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1. Introduction

In this paper we consider multi-graded extended Rees algebras of zero dimensional
ideals which are Cohen-Macaulay (CM) with minimal multiplicity. We show that
the minimal multiplicity property can occur only for the ordinary extended Rees
algebra and the bigraded extended Rees algebra. For the bigraded extended Rees
algebra we find necessary conditions for it to be CM with minimal multiplicity.
We also produce bigraded Rees algebras which are Cohen-Macaulay with minimal
multiplicity.

A considerable amount was known for the ordinary extended Rees algebra.
Among the many we quote ([6], [16], [17], [18]). There was nothing known con-
cerning the minimal multiplicity of the multi-graded extended Rees algebra. One
of the crucial results needed was the formula of multiplicity of a maximal homo-
geneous ideal. This formula was obtained by the author in [3].

Throughout this paper (R,m) will denote a Noetherian local ring of positive di-
mension. Without loss of generality we will assume that R/m is infinite. It is
well-known that for any CM local ring (R,m), e(m) ≥ µ(m)− dim R + 1, where
e(m) denotes the multiplicity of m and µ(m) is the minimal number of generators
of m. A CM local ring is said to have minimal multiplicity if equality holds.

Let I1, . . . , Ig be ideals of positive height in (R,m) and let t1, . . . , tg be indeter-
minates. The multi-graded extended Rees algebra of R with respect to the ideals
I1, . . . , Ig is the graded ring B(I) :=

⊕
rj∈Z,1≤j≤g(I1t1)

r1 · · · (Igtg)
rg . Here I

rj

j = R,
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if rj ≤ 0 for all j = 1, . . . , g. Let N denote the maximal homogeneous ideal of
B(I). The multi-Rees algebra is the graded ring

⊕
ri≥0(I1t1)

r1 · · · (Igtg)
rg and will

be denoted by R(I).

In the past decade several researchers have investigated the multi-Rees algebra.
Since the multi-Rees algebra is a subring of the multi-graded extended Rees alge-
bra, it is natural to expect them to have similar ring-theoretic properties. How-
ever, there was no progress concerning the multi-graded extended Rees algebra.

Hence we will briefly state some of the earlier known results on the Rees
algebra and the extended Rees algebra. It is well-known that if I is an ideal of
positive height in a CM local ring R and if R(I) is CM, then the associated graded
ring G(I) := ⊕r≥0I

r/Ir+1 is also CM [5, Proposition 1.1]. It is easy to see that
G(I) is CM if and only if the extended Rees ring B(I) is. In 1989, Verma showed
that if R is a CM local ring of dimension two with minimal multiplicity, then for
all positive integers r, R(mr) and B(mr) are CM with minimal multiplicity [16,
Theorem 3.3, 4.3]. In the same year he showed that if I is a parameter ideal in a
CM ring of dimension at least two and if `(I + m2/m2) ≥ dim R − 1, then R(I)
and B(I) are CM with minimal multiplicity [17, Theorem 3.1, 3.2]. In 1991 he
proved the following: Let (R,m) be a regular local ring of dimension two. Let
I be a contracted m-primary ideal with reduction number one. Then R(I) and
B(I) are CM with minimal multiplicity [18, Theorem 3.1, 4.3].

In [4] Herrmann et al. remarked that if I is an ideal of positive height and if
I1 = · · · = Ig = I, then the multi-Rees algebra R(I) behaves like the ordinary
extended Rees algebra R(I). In this paper they studied the CM property of
the multi-Rees algebra. Minimal multiplicity of the multi-Rees algebra has been
studied in [19], [4] and [2].

The following results which were obtained in the author’s thesis played an impor-
tant role in obtaining our results:

1. A relation between the number of generators of an m-primary ideal in a CM
local ring and a certain mixed multiplicity (Theorem 3.2).

2. The bounds on the mixed multiplicities of ideals (see Lemma 3.5, Lem-
ma 3.6).

3. The bounds on `(I1 + I2 + m2/m2) when B(I)N is CM with minimal mul-
tiplicity, where I1 and I2 are m-primary ideals in a CM ring (R,m) (see
Lemma 4.2, Lemma 4.3).

