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Abstract. We consider a family of varieties, where each variety is a
pair consisting of a hyperplane and a straight line in n-dimensional affine
space An, where n ≥ 3. Using Stoka’s second condition, we show that
this family is not measurable, therefore it is an example of a family of
varietes in the sense of Dulio’s classification [6] .
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1. Introduction

A measure on a family of geometric objects can be introduced by assigning to each
object a point of an auxiliary space and considering a suitable measure on that
space. In general the dimension of the auxiliary space is equal to the number of
parameters on which the geometric objects depend. A basic problem is to specify
measures which are invariant with respect to a given group of transformations
which map the family onto itself.

This problem was first considered by Crofton [3] who specified the invariant
measure on the family of all straight lines in Euclidean 2-space E2. This was
extended to E3 by Deltheil [5] and Chern [1] first considered families of geometric
objects in projective space.

Santalò [12] calculated measures of certain families of varieties with respect
to three different groups and found that these were equal. Stoka [13] studied the
family of parabolas. He proved that a family is measurable if it is measurable
with respect to its maximal group of invariance
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However Cirlincione [2] found a measurable family of varieties even though
the family was not measurable with respect to the maximal group of invariance.
This proves that the Stoka’s condition is not necessary.

In Section 2 we provide background and definitions and in Section 3 we prove
that the family of varieties, where each variety is a pair consisting of a hyperplane
and a straight line in n-dimensional affine space An is not measurable.

2. Background

Let Hn be an n−dimensional space with coordinates x1, x2, . . . , xn in which a Lie
group of transformations acts.

Let Gr be one of its subgroups defined by the equations

yi = fi(x1,x2, . . . , xn; a1, a2, . . . , ar) (i = 1, 2, . . . , n)

where a1, a2, . . . , ar are basic parameters.

Definition 1. The function F (x1,x2, . . . , xn) is an integral invariant function of
the group Gr, if∫

Ax

F (x1,x2, . . . , xn)dx1dx2 · · · dxn =

∫
Ay

F (y1, y2, . . . , yn)dy1dy2 · · · dn

for each measurable set of points Ax of the space Hn, where Ay is the image of
Ax by the group Gr.

Theorem 1. The integral invariant functions of the group Gr are the solutions
of the following Deltheil’s system of partial differential equations:

n∑
i=1

∂

∂xi

[
ξi
h(x)F (x)

]
= 0 (h = 1, 2, . . . , r),

where ξi
h(x) are the coefficients of the infinitesimal transformations of the group

Gr (see [5], p. 28 and [15], p. 4).

Definition 2. A measurable Lie group of transformations is a group which admits
only one integral invariant function (up to a multiplicative constant).

Let G be a group which leaves globally invariant a family = of varietes in Hn. To
G there is associated a group H (isomorphic to G) of transformations acting on
the (auxiliary) space of parameters of the family.

Definition 3. A family = is measurable with respect to G if H is measurable in
the sense of Definition 2. If Φ is its integral invariant function, then the measure
of = with respect to the group G is given by

µG =

∫
Aα

Φ(α1,α2, . . . , αq)dα1dα2 · · · dαq,
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where Aα is the set of points of the auxiliary space which corresponds to the family
=.

Definition 4. A family = of varieties is measurable if the measures with
respect to every group of invariance of the family are equal, if they exist.

Theorem 2. (Stoka’s first condition) If the group H associated to the maximal
group of invariance of = (where the only transformation, which leaves invariant
each element of the family, is the identity) is measurable, the family is measurable.

Theorem 3. (Stoka’s second condition) If H is not measurable and there are
two measurable subgroups with different integral invariant functions, then = is
not measurable.

3. Non-measurability of the family =3n−2

Theorem 4. The family of varieties, where each variety is a pair consisting of a
hyperplane and a straight line in n-dimensional affine space An, is not measurable.

We use of the following notation

XT = (x1, x2, . . . , xn) , BT = (b1, b2, . . . , bn) , LT = (l1, l2, . . . , ln−1, 1) ,

QT = (q1, q2, . . . , qn−1, 0) , AT = (a1, a2, . . . , an).

