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Abstract. Let V be a 2n-dimensional vector space over a field ' and
2 be a non-degenerate symplectic form on V. Denote by 9;(€2) the set
of all 2k-dimensional subspaces U C V such that the restriction Q| is
non-degenerate. Our main result (Theorem 1) says that if n # 2k and
max(k,n—k) > 5 then any bijective transformation of §;(2) preserving
the class of base subsets is induced by a semi-symplectic automorphism
of V. For the case when n # 2k this fails, but we have a weak version of
this result (Theorem 2). If the characteristic of F is not equal to 2 then
there is a one-to-one correspondence between elements of $;(2) and
symplectic (2k,2n — 2k)-involutions and Theorem 1 can be formulated
as follows: for the case when n # 2k and max(k,n — k) > 5 any com-
mutativity preserving bijective transformation of the set of symplectic
(2k,2n — 2k)-involutions can be extended to an automorphism of the
symplectic group.
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1. Introduction

Let W be an n-dimensional vector space over a division ring R and n > 3. We put
Gr(W) for the Grassmannian of k-dimensional subspaces of W. The projective
space associated with W will be denoted by P (V).
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Let us consider the set &, (W) of all pairs
<S7 U) € gk(W) X gnfk(W)a

where S + U = W. If B is a base for P(W) then the base subset of & (W)
associated with the base B consists of all (S,U) such that S and U are spanned
by elements of B. If n # 2k then any bijective transformation of & (1) preserving
the class of base subsets is induced by a semi-linear isomorphism of W to itself
or to the dual space W* (for n = 2k this fails, but some weak version of this
result holds true). Using Mackey’s ideas [7] J. Dieudonné [2] and C. E. Rickart
[9] have proved this statement for k = 1,n — 1. For the case when 1 <k <n —1
it was established by author [8]. Note that adjacency preserving transformations
of &, (W) were studied in [6].

Now suppose that the characteristic of R is not equal to 2 and consider an
involution u € GL(W). There exist two subspaces S, (u) and S_(u) such that

uz) =z if x€ Sy (u), u(r)=—-z if x€ S_(u)

and
W = 5:(u)+ S_(u).

We say that u is a (k,n — k)-involution if the dimensions of S (u) and S_(u) are
equal to k and n—k, respectively. The set of (k, n — k)-involutions will be denoted
by Jx(W). There is the natural one-to-one correspondence between elements of
T, (W) and &, (W) such that each base subset of & (W) corresponds to a maximal
set of mutually permutable (k,n — k)-involutions. Thus any commutativity pre-
serving transformation of J; (1) can be considered as a transformation of & (W)
preserving the class of base subsets, and our statement shows that if n £ 2k then
any commutativity preserving bijective transformation of J; (1) can be extended
to an automorphism of GL(W).
In the present paper we give symplectic analogues of these results.

2. Results

2.1.

Let V be a 2n-dimensional vector space over a field Fand Q : V x V — F be a
non-degenerate symplectic form. The form €2 defines on the set of subspaces of
V' the orthogonal relation which will be denoted by L. For any subspace S C V'
we put S+ for the orthogonal complement to S. A subspace S C V is said
to be non-degenerate if the restriction )|g is non-degenerate; for this case S is
even-dimensional and S + S+ = V. We put $,(Q) for the set of non-degenerate
2k-dimensional subspaces. Any element of ;(2) can be presented as the sum of
k mutually orthogonal elements of $1(£2).

Let us consider the projective space P(V') associated with V. The points
of this space are 1-dimensional subspaces of V', and each line consists of all 1-
dimensional subspaces contained in a certain 2-dimensional subspace.
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A line of P(V) is called hyperbolic if the corresponding 2-dimensional subspace
belongs to $:(2); otherwise, the line is said to be isotropic.
Points of P(V) together with the family of isotropic lines form the well-known
polar space.
Some results related with the hyperbolic symplectic geometry (spanned by points
of P(V') and hyperbolic lines) can be found in [1], [4], [5].
A base B = {Py,..., Py} of P(V) is called symplectic if for any i € {1,...,2n}
there is unique o(i) € {1,...,2n} such that P; } P,;. Then the set &; consisting
of all