Remark 1.1. The above mentioned results also give a simple and unified proof
for the known results for the ordinary extended Rees algebra. We do not mention
these results here. But we answer a question of Verma concerning the ordinary
extended Rees algebra (see [16, p. 3015] and Example 5.5). This gives an infinite
class of examples of ordinary extended Rees algebras which are Cohen-Macaulay
with minimal multiplicity even though the original ring does not have minimal
multiplicity. It was not possible to construct such examples with the methods
used in Verma’s paper concerning the ordinary extended Rees algebra.
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We now summarise the main results in this paper. In Section 2 we prove that for
a CM local ring minimal multiplicity can occur only for the ordinary extended
Rees algebra and the bigraded extended Rees algebra (i.e. when g = 1, 2).

In Section 3 we obtain necessary conditions for the bigraded extended Rees algebra
to be CM with minimal multiplicity.

In Section 4 we consider bigraded extended Rees algebras which are CM with
minimal multiplicity. We end the paper with an example.

The author is very grateful to J. Verma for his valuable suggestions.

2. Preliminaries

2.1. An ideal J ⊆ I is a reduction of I if there exists a positive integer r such that
JIr = Ir+1 [7]. The ideal J is called a minimal reduction of I if J is minimal with
respect to inclusion among all reductions of I. If R/m is infinite, then any minimal
reduction of I is generated by a(I) elements, where a(I) = dim

⊕
n≥0

(In/mIn) is

called the analytic spread of I. For an ideal I in R, ht I ≤ a(I) ≤ dim R [9]. If
J is a reduction of I, then the reduction number of I with respect to J is defined
to be

rJ(I) = min{n ≥ 0 | JIn = In+1}.

The reduction number of I is defined to be

r(I) = min{rJ(I) | J is a minimal reduction of I}.

2.2. Let I1, . . . , Ig be m-primary ideals in a local ring R of dimension d. For
r1, . . . , rg large, `R(Ir1

1 Ir2
2 · · · Irg

g /Ir1+1
1 Ir2

2 · · · Irg
g ) is a polynomial of degree d− 1 in

r1, . . . , rg and can be written in the form

∑
q1+···+qg=d−1

e(I
[q1+1]
1 |I [q2]

2 | · · · |I [qg ]
g )

rq1

1

q1!
· · · r

qg
g

qg!
+ lower degree terms;

where e(I
[q1+1]
1 |I [q2]

2 | · · · |I [qg ]
g ) are positive integers and they are called the mixed

multiplicities of the set of ideals {I1, . . . , Ig} [14]. One can verify that

e(I1| · · · |I1︸ ︷︷ ︸
q1+1

| I2| · · · |I2︸ ︷︷ ︸
q2

| · · · | Ig| · · · |Ig︸ ︷︷ ︸
qg

) := e(I
[1]
1 | · · · |I

[1]
1︸ ︷︷ ︸

q1+1

| I [1]
2 | · · · |I

[1]
2︸ ︷︷ ︸

q2

| · · · |

I [1]
g | · · · |I [1]

g︸ ︷︷ ︸
qg

) = e(I
[q1+1]
1 |I [q2]

2 | · · · |I [qg ]
g )

for all q1, . . . , qg satisfying q1 + · · ·+ qg = d− 1.
For g = 2, we will use the notation

eq(I1|I2) := e(I
[d−q]
1 |I [q]

2 ) 0 ≤ q ≤ d− 1.
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2.3. Rees obtained an interpretation of mixed multiplicities in terms of joint re-
ductions [10]. Let I1, . . . , Ig be m-primary ideals. A set of elements x1, . . . , xg is
called a joint reduction of the set of ideals {I1, . . . , Ig} if xj ∈ Ij for j = 1, . . . , g

and if
∑g

j=1 xjI1 · · · Îj · · · Ig is a reduction of I1 · · · Ig. Rees proved that if R/m is
infinite, g = dim R and I1, . . . Ig are m-primary ideals, then joint reductions exist
[10]. It follows that if I and J are m-primary ideals in a local ring (R,m) then
e0(I|J) = e(I) [8]. We end this section by stating an important result of Rees.