X
T
is obtained from X by deleting the last coordinate and similary in other cases.
Let =3n−2 be the family of all pairs, each consisting of a hyperplane and a

straight line in An in general position. The hyperplane and the line depend on

parameters b1, b2, . . . , bn, l1, l2, . . . , ln−1, q1, q2, . . . , qn−1, respectively, and are rep-
resented in the following form

Σn
i=1bixi = 1

xi = lixn + qi i = 1, 2, n− 1.

The affine group Gn2+n is given by

xi =
n∑

j=1

pijx
′
j + ai, i, j = 1, 2, . . . , n,

where det(pij) 6= 0 and Σn
i=1biai 6= 1.

For the n×n matrix P = (pij) we write also P =
(

P1 P2 · · · Pn

)
, where

Pj, j = 1, 2, . . . , n, is the j-th column of P .
For the proof of the Theorem 4 we are proving the Lemmas 1, 2, 3.

Lemma 1. The group associated to maximal group of invariance of the family
=3n−2 is not measurable.
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Proof. The family =3n−2 and the group Gn2+n, can be written in the form

BT ·X = 1,

X = Lxn + Q,
(1)

X = P ·X ′ + A. (2)

Applying Gn2+n to =3n−2 we obtain that

B′T ·X ′ = 1,

X ′ = L′x′
n + Q′.

(3)

According to (2), from the first equality (1), we find that

1

1−BT · A
(BT · P )X ′ = 1 (4)

and the second equality in (1) implies that

PX ′ = L · (pn1x
′
1 + pn2x

′
2 + · · ·+ pnnx

′
n + an) + Q− A. (5)

Considering the first n− 1 rows, (5) can be written as follows:

RX ′ = (Lpnn − P )x′
n + Lαn + Q− A,

where

R =


p11 − l1pn1 p12 − l1pn2 . . . p1n−1 − l1pnn−1

p21 − l2pn1 p22 − l2pn2 . . . p2n−1 − l2pnn−1
...

...
. . .

...
pn−11 − ln−1pn1 pn−12 − ln−1pn2 . . . pn−1n−1 − ln−1pnn−1

 , |R |6= 0.

This implies that

X
′
= R−1(Lpnn − Pn)x′

n + R−1Lan + R−1(Q− A). (6)

According to X ′ =

(
X

′

x′
n

)
and by comparing (3) with (4) and (6), respectively,

we obtain the following relations between the new parameters of the family =3n−2

and the original ones:

B′T = 1
1−tB·A·B

T · P,

L
′
= R−1 · (Lpnn − Pn),

Q′ = R−1 · (anL + Q− A).

(7)

These are the equations of group Hn2+n associated to Gn2+n in the (3n − 2)-
dimensional space A3n−2. The unit e ∈ Hn2+n is obtained by

pij =

{
1 if i = j
0 if i 6= j

and ai = 0 (i, j = 1, 2, . . . , n).
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The matrix of coefficients of the infinitesimal transformations of Hn2+n, which has
as columns the partial derivates of

b′1, b
′
2, . . . , b

′
n, l

′
1, l

′
2, . . . , l

′
n−1, q

′
1, q

′
2, . . . , q

′
n−1

with respect to the parameters

p11, p21, . . . , pn1, p12, p22, . . . , pn2, . . . , p1n, p2n, . . . , pnn, a1, a2, . . . , an,

is given by

ξ =



B O O . . . O −l1H −q1H
O B O . . . O −l2H −q2H
...

...
...

. . .
...

...
...

O O O . . . O −ln−1H −qn−1H
O O O . . . B −H O

BBT O −H


,

where

H =



1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
−l1 −l2 . . . −ln−2 −ln−1


has n rows and n− 1 columns and O is the (n, 1) zero matrix.

To indicate the type of a matrix, we denote it by capital letters with indices,
if necessary.

In order to calculate the rank of the matrix ξ, we select the matrix M of order
3n − 2 which consists of the first two block rows and the first row of each of the
following n− 2 block-rows, i.e.

