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Abstract. This paper describe the spaces spanned by the angle sums
of certain classes of polytopes, as recorded in the α-vector. Families of
polytopes are constructed whose angle sums span the spaces of poly-
topes defined by the Gram and Perles equations, analogs of the Euler
and Dehn-Sommerville equations. This shows that the dimension of the
affine span of the space of angle sums of simplices is

⌊
d−1
2

⌋
, and that

of the combined angle sums and face numbers of simplicial polytopes
and general polytopes are d− 1 and 2d− 3, respectively. A tool used in
proving these results is the γ-vector, an angle analog to the h-vector.

1. Introduction

One of the motivating questions in the combinatorial study of polytopes is whether
a given set of combinatorial data arises from a given class of polytopes. This has
been studied in depth using the f -vector, which counts the number of faces of a
polytope of each dimension. We will study polytopes by considering their angle
sums, which quantify a geometric aspect of polytopes. We will also introduce a
method to construct polytopes while controlling the angle sums.

Let P be any d-polytope. For any face F of P , we consider a d-dimensional
ball centered at an interior point of F , small enough that it only intersects faces
which contain F . The interior angle at F in P , denoted by α(F, P ), is the fraction
of this ball that is contained in P . Therefore, for a (d− 1)-dimensional facet F of
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P , α(F, P ) = 1
2

and α(P, P ) = 1. The angle sums of P are defined for 0 ≤ i ≤ d
as

αi(P ) =
∑

i−faces F⊆P

α(F, P ).

We write fi(P ) for the number of i-faces of P and define the following for a d-
polytope P :

α-vector: (α0(P ), α1(P ), . . . , αd(P )),
f -vector: (f0(P ), f1(P ), . . . , fd(P )),
α-f -vector: (α0(P ), α1(P ), . . . , αd(P ), f0(P ), f1(P ), . . . , fd(P )).

By convention, we write f−1(P ) = 1 and α−1(P ) = 0. It is well-known that there
are equations on the f -vector. For general polytopes, it is known that the only
linear relation on the f -vector is the Euler relation [5]:

d∑
i=0

(−1)ifi(P ) = 1 for any d-polytope P.

The only relations on the f -vectors of simplicial polytopes are the Dehn-Sommer-
ville relations [5]: for any simplicial polytope P and −1 ≤ k ≤ d− 2,

d−1∑
j=k

(−1)j

(
j + 1

k + 1

)
fj(P ) = (−1)d−1fk(P ).

These relations are frequently written using the h-vector, a linear transformation
of the f -vector. The h-vector is defined on a simplicial polytope P as h(P ) =
(h0(P ), h1(P ), . . . , hd(P )), where

hi(P ) =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
fj−1(P ).

Using the h-vector, the Dehn-Sommerville relations have a more symmetric refor-
mulation [13]: for any simplicial polytope P and i = 0, . . . ,

⌊
d
2

⌋
, hi(P ) = hd−i(P ).

Since this transformation is invertible, the linear independence of a set of f -vectors
is equivalent to the linear independence of the corresponding set of h-vectors.

It is also known that there are relations on the α-vector. The Gram relation
is an analog of the Euler relation [5]:

d∑
i=0

(−1)iαi(P ) = 0 for any d-polytope P.

Höhn [6] first showed that these equations are the only linear equations on the
α-vector of general polytopes. Perles proved an analog of the Dehn-Sommerville
relations [5, 10]: for any simplicial polytope P and 0 ≤ k ≤ d− 1, we have

d−1∑
j=k

(−1)j

(
j + 1

k + 1

)
αj(P ) = (−1)d(αk(P )− fk(P )).
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In the next section, we will define two constructions on polytopes and in the
fourth section we will use these constructions to make sets of polytopes whose α-
or α-f -vectors span the spaces defined by the relations above on various classes of
polytopes. The proofs in Section 4 will be aided by the γ-vector, an angle analog
of the h-vector, which is defined and examined in Section 3.

2. Construction of Polytopes

We will define two constructions, the pyramid and prism operations, that create
polytopes with varying angle sums. Each polytope will be constructed from a
polytope of dimension one lower. This is similar to the construction done by
Bayer and Billera [1], although, rather than bipyramids, we will build the dual,
prisms. For a (d− 1)-polytope Q, we will denote a d-pyramid over it as PQ and
the d-prism over it as B∗Q, following Bayer and Billera’s notation for pyramids
and bipyramids but using B∗Q to denote the dual of the bipyramid BQ. However,
since we are interested in geometric aspects of the construction, we will fix the
geometry of the polytopes and not just the combinatorics.