Si = B + PU(,-)
is said to be the base subset of $1(2) associated with the base B. For any k €
{2,...,n—1} the set & consisting of all S;, +---+5;, (Si,...,S;, are different)
will be called the base subset of H;(2) associated with &; (or defined by &;).
Now suppose that the characteristic of F' is not equal to 2. An involution u €
GL(V) is symplectic (belongs to the group Sp(€?)) if and only if S, (u) and S_(u)
are non-degenerate and S_(u) = (S, (u))*. We denote by J5(Q2) the set of sym-
plectic (2k, 2n — 2k)-involutions. There is the natural bijection

ik 2 T(Q) = Hu(),  u— Si(u)

We say that X C J,(Q) is an M C-subset if any two elements of X are commutative
and for any u € J;,(€2) \ X there exists s € X such that su # us (in other words,
X is a maximal set of mutually permutable elements of Jj(£2)).

Fact 1. [2], [3] X is a MC-subset of Tx(2) if and only if ix,(X) is a base subset
of Hx(). For any two commutative elements of Jx(2) there is a MC-subset
containing them.

Fact 1 shows that a bijective transformation f of $;(€2) preserves the class of base
subsets if and only if 4; ' fij is commutativity preserving.
2.2.

If [ is an element of I'Sp(£2) (the group of semi-linear automorphisms which pre-
served € to within a non-zero scalar and an automorphism of F') then for each
number k € {1,...,n — 1} we have the bijective transformation

(D = D(2) = H(Q), U —UU)
which preserves the class of base subsets. The bijection
i 9(Q) = 9,£(Q), U—=U"
sends base subsets to base subsets. We will need the following trivial fact.

Fact 2. Let f be a bijective transformation of $;(S2) preserving the class of base
subsets. Then the same holds for the transformation pyfp._r. Moreover, if f =
(D) for certain | € T'Sp(2) then prfpn—i = ({)n—k-
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Two distinct elements of $;(€2) are orthogonal if and only if there exists a base
subset containing them, thus for any bijective transformation f of $;(€2) the
following condition are equivalent:

— f preserves the relation L,

— f preserves the class of base subsets.
It is not difficult to prove (see [2], p. 26-27 or [9], p. 711-712) that if one of these
conditions holds then f is induced by an element of I'Sp(€2). Fact 2 guarantees that
the same is fulfilled for bijective transformations of £),,_;(2) preserving the class

of base subsets. This result was exploited by J. Dieudonné [2] and C. E. Rickart
[9] to determine automorphisms of the group Sp(f2).

Theorem 1. If n # 2k and max(k,n — k) > 5 then any bijective transformation
of $1(Q) preserving the class of base subsets is induced by an element of I'Sp(£2).

Corollary 1. Suppose that the characteristic of F is not equal to 2. If n # 2k
and max(k,n—k) > 5 then any commutativity preserving bijective transformation
[ of 3k(Q) can be extended to an automorphism of Sp(€).

Proof of Corollary. By Fact 1, i, f’i,;l preserves the class of base subsets. Theorem
1 implies that iy fi; ' is induced by I € T'Sp(€2). The automorphism u — lul~! is
as required. [

2.3.
For the case when n = 2k Theorem 1 fails.

Example 1. Suppose that n = 2k and X is a subset of $;({2) such that for any
U € X we have U+ € X. Consider the transformation of $);(2) which sends each
U € X to Ut and leaves fixed all other elements. This transformation preserves
the class of base subsets (any base subset of $;(Q2) contains U together with U+),
but it is not induced by a semilinear automorphism if X # (), $;(Q).

If n = 2k then we denote by 9;(Q) the set of all subsets {U, U} C $,(92). Then
every [ € I'Sp(Q2) induces the bijection

D : 91(Q) = 9:(Q),  {U, UM} = {U(U),[(U*) = 1(U)*}.
The transformation from Example 1 gives the identical transformation of Ek(Q)

Theorem 2. Let n = 2k > 14 and [ be a bijective transformation of $Hx(€2)
preserving the class of base subsets. Then f preserves the relation L and induces
a bijective transformation of Hx(2). The latter mapping is induced by an element

of TSp(Q).