M =

 B O O . . . O −l1H −q1H
O B O . . . O −l2H −q2H

On−2,1 On−2,1 b1In−2 U V

 , (8)

where

UT =

(
On−2,n−2

−l3 −l4 . . . −ln−1 −1

)
,

V T =

(
On−2,n−2

−q3 −q4 . . . −qn−1 0

)
.

By developing the determinant of the matrix M with respect to the third block
column, we have

det M = (b1)
n−2 det

(
B O −l1H −q1H
O B −l2H −q2H

)
. (9)
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Let

N =

(
B O −l1H −q1H
O B −l2H −q2H

)
.

We consider the diagonal block matrix

∆ =

 I2 O2,n−1 O2,n−1

On−1,2 q1In−1 On−1,n−1

On−1,2 On−1,n−1 −l1In−1


Then

N ·∆ =

(
B O −l1q1H l1q1H
O B −l2q1H l1q2H

)
.

Adding together the last but one column and the last column and substitute the
sum for the last column (so that det(N ·∆) does not change ). This gives

det(N ·∆) = det

(
B O −l1q1H On,n−1

O B −l2q1H (l1q2 − l2q1)H

)
.

Let

K =

(
B O −l1q1H On,n−1

O B −l2q1H (l1q2 − l2q1)H

)
.

We put the second column of K in the (n + 1)− th position .
This gives the block matrix

K̃ =

(
B −l1q1H O On,n−1

O −l2q1H B (l1q2 − l2q1)H

)
or, more simply

K̃ =

 Rn | On,n

−−−−− − | − −−
O −l2q1H | Sn

 ,

where
Rn =

(
B −l1q1H

)
Sn =

(
B (l1q2 − l2q1)H

)
.

Note that
det K = (−1)n−1 det K̃ = (−1)n−1 det Rn · det Sn. (10)

We have to calculate det Rn and det Sn.
We first consider the matrix Rn and prove that

det Rn = (l1q1)
n−1(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn), (∗)

where σ = (l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn).

Rn can be written as follows:

Rn =

(
α l1q1β
γ −l1q1δ

)
,
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where

α = (b1) , β =
(

1 0 0 . . . 0 0
)

is a (1, n− 1) matrix,

γT =
(

b2 b3 . . . bn−1 bn

)
,

δ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−l1 −l2 −l3 · · · −ln−1

 is a matrix of order n− 1

Applying the generalized Gauss algorithm to the matrix Rn, we obtain the matrix

K̃ =

(
α β
O −l1q1(δ − γα−1β)

)
Then

det Rn = det R̃n = det α · det(−l1q1(δ − γα−1β)) = b1(−l1q1)
n−1 det(δ − γα−1β),

where

δ − γα−1β =


− b2

b1
1 0 . . . 0

− b3
b1

0 1 . . . 0
...

...
...

. . .
...

− bn−1

b1
0 0 . . . 1

−l1 − bn

b1
−l1 −l2 . . . −ln−1

 .

Next put

Rn−1 = δ − γα−1β =

(
− b2

b1
β∗

γ∗ δ∗

)
,

where γ∗ =



− b3
b1

− b4
b1
...

− bn−1

b1

−l1 − bn

b1


, β∗ =

(
1 0 . . . 0

)
is a (1, n− 2) matrix and

δ∗ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−l2 −l3 −l4 . . . −ln−1

 is a matrix of order n− 2.
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The matrix Rn−1 is the matrix Rn with n replaced by n−1. Thus, applying Gauss
algorithm again, we obtain

R̃n−1 =

(
− b2

b1
β

On−2 δ∗ − γ∗(− b1
b2

)β∗

)
,

so that

det Rn−1 = det R̃n−1 = −b2

b1

det(δ∗ − γ∗(−b1

b2

)β∗),

with

γ∗(−b1

b2

)β∗ =



b3
b2

0 . . . 0 0
b4
b2

0 . . . 0 0
...

...
. . .

...
...

bn−1

b2
0 . . . 0 0

l1b1+bn

b2
0 . . . 0 0


.