The prism B∗Q is Q× I, where I = [0, k] for some k. Then any i-face F of B∗Q
is either an i-face of one of Q× {0} or Q× {k}, or, for some (i− 1)-face G ⊆ Q,
F = G × I, which is orthogonal to both Q × {0} and Q × {k}. If F is a face
of this latter type, then α(F, B∗Q) = α(G, Q). No angles change as the distance
between the two copies of Q varies, so the angle sums do not depend on k. More
specifically, we have the following equations on the f -vector and angle sums:

f0(B
∗Q) = 2f0(Q), (2.1)

fi(B
∗Q) = 2fi(Q) + fi−1(Q) for 1 ≤ i ≤ d, (2.2)

αi(B
∗Q) = αi(Q) + αi−1(Q) for 0 ≤ i ≤ d. (2.3)

BQ

Q

v
PQ

Figure 1. The polytope Q; BQ, the prism over Q; and PQ, the pyramid over Q.

Now we define the pyramid PQ. We start by placing a (d− 1)-dimensional poly-
tope Q in the hyperplane xd = 0 in Rd. We then place a vertex v along the line
through the centroid of Q and perpendicular to Q, so that it has dth coordinate
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k > 0. PQ is then the convex hull of v and Q. An i-face of PQ is either an
i-face of Q and therefore part of the base of the pyramid or the convex hull of v
and an (i − 1)-face of Q. We will refer to the latter as sides. The angles formed
between the sides and faces in the base increase as k does. For this reason, we
will denote the pyramid by PkQ to specify the height of v and fix the geometry
of the construction. For any k, the pyramid operation has the following effect on
the f -vector:

fi(PQ) = fi(Q) + fi−1(Q), for 0 ≤ i ≤ d. (2.4)

We note two limiting cases of the pyramid operation: P0Q, when k tends to 0 and
P∞Q, when k tends to infinity. Although neither is actually a d-pyramid, one can
easily find the limits of the angle sums as k tends to 0 or infinity, and we will
define these values as the angle sums for P0Q and P∞Q. Since the values of the
angle sums vary continuously as k does, we can find pyramids with angle sums
that are arbitrarily close to those of P0Q and P∞Q.

For P0Q, all angles made between the base and sides tend to 0, so any interior
angles at proper faces of the base are 0. The interior angle at the base and at
faces including v are all 1

2
. Therefore, all the angles sums are dependent on the

f -vector of the base Q. Then

αi(P0(Q)) =
1

2
fi−1(Q) for 0 ≤ i ≤ d− 2, (2.5)

αd−1(P0(Q)) =
1

2
fd−2(Q) +

1

2
. (2.6)

For P∞Q, angles between the sides and base tend to right angles, so for any face
G ⊆ Q, α(G, P∞Q) = 1

2
α(G, Q). For faces F ⊂ P∞Q that are the convex hull of

a face G ⊂ Q and v, the interior angle at F is the same as it was at G, that is,
α(F, P∞Q) = α(G, Q). Therefore

αi(P∞Q) =
1

2
αi(Q) + αi−1(Q) for 0 ≤ i ≤ d− 1. (2.7)

We will sometimes want to iterate these constructions; we will write CkQ when
we wish to apply a construction C k times in succession to Q. Taking a pyramid
over a point d times results in a d-simplex. Therefore, we will denote d-simplices
as P d, assuming a starting polytope of a point when one is not explicitly given.

3. The γ-vector

In analogy to the h-vector, we define the γ-vector as

γ(P ) = (γ0(P ), γ1(P ), . . . , γd(P )),

where

γi(P ) =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
αj−1(P ). (3.1)
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We note that γ0(P ) = 0, γ1(P ) = α0(P ), and γd(P ) = 1 for all polytopes P and
the transformation from the α-vector to the γ-vector is invertible. We define

γ-f -vector: (γ0(P ), . . . , γd(P )|f0(P ) . . . , fd(P )), and
γ-h-vector: (γ0(P ), . . . , γd(P )|h0(P ) . . . , hd(P )),

and note that they are invertible linear transformations of the α-f -vector. There-
fore, a set of α- or α-f -vectors is affinely (linearly) independent if and only if
the corresponding set of γ- or γ-f -vectors is. Since the transformation between
the f - and h-vector is also invertible and independent of the α-vector, the affine
(linear) independence of a set of α-f -vectors is equivalent to the affine (linear)
independence of the corresponding set of γ-h-vectors.

