General Projections in Spaces of Pencils

Krzysztof Prażmowski Mariusz Żynel
Institute of Mathematics, University of Biatystok
Akademicka 2, 15-267 Biatystok, Poland
e-mail: krzypraz@math.uwb.edu.pl e-mail:mariusz@math.uwb.edu.pl

Abstract

The notion of the central projection in spaces of pencils is generalized and new concepts of projections are introduced. The category of projectivities with segment subspaces as objects arises. These general projectivities are collineations given by linear maps. Properties of pencils of segment subspaces and projections between segments are investigated. Classical projections of lines onto pencils of hyperplanes are considered in terms of spaces of pencils as projections of lines onto pencils of segment subspaces.

Introduction

The paper deals with projections defined (in possibly the most general way) in spaces of pencils. Let us recall briefly that the space of k-pencils $\mathfrak{R}=\mathbf{P}_{k}(\mathfrak{P})$ is an incidence structure whose points are all k-dimensional subspaces of a projective space \mathfrak{P}, and whose lines are pencils of such subspaces (in the paper we use this definition expressed in the language of vector subspaces of a vector space V, so $\mathbf{P}_{k}(\mathfrak{P}) \cong \mathbf{P}_{k+1}(V)$, while $\left.\mathfrak{P} \cong \mathbf{P}_{1}(V)\right)$. Spaces of pencils are partial linear spaces (a synthetic characterization of their geometry can be found, e.g. in [2]). Let us stress that we do not assume that \mathfrak{P} (or equivalently V) is finitedimensional, though, of course, k is finite $(1 \leq k, k+1<\operatorname{dim}(\mathfrak{P}))$. Moreover, we do not assume that $\mathfrak{P i s}$ pappian.

The following notions: projection (between two subspaces), projective correspondence, perspectivity, and projectivity play crucial role in the classical projective geometry when it comes to determine linear collineations, linear correlations or quadrics (cf. e.g. [1, Ch. II.10], $[7],[9$, Ch. 4]), as well as in foundations of plane projective geometry (cf. e.g. [15]). Spaces of
pencils, which are theatrum of our investigations, generalize projective spaces and projections in spaces of pencils appear as important as they are in projective geometry.

The question is how to define projections.
An arbitrary space of pencils \mathfrak{R} satisfies both Veblen and Shult (none, one or all) axioms and therefore there is no difficulty in defining central projections between the lines of \mathfrak{R} (cf. [14]). However, the standard definition of a central projection applied to (linear) subspaces $\mathcal{X}_{1}, \mathcal{X}_{2}$ of higher dimension of \mathfrak{R} yields that $\mathcal{X}_{1}, \mathcal{X}_{2}$ are contained in some strong subspace (i.e. subspace where every two points are collinear) of \mathfrak{R}. Since the intersection of any two distinct strong subspaces of \mathfrak{R} is contained in a line, classical central projections are insufficient to characterize a projective map which moves a strong subspace onto another one. This is the reason to generalize the standard construction.

Projections considered in the paper are (partial) maps between segment subspaces of \mathfrak{R}. In terms of the underlying projective space \mathfrak{P} a segment subspace $[Z, Y]_{k}$ is defined to be the family of all k-subspaces of \mathfrak{P} which are contained in a fixed subspace Y and contain a fixed subspace Z. Evidently, this definition generalizes the definition of a pencil. From view of the geometry of \mathfrak{R} segment subspaces are exactly these subspaces of \mathfrak{R} that carry the geometry of a space of pencils. So, the choice of domains of projections seems natural.

The following general idea characterizes projections: projected subspace \mathcal{X}_{1}, its image \mathcal{X}_{2}, and a subspace \mathcal{X}_{3} which contains the "center" \mathcal{Y} of the projection are in one pencil, and through any point on $\mathcal{X}_{1} \backslash \mathcal{X}_{2}$ there is exactly one line which crosses both \mathcal{X}_{2} and \mathcal{Y}. To make this idea a strict definition first we have to precise the notion of a pencil of segment subspaces. This is done in (2). After that, nearly all the remaining notions related to "projection" can be defined pretty "automatically" and analogously as it is done in the classical projective geometry.
We do not know if our notion of a pencil of subspaces and, consequently, the notion of a projection are the most general in the theory of spaces of pencils. It is however general enough to produce well known types of projections in the case when we start from a pappian finite-dimensional projective space \mathfrak{P}. It is also general enough to characterize collineations and correlations acting on segment subspaces and determined by linear maps.