Let Rn−2 = δ∗ − γ∗(− b1
b2

)β∗, where

δ∗ − γ∗(− b1
b2

)β∗ =



− b3
b2

1 0 . . . 0

− b4
b2

0 1 . . . 0
...

...
...

. . .
...

− bn−1

b2
0 0 . . . 1

−l2 − l1b1+bn

b2
−l3 −l4 . . . −ln−1


is a matrix of order n− 2.

We have det Rn−1 = (− b2
b1

) det Rn−2.

Applying the generalized Gauss algorithm to the matrix Rn−2, we obtain the
matrix R̃n−2. Thus det Rn−2 = det R̃n−2 = (− b3

b2
) det Rn−3, where

Rn−3 =



− b4
b3

1 0 0 . . . 0

− b5
b3

0 1 0 . . . 0
...

...
...

...
. . .

...

− bn−1

b3
0 0 0 · · · 1

− l1b1+l2b2+l3b3+bn

b3
−l4 −l5 −l6 . . . −ln−1


,

etc. In this way we get in finitely many steps the matrix(
− bn−1

bn−2
1

− l1b1+l2b2+···+ln−2bn−2+bn

bn−2
−ln−1

)
,

which has rank 2. Therefore we have that

det Rn = det R̃n = b1(−l1q1)
n−1 det Rn−1 = b1(−l1q1)

n−1 det R̃n−1

= b1(−l1q1)
n−1(− b2

b1
) det Rn−2 = (−l1q1)

n−1b1(− b2
b1

) det R̃n−2
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= (−l1q1)
n−1b1(− b2

b1
)(− b3

b2
) det Rn−3 = (−l1q1)

n−1b1(− b2
b1

)(− b3
b2

) det R̃n−3

= (−l1q1)
n−1b1(− b2

b1
)(− b3

b2
)(− b4

b3
) det Rn−4

= (−l1q1)
n−1b1(− b2

b1
)(− b3

b2
)(− b4

b3
) det R̃n−4

= · · · = (−l1q1)
n−1b1(− b2

b1
)(− b3

b2
)(− b4

b3
) · · · − ( bn−2

bn−1
) det R2.

As

det R2 =

∣∣∣∣∣ − bn−1

bn−2
1

− l1b1+l2b2+···+ln−2bn−2+bn

bn−2
−ln−1

∣∣∣∣∣
= − l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn

bn−2

,

it follows that

det Rn = (−l1q1)
n−1(−1)n−3(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn)

= (−1)n−1(l1q1)
n−1(−1)n−3(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn)

= (l1q1)
n−1(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn),

concluding the proof of (∗).

Now we consider the matrix

Sn =
(

B (l1q2 − l2q1)H
)
.

The matrix Sn is similar to Rn where the factor −l1q1 is replaced by l1q2− l2q1 so
that, repeating the previous procedure, we obtain that

det Sn = (−l1q2 − l2q1)
n−1(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn). (∗∗)

(∗) and (∗∗) imply that

det K̃ = det Rn · det Sn =

l1q1)
n−1(−l1q2 + l2q1)

n−1(l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn)2 =

= (l1q1)
n−1(−l1q2 + l2q1)

n−1σ2,

where σ = (l1b1 + l2b2 + · · ·+ ln−2bn−2 + ln−1bn−1 + bn).

(10) yields the following:

det K = det(N ·∆) = (−1)n−1(l1q1)
n−1(−l1q2 + l2q1)

n−1σ2 · · ·

As det ∆ = det I2 · det(q1In−1) · det(−l1In−1) = qn−1
1 (−l1)

n−1 = (−1)n−1(l1q1)
n−1,

we obtain that

det N =
(−1)n−1(l1q1)

n−1(−l1q2 + l2q1)
n−1σ2

(−1)n−1(l1q1)n−1
= (−l1q2 + l2q1)

n−1σ2.

It follows from (9) that

det M = bn−2
1 det N = bn−2

1 (−l1q2 + l2q1)
n−1σ2.
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Thus rank ξ = 3n− 2.