Corollary 2. Let n = 2k > 14 and f be a commutativity preserving bijective
transformation of I3 (S2). Suppose also that the characteristic of F is not equal to 2.
Then there exists an automorphism g of the group Sp(Q2) such that f(u) = +g(u)
for any u € J(Q).
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3. Inexact subsets

In this section we suppose that n >4 and 1 <k <n — 1.

3.1. Inexact subsets of &, (W)

Let B={P,...,P,} be a base of P(W). For any m € {1,...,n — 1} we denote
by 9B,, the base subset of &,,(W) associated with B (the definition was given in
Section 1).

If « = (M,N) € B, then we put By («) for the set of all (S,U) € B, where
S is incident to M or N (then U is incident to N or M, respectively), the set of
all (S,U) € By, such that S is incident to M will be denoted by B («).
A subset X C 9By, is called exact if there is only one base subset of &, (1) con-
taining X; otherwise, X is said to be inezact.
If € By then Bi(a) is a maximal inexact subset of B, (Example 1 in [§]).
Conversely, we have the following:

Lemma 1. (Lemma 2 of [8]) If X is a mazimal inexact subset of By then there
exists o € By such that X = By (a).

Lemma 2. (Lemmas 5 and 8 of [8]) Let g be a bijective transformation of By
preserving the class of mazximal inexact subsets. Then for any a € Br_1 there
exists [ € By_1 such that

9(Br(a)) = By(B);
moreover, we have

9(%B () =B (B)
if n # 2k.

3.2. Inexact subsets of $(2)

Let &; = {S1,...,S,} be a base subset of (). For each number m €
{2,...,n — 1} we denote by &,, the base subset of §,,(£2) associated with &;.
Let M € G,,. Then M+ € &,,_,,. We put &,(M) for the set of all elements
of &, incident to M or M+. The set of all elements of &, incident to M will be
denoted by &} (M).
Let X be a subset of G;. We say that X is exact if it is contained only in one base
subset of 9;(€2); otherwise, X will be called inezact. For any i € {1,...,n} we
denote by X; the set of all elements of X containing S;. If X; is not empty then

we define
Ui(%):= [ U.

Uex;

and U;(X) := 0 if X; is empty. It is trivial that our subset is exact if U;(X) = S;
for each 1.

Lemma 3. X is exact if U;(X) # S; only for one 1.
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Proof. Let &) be a base subset of $;(£2) which defines a base subset of $(2)
containing X. If j # ¢ then U;(X) = S; implies that S; belongs to &}. Let us take
S’ € &} which does not coincide with any S;, j # . Since S’ is orthogonal to all
such S;, we have S’ = S; and &) = &;. O

Example 2. Let M € Gy. Then M = 5;+.S; for some 7, j. We choose orthogonal
S, S; € $:1(Q) such that S; + 57 = M and {S;, S;} # {5}, Sj}. Then

Mg Mg

(61 \ {5i,5;}) U{S;, 55}
is a base subset of £;(Q2) which defines another base subset of $;(Q2) containing
S (M). Therefore, G, (M) is inexact. Any U € &, \ S, (M) intersects M by S;
or S; and

Up(&r(M)U{U}) = 5,

if p =i or j; the same holds for all p # ¢, j. By Lemma 3, &, (M) U {U} is exact
for any U € &, \ & (M). Thus the inexact subset S (M) is maximal.

Lemma 4. Let X be a mazimal inexact subset of &y. Then X = Sy(M) for
certain M € S,.

Proof. By the definition, there exists another base subset of () containing X;
the associated base subset of $;(€2) will be denoted by &). Since our inexact
subset is maximal, we need to prove the existence of M € &5 such that X C
Sr(M).

Let us consider ¢ € {1,...,n} such that U; is not empty (from this moment
we write U; in place of U;(X)). We say that the number i is of first type if the
inclusion U; C U;, j # ¢ implies that U; = 0 or U; = U;. If i is not of first type
and the inclusion U; C U;, j # i holds only for the case when U; = 0 or j is of
first type then 7 is said to be of second type. Similarly, other types of numbers
can be defined.

Suppose that there exists a number j of first type such that dim U; > 4. Then
U; contains certain M € G,. Since j is of first type, for any U € X one of the
following possibilities is realized:

- UE%jtheIlMCUjCU,
- UeXx\X;thenU CU C M.
This means that M is as required.