Lemma 2.4. (Rees’ Lemma) [10, Lemma 1.2] Suppose (R,m) is a local ring
with infinite residue field. Let {I1, . . . , Ig} be a set of ideals of R and let P be a
finite collection of prime ideals of R not containing any of I1, . . . , Ig. Then for
each i = 1, . . . , g, there exists an element xi ∈ Ii, xi not contained in any prime
ideal of P and an integer si such that for ri ≥ si and for all positive integers
r1, , . . . , r̂i, . . . , rg;

xiR ∩ Ir1
1 · · · Irg

g = xiI
r1
1 · · · Iri−1

i · · · Irg
g .

3. The case g ≥ 3

The main result in this section is:

Theorem 3.1. Let (R,m) be a CM local ring of dimension d. Let I1, . . . , Ig be
m-primary ideals in R. If B(I)N is CM with minimal multiplicity, then g ≤ 2.

By a result of Valla, dim B(I) = dim R + g [15]. Notice that e(NB(I)N ) = e(N )
and µ(NB(I)N ) = µ(N ). Hence, if B(I)N is CM, then it has minimal multiplicity
if and only if e(N ) = µ(N )− (dim R + g) + 1.

We state an interesting inequality which relates the number of generators of
an ideal with a certain mixed multiplicity.

Theorem 3.2. Let (R,m) be a CM local ring of positive dimension d. Let I be
an m-primary ideal of R. Then

µ(I) ≤ ed−1(m|I) + d− 1.

Proof. We induct on d. The case d = 1 has been proved by J. Sally [12, p. 49].
If d > 1, then by Lemma 2.4 there exists a non-zero divisor y ∈ I and a positive
integer s0 so that for s ≥ s0 and r > 0,

yR ∩mrIs = y mrIs−1.

Let “-” denote the image in R = R/yR. By induction hypothesis we have

µ(I) ≤ µ(I) + 1 ≤ ed−2(m | I) + d− 1 = ed−1(m|I) + d− 1.

�

An upper bound on the number of generators of the maximal homogeneous ideal
of the multi-graded extended Rees algebra can be estimated by Theorem 3.2.
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Remark 3.3. Let I1, . . . , Ig be m-primary ideals in a CM local ring (R,m). Put
L = I1 + · · ·+ Ig + m2. Comparing the graded components of N and N 2 we get

µ(N ) =

g∑
j=1

`(R/m) + `(m/L) +

g∑
j=1

µ(Ij)

= g + µ(m) +

g∑
j=1

µ(Ij)− `
(
L/m2

)
≤ e(m) +

g∑
j=1

ed−1(m|Ij)+d(g + 1)− 1− `
(
L/m2

)
[by Theorem 3.2]. (1)

The multiplicity of N can be expressed in terms of mixed multiplicities of ideals
in R. Hence, any bound on mixed multiplicities of ideals in R will give a bound
on the multiplicity of R.

Theorem 3.4. [3, Theorem 1.2] Let I1, . . . , Ig be m-primary ideals in (R,m). Put
L = I1 + · · ·+ Ig + m2. Then

e(N ) =
1

2d

 g∑
n=0

d−1∑
q=0

2d−1−q
∑

q1+···+qn=d−1−q
1≤i1<···<in≤g

e(L[q+1]|I [q1]
i1
| · · · |I [qn]

in
)

 .

Lemma 3.5. Let (R, m) be a local ring and I1, . . . , Ig be m-primary ideals of R.
Then for all nonnegative integers q1, . . . , qg satisfying q1 + · · ·+ qg = d− 1,

e(I
[q1+1]
1 |I [q2]

2 | · · · |I [qg ]
g ) ≥ e(I1 + · · ·+ Ig).

Proof. Since I1, . . . , Ig are m-primary, by [10, Theorem 2.4], there exists a joint
reduction x1, . . . , xd of q1 + 1 copies of I1, q2 copies of I2, . . . , qg copies of Ig,

such that e(x1, . . . , xd) = e(I
[q1+1]
1 |I [q2]

2 . . . |I [qg ]
g ). Since (x1, . . . , xd) ⊆ I1 + · · ·+ Ig,

e(x1, . . . , xd) ≥ e(I1 + · · ·+ Ig). �

Lemma 3.6. [cf. [13], Lemma 2.8] Let (R,m) be a local ring. Let I1, . . . , Id be
m-primary ideals in R. Let xi ∈ Ii for i = 1, . . . , d be such that (x1, . . . , xd) is
m-primary. Then

e(I1| · · · |Id) ≤ e(x1, . . . , xd).

