidently r, s /∈ π(Aut(S)), and so r, s ∈ π(N). From the nilpotency of N it
follows that r ∼ s, which is a contradiction. Next, we suppose that n is even.
In this case we have 2m−1 + 1 divides pn − 1 and (2m−1 + 1, p − 2) = 1. Now, if
π(p− 2) ⊂ π(pn − 1) then (p− 2, pn + 1) = 1 and again we consider the following
primitive prime divisors

r := p2n ∈ π(pn + 1) and s := 2m−1 ∈ π(2m−1 − 1),

and we get r ∼ s, as before. But this is a contradiction. Therefore we must have
π(p − 2) ⊆ π(pn + 1). Let r ∈ π(2m−1 + 1) ⊆ π(pn − 1). Clearly r /∈ π(Aut(S)),
hence r ∈ π(N). Now since 2m : 2m − 1 ≤ L2(2

m), by Lemma 5 we deduce that
r(2m − 1) ∈ ω(G), which is a contradiction.

If S ∼= F4(2
e), then the maximal odd factors set ψ(Aut(S)) of µ(Aut(S)) is

equal to the same set of µ(S) since |Aut(S)| = 2e+1. From Lemma 9 we have

ψ(Aut(S)) = {q′4 − 1, q′4 + 1, q′4 − q′2 + 1, (q′ − 1)(q′3 + 1), (q′ + 1)(q′3 − 1)},

where q′ = 2e, e ≥ 1.
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In this case q′4+1 = p, q′4−1 = p−2. Since G is an extension of a π1(G)-group
N by a group G1, where S ≤ G1 ≤ Aut(S), and µ(G) = {pn−1, p, pn+1}, we may
get a contradiction dividing the two cases. If n ≥ 4, then the odd number 1

2
(pn+1)

and the odd factor of pn−1 are all greater than any number in ψ(Aut(S)). Hence
we have r, s such that

r ∈ π(pn + 1) and s ∈ π(pn − 1),

and r, s /∈ π(Aut(S)), so r, s ∈ π(N). From the nilpotency of N it follows that
r ∼ s, which is a contradiction. If n = 2, then we may infer that (p−2, p2 +1) = 5
and (p− 2, p2 − 1) = 3. It is impossible. Also we may get a similar contradiction
if n = 3.

If S ∼= Sa(2
b), then the maximal odd factors set ψ(Aut(S)) of µ(Aut(S)) is

equal to the same set of µ(S) since |Aut(S)| = b = 2d. From [7], §3(3) we have

{q′
1
2
(a) − 1, q′

1
2
(a) + 1} ⊆ ψ(Aut(S)),

where q′ = 2b, b ≥ 1. In this case q′
1
2
(a) + 1 = p, and q′

1
2
(a) − 1 = p − 2, since the

other numbers are not primes in ψ(Aut(S)). The rest of proof is similar to the
case of S ∼= F4(2

e) by comparing the two sets of ψ(Aut(S)) and µ(G).
If S ∼= O−

2(m+1)(2),m = 2s, s > 1, then the maximal odd factors set ψ(Aut(S))

of µ(Aut(S)) is equal to the same set of µ(S) since |Aut(S)| = 2. From [7], §3(5)
we have

{q′m+1 + 1, q′m + 1, q′m − 1} ⊆ ψ(Aut(S)),

where q′ = 2. In this case q′m + 1 = p, and q′m − 1 = p − 2. The rest of proof is
similar to the above cases.

If S ∼= O−
a (2b), a = 2c+1, c ≥ 2, and b = 2d, c+ d = s, the proof is similar.

Case 11. q = 97n or q = pn, where p = 2α3β + 1 > 109 is a prime, β 6= 0 and
n ≥ 2.

In this case S is a simple Cpp-group, and from Table 1 and Lemma 7, we obtain
that S ∼= L2(q).

Step 2. N is a 2-group.

Let P/N be a Sylow p-subgroup of S and X/N be the normalizer in S of P/N .
Then X/N is a Frobenius group of order q(q − 1)/2, with cyclic complement of
order (q − 1)/2. Now, by Lemma 5, we deduce that N is a 2-group.

Step 3. h(G) ∈ {1,∞}.

First suppose that N = 1. In this case, we have S = L2(q), q = pn, S ≤
G ≤ Aut(S). Denote the factor group G/S by M . Obviously, M ≤ Aut(S).
Therefore, every element of M is a product of a field automorphism f , whose
order is a divisor of n, and diagonal automorphism d of order dividing 2. Let
f 6= 1 and r be a prime dividing the order of f . Without loss of generality, we
may assume that o(f) = r. Evidently, r divides n, and we put q̄ = pn/r. Denote
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by ϕ an automorphism of the field Fq inducing f . Since ϕ fixes a subfield Fq̄ of
Fq, f centralizes a subgroup S of S isomorphic to L2(q̄). But then G can not be a
Cpp-group, which is a contradiction. Thus f = 1. Hence, we have M ≤ 〈d〉 and so
|G/S| ≤ 2. Therefore G ∼= S or G ∼= PGL(2, q). From q+1 ∈ ω(PGL(2, q))\ω(S),
we have G ∼= PGL(2, q). Thus, in this case h(G) = 1. Next, suppose that N 6= 1.
Now, by Lemma 4, we get h(G) = ∞. The proof of Theorem 1 is complete. �

Proof of Theorem 2. The proof follows immediately from Lemma 7(2) and Lem-
ma 4. �

Proof of Theorem 3. Let H be an extension of a group of order 2 by S4 such that a
Sylow 2-subgroup of H is a quaternion group. Then µ(H) = {6, 8}. By Lemma 8
in [9], there exists an extension G of an elementary Abelian 7-group by H, which
is a Frobenius group. It follows that µ(G) = {6, 7, 8}, and then Theorem 1 follows
from Lemma 4. �
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