Kleinschmidt and Smilansky [7] defined a vector σi(∆) that agrees with the
γ-vector on spherical simplices. The sphere was decomposed into regions by the
great spheres that defined ∆, and σi(∆) measured the normalized area of all the
regions that were reached from ∆ by crossing i great spheres. We have chosen a
different name for our vector to avoid confusion in the definition.

As with the h-vector formulation of the Dehn-Sommerville relations, we can
rewrite the Perles relations in terms of the γ-vector:

Theorem 3.1. For a simplicial d-polytope P ,

γi(P ) + γd−i(P ) = hi(P ) for 0 ≤ i ≤ d.

Proof. The proof follows the one given for Corollary 2.2 in [1]. We take the linear
combination

r∑
i=0

(−1)i

(
d− i

d− r

)
Sd

i−1,

where Sd
k is

d−1∑
j=k

(−1)j

(
j + 1

k + 1

)
αj(P ) = (−1)d(αk(P )− fk(P )),

the kth Perles relation on simplicial d-polytopes. On the right hand side, the sum
becomes

r∑
i=0

(−1)i

(
d− i

d− r

)
(−1)d(αi−1(P )− fi−1(P ))

= (−1)d−r

[
r∑

i=0

(−1)i−r

(
d− i

d− r

)
αi−1(P )−

r∑
i=0

(−1)i−r

(
d− i

d− r

)
fi−1(P )

]
= (−1)d−r (γr(P )− hr(P )) .
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The left hand side is

r∑
i=0

(−1)i

(
d− i

d− r

) d−1∑
j=i−1

(−1)j

(
j + 1

i

)
αj(P )

=
r∑

i=0

(−1)i

(
d− i

d− r

) d∑
j=i

(−1)j−1

(
j

i

)
αj−1(P )

=
d∑

j=0

(−1)j−1αj−1(P )

j∑
i=0

(−1)i

(
d− i

d− r

)(
j

i

)
.

Then we apply the identity

n∑
s=0

(−1)s

(
s + m

t

)(
n

s

)
= (−1)n

(
m

t− n

)
to simplify the interior sum

j∑
i=0

(−1)i

(
d− i

d− r

)(
j

i

)
=

j∑
s=0

(−1)j−s

(
d− j + s

d− r

)(
j

s

)
=

(
d− j

r

)
.

Therefore the left hand side simplifies to

r∑
i=0

(−1)i

(
d− i

d− r

) d−1∑
j=i−1

(−1)j

(
j + 1

i

)
αj(P ) =

d∑
j=0

(−1)j−1

(
d− j

r

)
αj−1(P )

= (−1)d−r+1γd−r(P ).

Putting these results together we see that

γd−r(P ) = hr(P )− γr(P ). �

In preparation for using the constructions to create affinely independent γ-vectors,
we consider the effect of the pyramid and prism constructions on the γ-vector. In
the following proposition, we consider the h-vector entries strictly as a linear com-
bination of the f -vector entries and do not assume that the polytope is simplicial.

Proposition 3.2. If Q is a (d− 1)-polytope,

h(PQ) = (h(Q), 1)

and

γi(P0Q) =

(
0,

1

2
h0,

1

2
h1, . . . ,

1

2
hd−2, 1

)
.
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Proof. The first relation is Proposition 3.1 of [1].
For any polytope Q, γ0(Q) = 0 and γd(Q) = 1. From (2.5), if Q is a (d− 1)-

polytope, αj(P0Q) = 1
2
fj−1(Q) for 0 ≤ j ≤ d− 2. Therefore, for 1 ≤ i ≤ d− 1,

γi(P0Q) =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
αj−1(P0Q)

=
1

2

i−1∑
j=0

(−1)i−j−1

(
d− j − 1

d− i

)
fj−1(Q)

=
1

2
hi−1(Q). �

Induction using the proposition shows that that the h-vector of a d-simplex ∆
is (1, 1, . . . , 1), so that γi(∆)γd−i(∆) = 1 for 0 ≤ i ≤ d by Theorem 3.1. In
particular, the proposition shows that γ(P d−1

0 P ) = (0, 1
2
, . . . 1

2
, 1).