Now suppose that U; = S; for all j of first type, so S; € &] if j is of first type.
Consider any number ¢ of second type. If U; € G,, then m > 2 and there are
exactly m — 1 distinct j of first type such that S; = U; is contained in U;; since
all such S; belong to &) and Uj; is spanned by elements of &, we have S; € &].
Step by step we establish the same for other types. Thus S; € &) if U; is not
empty. Since X is inexact, Lemma 3 implies the existence of two distinct numbers
i and j such that U; = U; = (0. We define M := S; + S;. Then any element of X

is contained in M~ and we get the claim. O]
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Let &) be another base subset of $;(2) and &/, m € {2,...,n— 1}, be the base
subset of $),,(€2) defined by &].

Lemma 5. Let h be a bijection of &y to &), such that h and h™' send mazimal
inexact subsets to mazimal inexact subsets. Then for any M € S&_q there exists
M' € &)_, such that

h&y(M)) = &, (M);

moreover, we have
W(&F (M) = &' (M)
if n # 2k.
Proof. Let B,,, m € {1,...,n — 1}, be as in subsection 3.1.. For each m there is

the natural bijection b,, : 98,, — &,, sending (S,U) € B,,, S=FP, +---+ B, to
Siy ++---+ 95, . Forany M € &,, we have

Sk (M) = b (B (b, (M) and & (M) = be(B (b, (M))).

Let b, be the similar bijection of B,, to &/,. Then (b)) 'hby is a bijective
transformation of By preserving the class of base subsets and our statement follows
from Lemma 2. O

4. Proof of Theorems 1 and 2

By Fact 2, we need to prove Theorem 1 only for £ < n — k. Throughout the
section we suppose that 1 < k < n — k and n — k > 5; for the case when n = 2k
we require that n > 14.

4.1.

Let f be a bijective transformation of $;(£2) preserving the class of base subsets.
The restriction of f to any base subset satisfies the condition of Lemma 5.

For any subspace T' C V' we denote by $5(7") the set of all elements of $;(£2)
incident to T or T, the set of all elements of §;(£2) incident to T will be denoted
by 9, (T).

In this subsection we show that Theorems 1 and 2 are simple consequences of
the following lemma.

Lemma 6. There exists a bijective transformation g of $_1(S) such that

9O (1) =9 (9(T)) VT € Hia(Q)

if n # 2k, and
9((T)) = Hr(9(T))) VT € Hr1(R)

for the case when n = 2k.
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The proof of Lemma 6 will be given later.

Let S;_1 be a base subset of $;_1(€2) and &, be the associated base subset of
91,(2) (these base subsets are defined by the same base subset of $;(2)). By our
hypothesis, f(&y) is a base subset of $;(Q2); we denote by &) _; the associated
base subset of 9;_1(£2). It is easy to see that g(&y_1) = &),_;, so g maps base
subsets to base subsets. Since f~! preserves the class of base subset, the same
holds for g=!. Thus g preserves the class of base subsets.

Now suppose that g = (I)x—; for certain [ € I'Sp(£2). Let U be an element of
91(Q2). We take M, N € $;,_1(Q2) such that U = M + N. If n # 2k then

{U} =9 (M) N9 (N) and {f(U)} =9 (U(M)) N H;(LN)),
so f(U) =1(M)+1(N)=1U), and we get f = (I)g. For the case when n = 2k
we have
{U,U+} = 9,(M) N H5(N) and {f(U), f(U)"} = Hr(1(M)) N 9 (I(N));
since [(M) + I(N) = l(U) and I(M)* NI(N)t = (I(M) +I(N))*t =1(U)*,

{f(U), fU)} = {1U), (V)" }

the latter means that f = ({);.. Therefore, Theorem 1 can be proved by induction
and Theorem 2 follows from Theorem 1.

To prove Lemma 6 we use the following:

Lemma 7. Let M € $,,(Q) and N be a subspace contained in M. Then the
following assertions are fulfilled:
(1) If dim N > m then N contains an element of $1(£2).

(2) If dim N > m+ 2 then N contains two orthogonal elements of $1(12).

(3) If dim N > m + 4 then N contains three distinct mutually orthogonal ele-
ments of $H1().