Our aim is to find functions Φ(b1, b2, . . . , bn, l1, l2, . . . , ln−1, q1, q2, . . . , qn−1) satisfy-
ing the Deltheil system (see Theorem 1) which has ξ as matrix.

In other words, we look for possible non-zero solutions of the (linear non-
homogeneous) system

ξ · Y = ν (11)

consisting of n2 + n equations in 3n− 2 unknowns

y1, y2, . . . , yn, yn+1, . . . , y2n−1, y2n, . . . , y3n−2

with

yi =
∂lnΦ

∂bi

i = 1, . . . , n

yn+j =
∂lnΦ

∂lj
j = 1, . . . , n− 1

y2n−1+h =
∂lnΦ

∂qh

h = 1, . . . , n− 1

and
νT =

(
νT

1 , νT
2 , νT

3 , . . . , νT
0 ,−(n + 1)BT

)
,

where
νT

i =
(

1 0 . . . 0 −(n + 1)li
)

i = 1, . . . , n− 1 and
νT

0 =
(

0 0 1 −n
)

are row vectors.

As we have previously determined rank ξ, now we are calculating the rank of the
complete block matrix

ξ′ = (ξ, ν) .

Consider the following (3n− 1)x(3n− 1) matrix
ν1

M ν2

On−2,1

0 0 . . . b2 0 −1 0 . . . 0 0

 .

Its determinant is

(−b1)
n−3(l1q2 − l2q1)

n−2(q1b1 + q2b2)(l1b1 + l2b2 + · · ·+ ln−1bn−1 + bn)2.

Consequently, the rank of the complete matrix is 3n − 1. This shows that the
system (11) is not solvable.

Then group Hn2+n associated to Gn2+n is not measurable. According to The-
orem 2 ( see Section 1 ) the family =3n−2 can be measurable or not.

Lemma 2. The group associated to the subgroup

G3n−2 : X = P̃X ′
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where

P̃ =



p11 p12

p21 p22 O
p31 p32 p33

p41 p42 p44
...

... O
. . .

pn1 pn2 pnn


of Gn2+n is measurable and the integral invariant function is

Φ = k
b3b4 · · · bn

σnτ

where σ = b1l1 + b2l2 + · · ·+ bn−1ln−1 + bn, τ = l1q2 − l2q1.

Proof. By applying the subgroup G3n−2 to =3n−2, we obtain the equations of
group H3n−2 associated to G3n−2.

The matrix of the coefficients of the infinitesimal transformations of group H3n−2

as follows

η̃ =

 B O On,n−2 −l1H −q1H
O B On,n−2 −l2H −q2H

On−2,1 On−2,1 D C F

 ,

where D =


b3 0 . . . 0 0
0 b4 . . . 0 0
...

...
...

. . .
...

0 0 . . . bn−1 0
0 0 . . . 0 bn

 is a diagonal matrix of order n− 2, and

C =


0 0 −l3 0 · · · 0
0 0 0 −l4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 . . . −ln−1

l1 l2 l3 l4 . . . ln−1

 , F =


0 0 −q3 0 . . . 0
0 0 0 −q4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −qn−1

0 0 0 0 . . . 0


are (n− 2, n− 1) matrices.

Then

det η̃=b3b4 · · · bn det N =b3b4 · · · bn(−l1q2+l2q1)
n−1(b1l1+b2l2+· · ·+bn−1ln−1+bn)2,

the computation being similar to that for det M (see (8) and (9)).
The Deltheil system of the subgroup H3n−2, associated to G3n−2, is solvable

because its incomplete matrix η̃ has maximal rank. Then it admits only one
solution (up to a multiplicative constant)

Φ(b1, b2, . . . , bn, l1, l2, . . . , ln−1, q1, q2, . . . , qn−1).

We will show that Φ is given by

Φ = k
b3b4 · · · bn

σnτ
. (12)
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From the definition of measurability it follows that the group H3n−2, associated to
G3n−2, is measurable, but we cannot assert yet that the family =3n−2 is measurable
(see Theorem 3).