If (R,m) is quasi-unmixed and equality holds, then x1, . . . , xd is a joint reduction
of the set of ideals {I1, . . . , Id}.

Proof of Theorem 3.1. Put L = I1+· · ·+Ig +m2. Since B(I)N is CM with minimal
multiplicity, e(N ) = µ(N )− dim B(I) + 1. From Remark 3.3 it follows that

µ(N )− dim B(I) + 1 ≤ e(m) +

g∑
j=1

ed−1(m|Ij) + g(d− 1)− `(L/m2)

≤ e(m) +

g∑
j=1

ed−1(m|Ij) + g(d− 1). (2)
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Let d = 1. Then

e(N ) ≤ (g + 1)e(m) [from (2)] (3)

and e(N ) = 2g−1e(L) ≥ 2g−1e(m) [from Theorem 3.4]. (4)

Clearly, 2g−1 > g + 1 for g > 3. If g = 3, then equality holds in (3) and (4). This
implies that e(L) = e(m) and L = m2 which is not possible. Hence g ≤ 2.

Let d ≥ 2 and g ≥ 3. It is enough to show that

e(N ) > e(m) +

g∑
j=1

ed−1(m|Ij) + g(d− 1). (5)

Since I1, . . . , Ig are m-primary ideals, the mixed multiplicities which appear in the
formula of e(N ) (see Theorem 3.4) are positive integers. Moreover, ed−1(L|Ij) ≥
ed−1(m|Ij) for all j = 1, . . . , g (Lemma 3.6). In the multiplicity formula for e(N ),
if we replace ed−1(L|Ij) by ed−1(m|Ij) (1 ≤ j ≤ g) and the remaining terms by 1
we get

e(N ) ≥ 1

2d

[
1 +

g∑
n=1

(
g

n

) [
d−1∑
q=0

2q

(
q + n− 1

n− 1

)
−2d−1n

]]
+2g−2

g∑
j=1

ed−1(m|Ij)

=
1

2d

[
1 +

g∑
n=1

(
g

n

) d−1∑
q=0

2q

(
q + n− 1

n− 1

)]
−2g−2g+2g−2

g∑
j=1

ed−1(m|Ij). (6)

Clearly

2g−2

g∑
j=1

ed−1(m|Ij)− 2g−2g

≥
g∑

j=1

ed−1(m|Ij) + e(m) + (2g−2 − 1)g − 1− 2g−2g [by Lemma 3.5]

=

g∑
j=1

ed−1(m|Ij) + e(m)− g − 1. (7)

We will show by induction on d that

1 +

g∑
n=1

(
g

n

) d−1∑
q=0

2q

(
q + n− 1

n− 1

)
> 2d(gd + 1). (8)

If d = 2, then it is easy to see that the left-hand side of (8) is 2g(g + 1) and the
right-hand side is 4(2g + 1). If d ≥ 3, then

1 +

g∑
n=1

(
g

n

) d−1∑
q=0

2q

(
q + n− 1

n− 1

)
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= 1 +

g∑
n=1

(
g

n

) d−2∑
q=0

2q

(
q + n− 1

n− 1

)
+ 2d−1

g∑
n=1

(
d− 1 + n− 1

n− 1

)(
g

n

)

> 2d−1[g(d− 1) + 1] + 2d−1

g∑
n=1

(
g

n

)(
d− 1 + n− 1

n− 1

)
[by induction hypothesis]

> 2d−1

[
g(d− 1) + 1 +

(
g

1

)
+

(
g

2

)
d

]
> 2d(gd + 1).

Comparing (6), (7) and (8) we get the inequality in (5). This completes the proof
of the theorem. �

4. The case g = 2

In this section we obtain necessary conditions for the bigraded extended Rees
algebra to be CM with minimal multiplicity.

We first prove a combinatorial lemma.

Lemma 4.1. Let d ≥ 2 be an integer. Then

d−2∑
q=0

2q(q + 1) = (d− 2)2d−1 + 1.