In the context of non-pappian and dimension-free projective geometry some techniques and results commonly used to investigate projections become more or less useless. In particular, the analytical methods involving coordinates (and matrices) cannot be easily used here. Similarly, the method involving Plücker coordinates, which in the pappian geometry enables us to embed the space of pencils $\mathbf{P}_{k}(V)$ into the projective space $\mathbf{P}_{1}\left(\bigwedge^{k} V\right)$ (cf.+[5]) cannot be applied. What is more, the Fundamental Theorem of Projective Geometry, which states that a projectivity defined on a line (on a pencil) is uniquely determined by the images of three points of this line (resp.: of three elements of this pencil), fails in non-pappian geometry (cf. [3, Ch. I], [5, Ch. I.15], [6]). Therefore, we have chosen as a basic language the language of the lattice of subspaces with the dimension function defined on it. This adds some complexity, but within this more general framework we are able to prove analogues of most of the classical results. In particular, we can provide a classification of pencils, characterize linear ("analytically" linear) maps as projectivities (compositions of projections) of various types, and study perspectivities.

From our perspective projections in the paper are (partial, "locally linear") point trans-
formations of some particular partial linear space - a space of pencils. On the other hand our projections can be viewed as transformations of some families of subspaces of a projective space \mathfrak{P}, it is just a matter of taste. From this view one can immediately find connections with various "generalized projections" considered in the projective geometry (here, in the case of pappian projective geometry, one can refer to many older and newer works including $[3,4,5,6,7,12])$.

Perhaps some portion of the theory of our projections could be presented in a more synthetic way, based on an axiomatic characterization of spaces of pencils, but such an approach is not so common.

1. Notations and generalities

Let V be a vector space over a not necessarily commutative field F. We write Θ for the zero subspace of V and $\operatorname{Sub}_{k}(V)$ for the set of all k-subspaces of V. If Z, Y are subspaces of V and $Z \subseteq Y$, then $[Z, Y]$, that is, the set of subspaces U such that $Z \subseteq U \subseteq Y$, is a segment of the lattice $\mathfrak{L}(V)$ of subspaces of V (comp. [8]), and $[Z, Y]_{k}=[Z, Y] \cap \operatorname{Sub}_{k}(V)$. If $0<k<\operatorname{dim} V$ we write $\mathbf{p}(H, B)$ for $[H, B]_{k}$ such that B is a $(k+1)$-subspace of V and H is a $(k-1)$-subspace of B. We call $\mathbf{p}(H, B)$ a k-pencil. The family of all k-pencils is $\mathcal{P}_{k}(V)$, and the space of pencils $\mathbf{P}_{k}(V)$ is the structure:

$$
\mathbf{P}_{k}(V)=\left\langle\operatorname{Sub}_{k}(V), \mathcal{P}_{k}(V)\right\rangle .
$$

The space of pencils as defined above, is sometimes called Grassmann space, or more precisely: a Grassmann space representing $(k-1)$-dimensional subspaces of the projective space $\mathbf{P}_{1}(V)$ (cf. [16]).

The fundamental notion used in the paper is a segment subspace of a space of pencils. Segment subspaces are exactly those subspaces which have the structure of a space of pencils, that is, they are isomorphic images of a space of pencils (cf. [17]). Strong subspaces, i.e. those where every two points are collinear, are segments $[Z, Y]_{k}$ with $\operatorname{dim} Z=k-1$, or $\operatorname{dim} Y=k+1$, respectively stars and tops. Every line p extends to the maximal star and maximal top uniquely (cf. [16]), which we denote by $\boldsymbol{S}(p), \boldsymbol{T}(p)$ respectively.

Let for a moment $\mathfrak{A}=\langle S, \mathcal{L}\rangle$ be an arbitrary partial linear space. We write $a \sim b$ if points $a, b \in S$ are collinear, and $a \nsim b$ if not. A subset \mathcal{X}_{1} of S adheres weakly a subset \mathcal{X}_{2}, in symbols $\mathcal{X}_{1} \triangleleft \mid \mathcal{X}_{2}$ or $\mathcal{X}_{2} \mid \triangleright \mathcal{X}_{1}$, iff for any point x_{1} of \mathcal{X}_{1} there are some points in \mathcal{X}_{2} collinear with x_{1}. To exclude trivial cases, where $\mathcal{X}_{1} \subseteq \mathcal{X}_{2}$, we say that \mathcal{X}_{1} adheres strongly \mathcal{X}_{2}, and write $\mathcal{X}_{1} \triangleleft \mid \triangleright \mathcal{X}_{2}$, iff $\mathcal{X}_{1} \backslash \mathcal{X}_{2}$ mutually adheres $\mathcal{X}_{2} \backslash \mathcal{X}_{1}$.