Lemma 3. The group associated to subgroup

Gn2+n−1 : X = PX ′ + A

with det P = 1 is measurable and the integral invariant function is

Φ = kσ−(n+1),

where σ = b1l1 + b2l2 + · · ·+ bn−1ln−1 + bn

Proof. From det P = 1 it follows

p11 =
1 + p12p21(pnn · · · p33)

(pnn · · · p33)p22

.

Repeating for this subgroup the whole procedure as for subgroups considered
above, we obtain the matrix of the coefficients of the infinitesimal transformations
of the associated group Hn2+n−1 and then we reach the following system of n2+n−1
linear equations in 3n− 2 unknowns:

η · Y = ε, (13)

where

η =



γ O . . . O Λ Ψ
−b1E

2 B . . . O −l2H −q2H
...

... . . .
...

...
...

−b1E
n−1 O . . . O −ln−1H −qn−1H

−b1E
n O . . . B Γ Θ

BBT O −H


, γ =


b2

b3
...

bn−1

bn

,

Λ =


0 −l1 0 . . . 0
0 0 −l1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −l1
l21 l1l2 l1l3 . . . l1ln−1

, Ψ =


0 −q1 0 . . . 0
0 0 −q1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −q1

l1q1 l2q1 l3q1 . . . ln−1q1

,

Γ =


−1 0 0 . . . 0
0 −1 0 . . . 0
...

...
...

...
...

0 0 0 . . . −1
2l1 l2 l3 . . . ln−1

, Θ =


0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
q1 0 0 . . . 0

.

Ei is the (n, 1) matrix with 1 at the i-th place (i = 2, 3, . . . , n), and 0 at all other
places, εT =

(
εT
1 εT

2 . . . εT
n−1 εT

0 − (n + 1) BT
)
, where
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εT
1 =

(
0 0 . . . 0 −(n + 1)l1

)
is a 1, n− 1) matrix and

εT
i =
(

0 0 . . . 0 −(n + 1)li
)
, i = 2, . . . , n− 1,

εT
0 =

(
0 0 . . . 0 −(n + 1)

)
are (1, n) matrices.

It is easy to see that both η and (η, ε) have rank 3n−2. This condition ensures
that the system (13) is solvable and admits the unique solution(

−n+1
σ

LT −n+1
σ

B
T

O1,n−1

)
.

It is equally easy to see that the non-trivial solution of the Deltheil system, which
has η as matrix [15], is

Φ = kσ−(n+1). (14)

In conclusion the solution (14) is independent from the solution (12) so that the
family =3n−2 is not measurable by Theorem 3.

The proof of Theorem 4 is complete.
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Rend. Circ. Mat. Palermo, Suppl. 65 (2000), 257–267.

http://www.emis.de/MATH-item?0024.18201
http://www.emis.de/cgi-bin/JFM-item?66.0913.02
http://www.emis.de/MATH-item?0521.53057
http://www.emis.de/cgi-bin/JFM-item?02.0290.01
http://www.emis.de/cgi-bin/JFM-item?02.0303.03
http://www.emis.de/cgi-bin/JFM-item?01.0075.05
http://www.emis.de/MATH-item?0918.60010


518 G. Raguso, L. Rella: On Pairs of Non Measurable Linear Varieties in An

[10] Raguso, G.; Rella, L.: Measurability of a family of linear variety. Seminar-
berichte, Fachbereich Mathematik, Fernuniversität Hagen 69 (2000), 147–
157.

[11] Raguso, G.; Rella, L.: Density of a family of linear varieties. Rev. Colomb.
Mat. to appear.

[12] Santalo’, L. A..: Integral Geometry in projective and affine spaces. Ann.
Math. 51(2) (1950), 739–755. Zbl 0041.31201−−−−−−−−−−−−

[13] Stoka, M. I.: Geometria Integrale in uno spazio euclideo Rn. Boll. Un. Mat.
Ital. 13 (1958), 470–485. Zbl 0088.14602−−−−−−−−−−−−
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