Proof. Proof is by induction on d.
Let I1 and I2 be ideals of positive height in R. Put L = I1 + I2 + m2. Recall

that if g = 2, then

e(N )=
1

2d

[
e(L)+

d−1∑
q=0

2∑
j=1

2qeq(L|Ij)+
d−1∑
q=0

2d−1−q
∑

q1+q2=d−1−q

e(L[q+1]|I [q1]
1 |I [q2]

2 )

]
. (9)

By Lemma 3.5 we have eq(L|Ij) ≥ e(L). Hence

d−1∑
q=0

2∑
j=1

2qeq(L|Ij) =
d−2∑
q=0

2∑
j=1

2qeq(L|Ij) + 2d−1 [ed−1(L|I1) + ed−1(L|I2)]

≥ e(L)
d−2∑
q=0

2q+1 + 2d−1 [ed−1(L|I1) + ed−1(L|I2)]

= (2d − 2)e(L) + 2d−1 [ed−1(L|I1) + ed−1(L|I2)] . (10)

Once again by Lemma 3.5 we have e(L[q+1]|I [q1]
1 |I [q2]

2 ) ≥ e(L). Hence

d−1∑
q=0

2d−1−q
∑

q1+q2=d−1−q

e(L[q+1]|I [q1]
1 |I [q2]

2 )
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≥ e(L)
d−1∑
q=1

2d−1−q(d− q) + 2d−1 [ed−1(L|I1) + ed−1(L|I2) + (d− 2)e(L)]

= e(L)
d−2∑
q=0

2q(q + 1) + 2d−1 [ed−1(L|I1) + ed−1(L|I2) + (d− 2)e(L)]

= e(L)
[
(d− 2)2d−1 + 1 + 2d−1(d− 2)

]
+ 2d−1 [ed−1(L|I1) + ed−1(L|I2)]

[by Lemma 4.1]

= e(L)
[
2d(d− 2) + 1

]
+ 2d−1 [ed−1(L|I1) + ed−1(L|I2)] . (11)

From (9), (10) and (11) we have

e(N )

≥ 1

2d

[
e(L)

[
1 + (2d − 2) + 2d(d− 2) + 1

]
+ 2d [ed−1(L|I1) + ed−1(L|I2)]

]
= (d− 1)e(L) + ed−1(L|I1) + ed−1(L|I2). (12)

Putting g = 2 in Remark 3.3 and using Theorem 3.2 we get

µ(N )− dim B(I) + 1

= µ(m) + µ(I1) + µ(I2)− `(L/m2)− (d− 1)

≤ e(m) + ed−1(m|I1) + ed−1(m|I2) + 2(d− 1)− `(L/m2). (13)

�

Lemma 4.2. Let I1 and I2 be m-primary ideals in a CM local ring R of positive
dimension d. If B(I)N is CM with minimal multiplicity, then `(I1+I2+m2/m2)>0.

Proof. Suppose not. Then I1 + I2 ⊆ m2. It is easy to see that e(mn) = nde(m)
and eq(m

r|Ij) = rd−qeq(m|Ij) for all q = 1, . . . , d− 1 for j = 1, 2. Hence from (12)

e(N ) ≥ (d− 1)e(m2) + ed−1(m
2|I1) + ed−1(m

2|I2)

= 2d(d− 1)e(m) + 2ed−1(m|I1) + 2ed−1(m|I2). (14)

Since I1 + I2 ⊆ m2, from (13) we get

µ(N )− dim B(I) + 1 ≤ e(m) + ed−1(m|I1) + ed−1(m|I2) + 2(d− 1). (15)

Our assumption on B(I)N implies that e(N ) = µ(N )−dim B(I)+1. Hence from
(14) and (15) we get

[2d(d− 1)− 1]e(m) + ed−1(m|I1) + ed−1(m|I2) ≤ 2(d− 1).

Observe that 2d(d−1)+1 > 2(d−1) for all d≥1. This leads to a contradiction. �

Lemma 4.3. Let (R,m) be a CM local ring of dimension d ≥ 2. Let I1 and
I2 be m-primary ideals in R. If B(I)N is CM with minimal multiplicity, then
`(I1 + I2 + m2/m2) ≤ d. If d ≥ 3, then equality holds.
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Proof. Put L = I1 + I2 + m2. Since B(I)N is CM with minimal multiplicity,
e(N ) = µ(N )− dim B(I) + 1. From Lemma 3.6, eq(L|Ij) ≥ eq(m|Ij) for j = 1, 2.
Hence from (12) and (13) we get

(d− 2)e(m) ≤ 2(d− 1)− `(L/m2).