2. Pencils of segment subspaces

In a projective space a pencil of subspaces is a family of all m-subspaces which share a ($m-1$)-subspace, the vertex, and lie in some $(m+1)$-subspace, the base of that pencil. In the geometry of spaces of pencils the definition gets complex as there are various classes of subspaces. In the paper we deal with pencils of segment subspaces. An analytical definition of such pencils is given in (2) and their geometrical characterization in 2.13.

We adopt the following conventions that $\infty-n=\infty, \infty+n=\infty$, and the like for a finite n. For Z, Y such that $Z \subseteq Y$ we also identify $\operatorname{dim} Y-\operatorname{dim} Z$ with $\operatorname{dim} Y / Z$.

The index of a segment subspace $\mathcal{X}=[Z, Y]_{k}$ of $\mathbf{P}_{k}(V)$ is $\operatorname{idx}(\mathcal{X})=k-\operatorname{dim} Z$, and co-index is $\operatorname{coidx}(\mathcal{X})=\operatorname{dim} Y-k$, in other words, index and co-index of a corresponding space of pencils $\mathbf{P}_{k-\operatorname{dim} Z}(Y / Z)$ (cf. [16]). Geometrically, the index (co-index) is the projective dimension of a maximal top (star) that lie in \mathcal{X}. The pair $\operatorname{pdim}(\mathcal{X})=(\operatorname{idx} \mathcal{X}, \operatorname{coidx} \mathcal{X})$ is the pencil (geometrical) dimension of the segment subspace \mathcal{X}. We call two segments similar if they are of the same dimension. Note that segments of $\mathbf{P}_{k}(V)$ are similar if their vertices and bases are of equal linear dimensions, and conversely.

A linear subspace Z is said to be a predecessor of a linear subspace Y, in symbols $Z \prec Y$, iff $\operatorname{codim}_{Y} Z=\operatorname{dim} Y / Z=1$. We also say that Y is a successor of Z. Sometimes we also write $Z \preccurlyeq Y$ when $Z \prec Y$ or $Z=Y$. Let us recall one basic lattice theoretical fact valid for all modular lattices including $\mathfrak{L}(V)$.

Fact 2.1. (Grätzer [8, Th. 4, Ch. IV.1]) Let H, U, W, B be linear subspaces of V. If $H \preccurlyeq U$ and $H \subseteq W$, then $W \preccurlyeq U+W$. Dually, if $U \preccurlyeq B$ and $W \subseteq B$, then $U \cap W \preccurlyeq W$.

Subspaces U, W are said to be adjacent if they have a common predecessor or a successor. For distinct and adjacent U, W the line through U, W is the set

$$
\begin{equation*}
\overline{U, W}=\{X \in \operatorname{Sub}(V): U \cap W \prec X \prec U+W\} \tag{1}
\end{equation*}
$$

if $U=W$, then $\overline{U, W}=\{U\}$.
Segment subspaces $\mathcal{X}_{i}=\left[Z_{i}, Y_{i}\right]_{k}, i=1,2$, of $\mathbf{P}_{k}(V)$ are adjacent if their vertices Z_{1}, Z_{2} are adjacent and bases Y_{1}, Y_{2} are adjacent. Trivially, adjacent segments are similar. A quasipencil determined by adjacent $\mathcal{X}_{1}, \mathcal{X}_{2}$ is the set

$$
\begin{equation*}
\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}=\left\{[Z, Y]_{k}: Z \in \overline{Z_{1}, Z_{2}}, Y \in \overline{Y_{1}, Y_{2}}\right\} . \tag{2}
\end{equation*}
$$

We call a subspace of a space of pencils non-trivial if it contains a line. In the remainder of the paper we consider non-trivial segment subspaces $\mathcal{X}_{i}=\left[Z_{i}, Y_{i}\right]_{k} i=1,2,3$ in $\mathbf{P}_{k}(V)$. For convenience we use the following notation:

$$
\begin{gathered}
Z^{\prime}=Z_{1} \cap Z_{2}, \quad Z^{\prime \prime}=Z_{1}+Z_{2}, \quad Y^{\prime}=Y_{1} \cap Y_{2}, \quad Y^{\prime \prime}=Y_{1}+Y_{2}, \quad \text { and } \\
\mathcal{X}^{\prime}=\mathcal{X}_{1} \cap \mathcal{X}_{2}=\left[Z^{\prime \prime}, Y^{\prime}\right]_{k}, \quad \mathcal{X}^{\prime \prime}=\left\langle\mathcal{X}_{1}, \mathcal{X}_{2}\right\rangle=\left[Z^{\prime}, Y^{\prime \prime}\right]_{k} .
\end{gathered}
$$

Note that our notation permits to write a set $\{U\}$ or \emptyset as a segment $[U, Y]_{k}$ (or $[Z, U]_{k}$) when $\operatorname{dim} U=k$ or $U \nsubseteq Y(Z \nsubseteq U)$, respectively.