Proposition 3.3. If Q is a (d− 1)-polytope,

γ(P∞Q) =
1

2
[(0, γ(Q)) + (γ(Q), 1)] .

More generally,

γi((P∞)kQ) =
1

2k

k∑
j=0

(
k

j

)
γi−j(Q) for 0 ≤ i ≤ d,

where

γk(Q) =

{
1 if k ≥ d

0 if k ≤ 0.

Proof. As for any d-polytope, γ0(P∞Q) = 0 and γd(P∞Q) = 1. By (2.7),
αj(P∞Q) = 1

2
αj(Q) + αj−1(Q) for 0 ≤ j ≤ d − 1. Then we calculate for 0 ≤ i ≤

d− 1:

γi(P∞Q) =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
αj−1(P∞Q)

=
1

2

i∑
j=0

(−1)i−j

(
d− j

d− i

)
αj−1(Q) +

i−1∑
j=0

(−1)i−j−1

(
d− j − 1

d− i

)
αj−1(Q)

=
1

2

i−1∑
j=0

(−1)i−j−1

(
d− j − 1

d− i

)
αj−1(Q)

+
1

2

i∑
j=0

(−1)i−j

(
d− j − 1

d− i− 1

)
αj−1(Q)

=
1

2
γi(Q) +

1

2
γi−1(Q).
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As we iterate the P∞ construction, γi((P∞)kQ) is a linear combination of the set
{γj(Q) : i−k ≤ j ≤ i} and the coefficient of γj(Q) is half the sum of the coefficients
of γj(Q) and γj−1(Q) in the linear combination for γi((P∞)k−1Q). Therefore, the
coefficient of γj(Q) in γi((P∞)kQ) is 1

2k

(
k
j

)
. �

Proposition 3.4. If Q is a (d− 1)-polytope, γ(B∗Q) = (γ(Q), 1).

Proof. As for any d-polytope, γd(B
∗Q) = 1. By (2.1), αj(B

∗Q) = αj(Q)+αj−1(Q)
for 0 ≤ j ≤ d. Then we can calculate for 0 ≤ i ≤ d:

γi(B
∗Q) =

i∑
j=0

(−1)i−j

(
d− j

d− i

)
αj−1(B

∗Q)

=
i∑

j=0

(−1)i−j

(
d− j

d− i

)
αj−1(Q) +

i−1∑
j=0

(−1)i−j−1

(
d− j − 1

d− i

)
αj−1(Q)

=
i∑

j=0

(−1)i−j

(
d− j − 1

d− i− 1

)
αj−1(Q)

= γi(Q). �

4. Spans of α and α-f-vectors

Using the B∗, P0 and P∞ constructions, we will build families of polytopes with
affinely independent α-vectors or α-f -vectors. We will use these families to span
the spaces of α-vectors and α-f -vectors defined by the Gram and Perles relations.
However, P0 and P∞ are limiting cases of the pyramid construction and do not
create d-polytopes. The following lemma to guarantees a set of polytopes whose
α-vectors or α-f -vectors have the same independence properties as those made by
the constructions.

Lemma 4.1. Let ε > 0 and {Qi : i = 0, . . . , k} be given, where each Qi is a
d-polytope or has form (P0)

kQ or (P∞)k(P0)
lQ for some nonnegative integers k

and l and a polytope Q such that k + l + dim(Q) = d.
Then there is a set of d-polytopes {Q′

i : i = 0, . . . , k}, where Q′
i and Qi have

the same f -vector and |αj(Q
′
i)− αj(Qi)| < ε for all i and j. Further, if the α-

vectors or α-f -vectors of the Qi are affinely independent, ε can be chosen so that
the α-vectors or α-f -vectors of the Q′

i are also affinely independent.

Proof. For each i we will define constants Mi and δi. Suppose Qi has form P∞Q.
Since the angle sums are continuous, we can choose M j

i so that αj(PNQ) is within
ε of αj(P∞Q), for any N ≥ M j

i . Let Mi = maxj M j
i . Then for any N ≥ Mi,

|αj(PNQ)− αj(P∞Q)| < ε for all j.
If Qi = (P∞)kQ, we can iterate this process with difference ε/k. Starting with

Mi0 = 1, we iteratively choose Mim ≥ Mim−1 by the same process as above so that∣∣αj((P∞)k−m(PN)mQ)− αj((P∞)k−m+1(PN)m−1Q)
∣∣ < ε/k for N ≥ Mim and all j.