Since e(m) ≥ 1, `(L/m2) ≤ d. Let d ≥ 3. Assume that `(L/m2) ≤ d − 1. Then
e(L) ≥ e(m) + 1. Once again from (12) and (13) we get

2d− 3 + e(m) + ed−1(m|I1) + ed−1(m|I2)

≤ (d− 1)[e(m) + 1] + ed−1(m|I1) + ed−1(m|I2)

≤ (d− 1)e(L) + ed−1(L|I1) + ed−1(L|I2)

≤ e(m) + 2(d− 1) + ed−1(m|I1) + ed−1(m|I2)− `(L/m2). (16)

This gives `(L/m2) ≤ 1. Lemma 4.2 implies that `(L/m2) = 1. Put `(L/m2) = 1
in (16). Then equality holds in (16) and hence e(m) = 1 and e(L) = 2. Thus

µ(m) = `
( m

m2

)
= `

(
R

L

)
+ `

(
L

m2

)
− `

(
R

m

)
= `

(
R

L

)
≤ e(L) = 2.

This leads to a contradiction. Hence `(L/m2) = d. �

Lemma 4.4. Let (R,m) be a local ring of positive dimension d. Let I1 and I2 be
ideals of positive height in R. If B(I1, I2)N is CM with minimal multiplicity, then
r(I1) ≤ 1 and r(I2) ≤ 1.

Proof. Let Ji be a minimal reduction of Ii, (i = 1, 2). Then J = (t−1
1 , t−1

2 , m, J1t1,
J2t2) is a reduction of N . Since B(I1, I2)N is CM with minimal multiplicity,
JN = N 2 [11, Theorem 1]. Comparing the graded components of JN and N 2

we get J1I1 + mI2
1 = I2

1 and J2I2 + mI2
2 = I2

2 . By Nakayama’s lemma, J1I1 = I2
1

and J2I2 = I2
2 . �

We are now ready to prove the main results of this section.

Theorem 4.5. Let (R, m) be a CM local ring of dimension d ≥ 3. Put L =
I1 + I2 + m2. Suppose B(I)N is CM with minimal multiplicity. Then

1. R is a regular local ring.

2. For j = 1, 2:

(a) µ(Ij) = ed−1(m|Ij) + d− 1;

(b) eq(L|Ij) = 1 for all q = 0, . . . , d− 2;

(c) r(Ij) ≤ 1.

Proof. Put L = I1 + I2 + m2. Recall that

e(N ) =
1

2d

[
e(L) +

d−1∑
q=0

2q [eq(L|I1) + eq(L|I2)]

+
d−1∑
q=0

2d−1−q
∑

q1+q2=d−1−q

e(L[q+1]|I [q1]
1 |I [q2]

2 )

]
≥ (d− 1)e(m) + ed−1(m|I1) + ed−1(m|I2) (17)
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and

µ(N )− dim B(I) + 1

≤ e(m) + ed−1(m|I1) + ed−1(m|I2) + 2(d− 1)− `(L/m2)

= e(m) + ed−1(m|I1) + ed−1(m|I2) + d− 2 [by Lemma 4.3]. (18)

Since B(I)N is CM with minimal multiplicity, e(N ) = µ(N )−dim B(I)+1. Hence
from (17) and (18) we get (d− 2)e(m) ≤ d− 2. This implies that e(m) = 1. Also
equality holds in (17) and (18). As a consequence for j = 1, 2 and q = 0, . . . , d−2
we have that µ(Ij) = ed−1(m|Ij)+d−1 and eq(L|Ij) = 1. By Lemma 4.4, r(Ij) ≤ 1
(j = 1, 2). �

Theorem 4.6. Let (R,m) be a CM local ring of dimension d = 2. Assume that
`(I1 + I2 + m2/m2) = 2. Suppose B(I)N is CM with minimal multiplicity. Then

1. R has minimal multiplicity.

2. For j = 1, 2:

(a) µ(Ij) = e1(m|Ij) + 1;

(b) r(Ij) ≤ 1.

Proof. The proof of the theorem is similar to the proof of Theorem 4.5. �

5. Special cases and examples

We recall a result on minimal multiplicity.