Proof. The form €|, is non-degenerate. If dim N > m then the restriction of
Q|p to N is non-zero. This implies the existence of S € $H;(2) contained in N.
We have

dim NN St >dim N — 2,

and for the case when dim N > m + 2 there is an element of §;(2) contained in
N NS+, Similarly, (3) follows from (2). O

4.2. Proof of Lemma 6 for kK <n — k
Let T € $;-1(22) and &, = {54,...,S,} be a base subset of () such that

TJ_ZSl"‘"'—FSn_]H_l and T:Sn—k+2+"'+5n.
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We put &, for the base subset of () associated with ;. Then & (T') consists
of all
Ui = T + Si,
where i € {1,...,n — k+ 1}. By Lemma 5, there exists 7" € $);_1(€2) such that
F(&E(T)) € H(T").
We need to show that f($; (7)) coincides with ;7 (1").

Lemma 8. Let U € 9 (T). Suppose that there exist two distinct M, N € 5} (T)
such that f(M), f(N) belong to $; (T") and there is a base subset of Hx(Q) con-
taining M, N and U. Then f(U) is an element of $H; (T").

Proof. 1f there exists a base subset of $(Q2) containing M, N and U then T be-
longs to the associated base subset of 9;_1(£2) and Lemma 5 implies the existence
of T" € $;_1(Q) such that f(M), f(N) and f(U) belong to H;(T”). On the other
hand, f(M) and f(N) are different elements of $;(7") and f(M)N f(N) coincides
with 7. Hence 7" =T". O

For any U € 9 (T) we denote by S(U) the intersection of U and T, it is clear
that S(U) is an element of $;(2).

If S(U) is contained in Sy ++ - -+ S,_x_1 then S(U), S, _g, Sp—g+1 are mutually
orthogonal and there exists a base subset of () containing U, U,,_x, Uy _g11-
All £(U;) belong to $; (1) and Lemma 8 shows that f(U) € 9 (T").

Let U be an element of ;7 (T") such that S(U) is contained in Sy + - - + S, .
We have

dim(S; + -+ Sp ) NSO >2(n—k—2)>n—k—1

(the latter inequality follows from the condition n — k > 5) and Lemma 7 implies
the existence of S” € $;(2) contained in

(Sy+ -+ Sup1) NSU)*.

Then S(U),S’, S,_r+1 are mutually orthogonal and there exists a base subset of
91(2) containing U, T + S', U,,_x+1. It was proved above that f(7 + S’) belongs
to 9 (T"). Since f(U;) € 9 (T") for each i, Lemma 8 guarantees that f(U) is an
element of ;7 (1").

Now suppose that S(U) is not contained in Sy + -+ + S,,_,. Since n — k > 5,

dim(S; + -+ S ) NSO >2n—k—1) >n—k+2.
By Lemma 7, there exist two orthogonal S’, S” € $,(Q2) contained in
(S; 4+ S, k) NSU)*.

Then S’, 5", S(U) are mutually orthogonal and there exists a base subset of £;(€2)
containing S+ T, S” +T and U. We have shown above that f(S'+T), f(S"+T)
belong to $;(T") and Lemma 8 shows that the same holds for f(U).

So f(H;7(T)) C H;{(T"). Since f~! preserves the class of base subsets, the
inverse inclusion holds true. We define g : 95-1(Q2) — 9Hr-1(Q2) by g(T) := T".
This transformation is bijective (otherwise, f is not bijective).
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4.3. Proof of Lemma 6 for n = 2k

We start with the following;:
Lemma 9. If n = 2k then f(UY) = f(U)* for any U € H,(Q).

Proof. We take a base subset &;, containing U. Then U+ € &;. Denote by &;,_;
the base subset of $;_1(Q2) associated with &;. Let &) _; be the base subset
of 9,-1(92) associated with &) := f(&y). We choose M, N € &;_; such that
U= M+ N. Then

{U, U} = &x(M) N Sk(N)

and Lemma 5 guarantees that
{f(U), f(U)} = &,(M) N &L(N')

for some M',N' € &)_,. The set & (M') N &, (N') is not empty if one of the
following possibilities is realized:

~ M’ + N’ and M'" N N'* are elements of $;_1(Q) and & (M) N &S (N)

consists of these two elements.

~ M’ c N'* and N’ € M"*, then &) (M') N & (N') consists of 4 elements.