Then we let Mi = Mik so that if N ≥ Mi,
∣∣αj((PN)kQ)− αj((P∞)kQ)

∣∣ < ε.
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If Qi has form P0Q, an analogous argument finds δi such that for all δ ≤ δi and
j, |αj(PδQ)− αj(P0Q)| < ε. Since the α-vector of P0Q is entirely determined by
the combinatorics of Q, this one step is also sufficient to choose δi for Qi = (P0)

kQ.
Suppose Qi has form (P∞)k(P0)

lQ with l ≥ 1. First choose δi so that for
all δ ≤ δi,

∣∣αj((Pδ)
lQ)− αj((P0)

lQ)
∣∣ < ε

2k+1 for all j. Then by (2.7) the P∞
construction will less than double any differences in angle sum values, so∣∣αj((P∞)k(Pδ)

lQ)− αj((P∞)k(P0)
lQ)

∣∣ < ε/2

for δ ≤ δi and all i and j. Next choose Mi so that∣∣αj((PN)k(Pδ)
lQ)− αj((P∞)k(Pδ)

lQ)
∣∣ < ε/2

for N ≥ Mi and all i and j. Then∣∣αj((PN)k(Pδ)
lQ)− αj((P∞)k(P0)

lQ)
∣∣ < ε

for N ≥ Mi, δ ≤ δi, and all j.
Now we choose

Q′
i =


(Pδi

)kQ if Qi = (P0)
kQ

(PMi
)k(Pδi

)lQ if Qi = (P∞)k(P0)
lQ

Qi if Q is a d-polytope.

The f -vectors of Qi and Q′
i are the same since they are pyramids of the same

degree over the same polytope and |αj(Q
′
i)− αk(Qi)| < ε for all i and j.

Since affine independence is an open condition, if the Qi have affinely inde-
pendent α-vectors or α-f -vectors, we can choose ε small enough that the Q′

i given
above have affinely independent α-vectors or α-f -vectors, respectively. �

The P∞ construction will be useful for increasing the dimension of a set of poly-
topes and maintaining the affine independence of their α-vectors.

Lemma 4.2. If a set of (d − 1)-polytopes {Qi : i = 0, . . . , k} has affinely inde-
pendent α-vectors, then the α-vectors of the set {P∞Qi : i = 0, . . . , k} are also
affinely independent.

Proof. We will work with the γ-vectors for ease of computation. Since the last
entry of γ(Q) is 1 for every polytope, the affine independence of a set of γ-vectors
is equivalent to their linear independence.

Based on Proposition 3.3, we can write

γ(P∞Q) = A

[
γ(Q)

1

]
where

A =
1

2


1
1 1

1 1
. . . . . .

1 1

 , (4.1)
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a (d + 1)× (d + 1) matrix where all other entries are 0.
Clearly A is invertible. Its inverse is

A−1 =


2

−2 2
2 −2 2
...

. . .

. . . 2 −2 2

 , (4.2)

where all entries on and below the diagonal alternate between 2 and −2 and entries
above the diagonal are 0. Since the matrix is invertible, the P∞ transformation
preserves the linear independence of the γ-vectors of Qi for i = 1, . . . , k. �

Theorem 4.3. The affine span of the α-vectors of d-simplices is
⌊

d−1
2

⌋
-dimensi-

onal.

Proof. As in Lemma 4.2, we will work with the γ-vector. Let A be the affine
space spanned by the γ-vectors of d-simplices.

If ∆ is a d-simplex, γk(∆)+γd−k(∆) = 1. These relations are clearly indepen-
dent for i = 0, . . . ,

⌊
d
2

⌋
. Since the γ-vector is (d+1)-dimensional and all α-vectors

lie in the plane γd = 1,

dim(A) ≤ d + 1−
(⌊

d

2

⌋
+ 1

)
− 1 =

⌊
d− 1

2

⌋
.

We will prove that dim(A) ≥
⌊

d−1
2

⌋
by constructing a set of

⌊
d−1
2

⌋
+ 1 simplices

whose γ-vectors are affinely independent. The proof will proceed by induction
on d. For d = 1 and d = 2, a line segment and a triangle (denoted P and P 2,
respectively) provide the one element needed for the basis.