Remark 5.1. [17], (2.3) Let (R,m) be a d-dimensional local ring. If R satisfies
the equation of minimal multiplicity, then R is CM if and only if Jm = m2 for
some minimal reduction J of m.

Theorem 5.2. Let (R,m) be a CM local ring of positive dimension d. Let r be a
positive integer.

1. If d = 1, then B(m, mr)N is CM with minimal multiplicity if and only if R
has minimal multiplicity.

2. If d = 2, then B(m, mr)N is CM with minimal multiplicity if and only if R
is a regular local ring.

3. If d ≥ 3, then B(m, mr)N is CM with minimal multiplicity if and only if R
is a regular local ring and r = 1.

Proof. The necessary part can be easily verified for d = 1. If d = 2, it follows from
Theorem 4.6(2a). Let d ≥ 3. Since B(m, mr)N is CM with minimal multiplicity, by
Theorem 4.5, R is a regular local ring and µ(mr) = ed−1(m|mr)+d−1 = rd−1+d−1.
It is well-known that µ(mr) =

(
r+d−1

d−1

)
. It is easy to verify by induction on d that(

r+d−1
d−1

)
> rd−1 + d− 1 for all d ≥ 3 and for all r > 1. Hence r = 1.

We now prove the sufficiency. With the assumptions in the theorem it is
easy to see that the equation of minimal multiplicity holds for all d ≥ 1. Let
J = (t−1

1 , xr
1t2 + t−1

2 , xdt1, xit1 +xr
i+1t2; 1 ≤ i ≤ d− 1) (put r = 1 for d ≥ 3). Then

JN = N 2. In view of Remark 5.1, B(m, mr)N is CM with minimal multiplicity. �
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Theorem 5.3. Let (R,m) be a CM local ring of dimension d ≥ 2. Let I be an
m-primary parameter ideal in R. Then B(m, I)N is CM with minimal multiplicity
if and only if R is a regular local ring and `(I + m2/m2) ≥ d− 1.

Proof. Suppose B(m, I)N is CM with minimal multiplicity. Then ed−1(m|I) =
µ(I) − d + 1 = 1 (Theorem 4.5, Theorem 4.6). This implies that e(m) ≤
ed−1(m|I) = 1 and hence e(m) = 1. By a result of Rees [10], there exists
x1, . . . , xd−1 ∈ I and xd ∈ m such that ed−1(m|I) = e(x1, . . . , xd) = 1. Hence
m = (x1, . . . , xd) and `(I + m2/m2) ≥ d− 1.

Conversely, since R is a regular local ring

µ(N )− dim B(m, I)N + 1 = 2 + µ(m) + µ(I)− (d + 2) + 1 = d + 1.

Since `(I+m2/m2) ≥ d−1, there exists a regular system of parameters x1, . . . , xd in
R such that I = (x1, . . . , xd−1, x

r
d). This implies 1 ≤ eq(m|I) ≤ e(x1, . . . , xd) = 1

for q = 0, . . . , d− 1 (Lemma 3.6). Thus

e(N ) =
1

2d

[
1 +

d−1∑
q=0

2q+1 +
d−1∑
q=0

2d−1−q(d− q)

]
= d + 1.

Hence e(N ) = µ(N )− dim B(m, I)N + 1. Let

J = (t−1
1 , x1t2 + t−1

2 , xdt1, xit1 + xi+1t2; 1 ≤ i ≤ d− 2, xd−1t1 + xr
dt2).

Then JN = N 2. In view of Remark 5.1, B(m, I)N is CM with minimal multi-
plicity. �

Remark 5.4. In [16, p. 3015], J.K. Verma asked the following question: If (R,m)
is a CM local ring, I is any ideal in R, B(I)N is CM with minimal multiplicity,
then is it true that R has minimal multiplicity. This question does not have
an affirmative answer in general. The following example shows that there exist
extended Rees algebras which are CM with minimal multiplicity even though R
does not have minimal multiplicity. For details on this example the reader is
requested to see [1, Example 4.2.8, Example 4.2.9].

Example 5.5. Let R=k[[x4, x5, x7]] where x is an indeterminate, m=(x4, x5, x7),
I1 = (x4, m2), I2 = (m2). Then R is a CM ring which does not have minimal
multiplicity, but B(I1, I2)N and B(I1)N are CM with minimal multiplicity. �
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