Thus
{f(U), U} ={M'+ N, M"" N N""}.

Since M’ + N’ and M’ N N'* are orthogonal, we get the claim. O

Let T € $;-1(€2). As in the previous subsection we consider a base subset &, =
{S1,...,S,} of H:(22) such that

TJ_:Sl+"‘+Sn7k+1 and T:Snfk+2++sn

We denote by &y the base subset of () associated with &;. Then &x(T)
consists of
U:=T+S;, ie{l,....n—k+1}

and their orthogonal complements. Lemma 5 implies the existence of T €
Hr—1(£2) such that
f(&(T)) C H(T").

We show that f(U) belongs to $(1") for any U € 9, (T).

We need to establish this fact only for the case when U is an element of $; (7).
Indeed, if U € 9 (T) then Ut is an element of §;(T) and f(U*) € H,(T")
implies that f(U) = f(UL)* belongs to $,(1").

Lemma 10. Let U € 9 (T). Suppose that there exist distinct M; € ;) (T),
i = 1,2,3 such that each f(M;) belongs to Hi(T") and there is a base subset of
91k(Q) containing My, My, M3 and U. Then f(U) € $H5(T").
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Proof. By Lemma 5, there exists 7" € $,_1(Q2) such that f(U), all f(M;), and
their orthogonal complements belong to $,(7”). For any ¢ = 1,2,3 one of the
subspaces f(M;) or f(M;)* is an element of $; (T7"); we denote this subspace by
M. Then

3
T"=(\M; and T"" =M'; + M, i#;j;
i=1
note also that the intersection of any M/ and M ’jL does not belong to H_1(Q2).
Since all M/ and M’;- belong to H;(1"), we have T" = T". O

As in the previous subsection for any U € §;(T) we denote by S(U) the inter-
section of U and T, it is an element of ().

If S(U) is contained in Sy + -+ S, _,_o then S(U), Syp_k_1, Sn_k, Sn_gr1 are
mutually orthogonal and there exists a base subset of $5(£2) containing U, U,,_x_1,
Up—t, Un_s1. Since f(U;) € 9x(T") for each i, Lemma 10 shows that f(U) belongs
to f)k(T/)

Suppose that S(U) is contained in S; + - -+ + S, _x_1. We have

dim(S; + -+ Sy, 2)NSU)E>2(n—k—3)>n—k—2

(since k = n—k > 7) and Lemma 7 implies the existence of S’ € $;(2) contained

m

(Si4 -+ Snk o) NSO

Then S(U), S, Sp—k, Sn_g+1 are mutually orthogonal, so U, T + S, Uk, Up_g+1
are contained in a certain base subset of ), (2). It was shown above that f(7+5")
is an element of $;(7") and Lemma 10 guarantees that f(U) € H5(7") (recall that
all f(U;) belong to $Hx(T")).

Consider the case when S(U) is contained in Sy + -+ + S, _;. We have

dim(S; + -+ Sp ) NSO)E>2(n—k—2)> (n—k—1) +2

(recall that k = n—k > 7) and there exist two orthogonal S’, S” € $,(Q2) contained

m

Si4 -+ S k) NS

(Lemma 7). Then S(U),S’, 5", Sp—k+1 are mutually orthogonal and there exists a
base subset of $;(Q2) containing U, T+ 5", T+ 5", U, _j41. It follows from Lemma
10 that f(U) € $Hx(T") (since f(T + S"), f(T + 5”) and any f(U;) belong to
Hr(T7).

Let U be an element of $;(7") such that S(U) is not contained in Sy + - - - +
Sp—k. Since n = 2k > 14,

dim(S; + -+ S ) NSO >2(n—k—1)>n—k+4.
By Lemma 7, there exist mutually orthogonal S, 5", 5" € () contained in

(S +---+ S, )N SU)*..
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A base subset of $;(£2) containing U, T+ 5", T+ S”,T + 5" exists. It was shown
above that f(T+5"), f(T+S”) and f(T +5") belong to H;(7T") and Lemma 10
implies that the same holds for f(U).

Thus f(9%(T)) C Hx(T"). As in the previous subsection we have the inverse

inclusion and define g : $H;_1(2) — Hx_1(Q) by g(T) :=1T".
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