Let d ≥ 3. Suppose we have a set of
⌊

d−3
2

⌋
+ 1 =

⌊
d−1
2

⌋
(d − 2)-simplices

{Qi : i = 1, . . . ,
⌊

d−1
2

⌋
} with linearly independent γ-vectors. We claim that the

vectors γ
(
P d−1

0 P
)
, γ

(
P 2
∞Q1

)
, . . . , γ

(
P 2
∞Qb d−1

2 c
)

are linearly independent.

We know the vectors γ
(
P 2
∞Q1

)
, . . . , γ

(
P 2
∞Qb d−1

2 c
)

are linearly independent

by applying Lemma 4.2 twice. We will show that adding the vector γ(P d+1
0 P )

increases the linear span by showing that the inverse image of γ(P d+1
0 P ) under

the P 2
∞ transformation is not in the linear span of the γ(Qi).

Now by Proposition 3.2, γ(P d−1
0 P ) =

(
0, 1

2
, 1

2
, . . . , 1

2
, 1

)
. Then using A−1 from

(4.2),

(
A−1

)2 (
γ(P d−1

0 P )
)

=

0
2
...

 ,

where the later entries alternate in sign. Therefore, the last three entries do not
have the same value. But each of the vectors

(
A−1

)2 (
γ

(
P 2
∞Qi

))
=

γ(Qi)
1
1


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has last three entries 1, so any vector in the span of the γ(Qi) has the same value
on the last three entries. Therefore (A−1)

2 (
γ(P d−1

0 P )
)

is outside the linear span
of the γ(Qi) for i = 1, . . . ,

⌊
d−1
2

⌋
.

This gives us a set of
⌊

d−1
2

⌋
+ 1 d-simplices constructed by P0 and P∞ oper-

ations whose α-vectors are affinely independent. By Lemma 4.1, there is a set of⌊
d−1
2

⌋
+ 1 d-simplices with affinely independent α-vectors. �

Using what is known about the affine span of the f -vectors of simplicial polytopes
together with the results of the preceding theorem, we can determine the affine
span of the α-f -vectors of simplicial polytopes. It is appropriate to consider this
vector rather than the α-vector in describing the angles of simplicial polytopes
since the Perles relations refer to face numbers as well as angle sums.

Theorem 4.4. The affine span of the α-f -vectors of simplicial d-polytopes has
dimension d−1. The space is spanned by

⌊
d+1
2

⌋
simplices, as in Theorem 4.3, and⌊

d
2

⌋
non-simplices which are combinatorially independent simplicial polytopes.

Proof. We will work with the γ-h-vectors. Let AS be the affine space spanned
by the γ-h-vectors of simplicial polytopes.

By the argument in Theorem 4.3, there are bd
2
c + 1 Perles relations that are

independent with regard to angle sums, and in this case each includes a different
element of the h-vector. The other relation on the angle sums is that γd(P ) = 1 for
all polytopes. Similarly, the Dehn-Sommerville relations on the h-vector show that
there are bd+1

2
c independent Dehn-Sommerville relations. Since these relations

include no angle sums, they are independent of the Perles relations. Therefore,

dim(AS) ≤ 2d + 2−
(⌊

d

2

⌋
+ 1

)
− 1−

(⌊
d + 1

2

⌋)
− 1 = d− 1.

The affine span of the h-vectors of simplicial d-polytopes has dimension
⌊

d
2

⌋
. In

Bayer and Billera [1], a set of
⌊

d
2

⌋
+1 simplicial polytopes with affinely independent

h-vectors is given, spanning the space defined by the Dehn-Sommerville equations.
This basis includes one simplex. We can combine the

⌊
d
2

⌋
non-simplices of this

basis with the
⌊

d+1
2

⌋
simplices given in Theorem 4.3.

If the γ-h-vectors of this set are affinely dependent, the dependency must occur
within the set of simplices since otherwise this would give a dependency on the
h-vectors of the set of polytopes in [1]. However, this would be a contradiction
to the previous theorem. Therefore the γ-h-vectors of the set of polytopes are
affinely independent. �

For the α-f -vectors of simplicial polytopes, this shows that the dimensions beyond
those determined combinatorially are found in variation of the angle sums of
simplices. This means that once we have considered the degrees of freedom in the
geometry of the simplex, all other degrees of freedom in the geometry of simplicial
polytopes can be described by variation in combinatorial dimensions.

We can similarly build a set of polytopes whose α-f -vectors span the space
defined by the Gram and Euler relations. We will use a method similar to the
proof of Theorem 4.3, but first we prove the following lemma.
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Lemma 4.5. Let Q be a d-polytope with f -vector f = (f0, f1, . . . , fd) and let f̄ =
(1, f̄0, f̄1, . . . , f̄d−1) be the inverse image of f under the pyramid transformation.
Also, let the (d+1)-polytope B∗Q have f -vector f ∗ = (f ∗0 , f∗1 , . . . , f ∗d+1) and inverse
image f̄ ∗ = (1, f̄ ∗0 , f̄ ∗1 , . . . , f̄ ∗d ) under the pyramid transformation. Then

d∑
i=0

(−1)if̄ ∗i =
d−1∑
i=0

(−1)if̄i + 1.

Proof. By (2.4), if we extend the f -vector of a polytope Q to (1, f(Q)),

f(PQ) = B

[
1

f(Q)

]
, (4.3)

where

B =


1 1

1 1
. . . . . .

1 1
1

 ,

a (d + 1)× (d + 1) matrix where all other entries are 0. Therefore the matrix for
the inverse transformation is

B−1 =


1 −1 1 −1 . . .

1 −1 1 . . .
. . . . . .

1 −1
1

 , (4.4)

where all the entries below the main diagonal are 0. Multiplication by B−1 shows

f̄i =
d∑

j=i+1

(−1)i−j+1fj for 0 ≤ i ≤ d− 1

and

f̄ ∗i =
d+1∑

j=i+1

(−1)i−j+1f ∗j for 0 ≤ i ≤ d. (4.5)

Since f and f ∗ are f -vectors of polytopes, fd = f ∗d+1 = 1. We also know from (2.1)
that f ∗i = 2fi + fi−1 for 1 ≤ i ≤ d. Therefore, we can rewrite (4.5) for 0 ≤ i ≤ d
as:

f̄ ∗i = 2
d∑

j=i+1

(−1)i−j+1fj +
d−1∑
j=i

(−1)i−jfj + (−1)i−df ∗d+1

= fi +
d∑

j=i+1

(−1)i−j+1fj

= fi + f̄i.
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Now, taking the alternating sum we get

d∑
i=0

(−1)if̄ ∗i =
d∑

i=0

(−1)ifi +
d∑

i=0

(−1)if̄i

= 1 +
d−1∑
i=0

(−1)if̄i,

where the last equality follows by the Euler relation on Q. �

Theorem 4.6. The affine span of the α-f -vectors of general d-polytopes has di-
mension 2d− 3 for d ≥ 2.

Proof. We will work with the set of γ-f -vectors. The Euler and Gram equations
provide two independent equations on the γ-f -vectors. We also know that γ0(P ) =
0, γd(P ) = 1, and fd(P ) = 1 for all polytopes P . As long as d > 1, these
equations are independent. Therefore, the span of the γ-f -vectors is at most
2d + 2− 5 = 2d− 3 if d ≥ 2. To show this whole space is spanned, we will again
proceed inductively on d.

The statement is true in two dimensions, since the γ-f -vectors of the trian-
gle and the square (denoted P 2 and B∗P , respectively) are

(
0, 1

2
, 1, 3, 3, 1

)
and

(0, 1, 1, 4, 4, 1).
Suppose the statement is true for dimension d−1. That is, there are 2(d−1)−

2 = 2d−4 affinely independent γ-f -vectors of (d−1)-polytopes: Q1, Q2, . . . , Q2d−4.
Then we claim that the γ-f -vectors of the following polytopes are affinely inde-
pendent:

P∞Q1, P∞Q2, . . . , P∞Q2d−4, (B
∗)d−2P 2 and (B∗)d−1P (4.6)

The affine independence of a set of γ-f -vectors is equivalent to their linear inde-
pendence since γd = fd = 1 for all d-polytopes. Therefore, we will show that the
γ-f -vectors of the polytopes in (4.6) are linearly independent.

We will consider the effect of the P∞ construction on the γ-f -vector of a (d−1)-
polytope Q. We extend the γ-f -vector to the (2d + 2)-vector (γ(Q), 1, 1, f(Q)),
thinking of the additional entries as γd(Q) and f−1(Q), respectively. Then we can
write

γ-f(P∞Q) = C


γ(Q)

1
1

f(Q)

 (4.7)

where

C =

[
A 0
0 B

]
,

a (2d + 2) × (2d + 2) matrix, with blocks A (4.1) and B (4.3). Since this is
an invertible matrix, the γ-f -vectors of P∞Qi, i = 1, . . . , 2d − 4, are all linearly
independent. Therefore, we consider the γ-f -vectors of (B∗)d−2P 2 and (B∗)d−1P .
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As in the proof of Theorem 4.3, we will consider the inverse images of the
γ-h-vectors of these two polytopes in the P∞ transformation. Let

v1 := C−1
(
γ-f((B∗)d−2P 2)

)T
and v2 := C−1

(
γ-f((B∗)d−1P )

)T

and consider these vectors in relation to the span of the (γ(Qi), 1, 1, f(Qi)).
The f−1 entry of C−1 (f(Q)) for any d-polytope Q is 1 by the Euler relation,

so the f−1 entries of v1 and v2 are 1. Similarly, for each Qi, the alternating sum
of the values of f(Qi) is 1 by the Euler relation and the f−1 entry is 1 as well.
Therefore, if v1 and v2 are in the linear span of the γ-f(Qi), the entries αd, f−1,
and the corresponding alternating sum must be 1.

However, by Lemma 4.5, the alternating sum of the entries f0, f1, . . . , fd−1 of
C−1 (f (B∗Q)) for a (d − 1)-polytope Q is one greater than the alternating sum
of the entries f0, f1, . . . , fd−2 of C−1 (f (Q)). This alternating sum is 1 for Q = P
or Q = P 2, so the alternating sum of the entries f0, f1, . . . , fd−1 of v1 and v2

must be at least 2. Therefore neither can be a linear combination of the extended
γ-f -vectors of Qi for i = 1, . . . , 2d− 4.

Now we consider the γ-vector entries. By Proposition 3.4, γ((B∗)d−2P 2) =(
0, 1

2
, 1, . . . , 1

)
and γ((B∗)d−1P ) = (0, 1, . . . , 1) . Therefore the γ-vector portions

of v1 and v2 are (0, 1, . . . , 1) and (0, 2, 0, 2, . . .), respectively. Then γd 6= f−1 in v2,
even though γd = f−1 for v1 and each of the vectors (γ(Qi), 1, 1, f(Qi)). There-
fore v2 /∈ span{(γ(Qi), 1, 1, f(Qi)), v1} and the polytopes in (4.6) have affinely
independent α-f -vectors.

Then by Lemma 4.1, we know that we have a set of d-polytopes of size 2d− 2
with affinely independent α-vectors. �

We note that the set of polytopes which span the space of α-f -vectors has sig-
nificant duplication in the α-vectors. For instance, the polytopes P∞(B∗)kP and
(B∗)kP 2 have the same angle sums for all k ≥ 1.

These results strengthen the correspondence between the geometric structure
and the combinatorial structure of polytopes. The Gram and Perles relations
are close analogs of the Euler and Dehn-Sommerville relations. In this paper, we
have shown that the affine dimensions closely correspond. The affine span of the
α-vectors of d-simplices has the same dimension as the span of the f -vectors of
simplicial (d− 1)-polytopes. Also, the affine span of the α-f -vectors of simplicial
d-polytopes has the same dimension as the span of the f -vectors of d-polytopes.
It would be interesting to speculate whether there is a deeper significance to this
relationship.

The use of the γ-vector also raises questions about the nature of this measure
on angle sums. For the h-vectors of simplicial polytopes, there are many results
bounding the values. The Upper Bound Theorem [8] bounds the h-vector entries
above by those of the cyclic polytope of the same dimension and the same number
of vertices. The Generalized Lower Bound Theorem [9] shows that the first

⌊
d
2

⌋
entries of the h-vector are unimodal and the g-Theorem gives bounds on the
differences between adjacent entries of the vector [3, 12]. In the case of the γ-
vector the bounds on its entries are unexplored. Initial examples show that the
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γ-vector may be more tractable on non-simplicial polytopes than the h-vector; for
example, the basis polytopes for the theorems in this chapter, many of which are
not simplicial, all have monotonic γ-vectors. This is not the case for all polytopes
(for example, the bipyramid made by gluing two regular tetrahedra along a face),
but unimodality may be true in general and monotonicity in specific cases such
as for simplices.
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