Further investigations are focused on classification of quasi-pencils of segment subspaces. We begin with two technical facts.

Lemma 2.2. Let U, W_{1}, W_{2} be points such that $W_{1}, W_{2} \in \mathcal{X}=[Z, Y]_{k}, W_{1} \neq W_{2}$, and $U \sim W_{1}, W_{2}$. If $W_{1} \nsim W_{2}$, then $U \in \mathcal{X}$.

Proof. We have $U \cap W_{1} \neq U \cap W_{2}$, since otherwise U, W_{1}, W_{2} would lie on some strong subspace. Note that $U \cap W_{i} \subseteq Y$, and hence $U=\left(U \cap W_{1}\right)+\left(U \cap W_{2}\right) \subseteq Y$. Similarly, $U+W_{1} \neq U+W_{2}$, and thus $Z \subseteq\left(U+W_{1}\right) \cap\left(U+W_{2}\right)=U$.

Lemma 2.3. Let U, W_{1}, W_{2} be points such that $W_{1}, W_{2} \in \mathcal{X}=[Z, Y]_{k}, W_{1} \neq W_{2}$, and $U \sim W_{1}, W_{2}$. If $W_{1} \sim W_{2}$, then $Z \subseteq U$ or $U \subseteq Y$.

Proof. Points U, W_{1}, W_{2} are coplanar. Hence, either $U=\left(U \cap W_{1}\right)+\left(U \cap W_{2}\right) \subseteq Y$ or $Z \subseteq\left(U+W_{1}\right) \cap\left(U+W_{2}\right)=U$, as the plane is a top or a star, respectively.

There are three possible ways that two distinct and adjacent segment subspaces \mathcal{X}_{i} may lie with respect to each other:
(W1) $\mathcal{X}_{1} \cap \mathcal{X}_{2} \neq \emptyset$, which is equivalent to $Z_{1}, Z_{2} \subseteq Y_{1}, Y_{2}$.
(W2) $\mathcal{X}_{1} \cap \mathcal{X}_{2}=\emptyset$ and either $Z_{1} \subseteq Y_{2}$, or $Z_{2} \subseteq Y_{1}$.
(W3) None of the above inclusions hold in this case.
Accordingly, we obtain a classification of quasi-pencils determined by suitable pairs of segment subspaces:

Lemma 2.4. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be distinct adjacent segment subspaces, and let $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$.
(i) $\mathcal{X}_{1}, \mathcal{X}_{2}$ are of the type (W1) iff $Z^{\prime \prime} \subseteq Y^{\prime}$ iff $Z^{\prime \prime} \cap Y^{\prime}=Z^{\prime \prime}$ iff $Y^{\prime}+Z^{\prime \prime}=Y^{\prime}$.
(ii) $\mathcal{X}_{1}, \mathcal{X}_{2}$ are of the type (W2) iff $Z^{\prime} \prec Z^{\prime \prime} \cap Y^{\prime} \prec Z^{\prime \prime}$ iff $Y^{\prime} \prec Y^{\prime}+Z^{\prime \prime} \prec Y^{\prime \prime}$.
(iii) $\mathcal{X}_{1}, \mathcal{X}_{2}$ are of the type (W3) iff $Z^{\prime \prime} \cap Y^{\prime}=Z^{\prime}$ iff $Y^{\prime}+Z^{\prime \prime}=Y^{\prime \prime}$.

Proof. Set $Z_{0}=Z^{\prime \prime} \cap Y^{\prime}$ and $Y_{0}=Y^{\prime}+Z^{\prime \prime}$.
(i) is evident.
(ii) Assume $Z_{1} \subseteq Y_{2}$ and $Z_{2} \not \subset Y_{1}$. Then $Z_{1} \subseteq Y^{\prime}$, so $Z_{1} \subseteq Z_{0} \subseteq Z^{\prime \prime}$ and, by (i), $Z_{0}=Z_{1}$. Analogously we prove that $Y_{2}=Y_{0}$.

Assume $Z^{\prime} \prec Z_{0} \prec Z^{\prime \prime}$, so $Z_{0} \in \overline{Z_{1}, Z_{2}}$, consequently, $\left[Z_{0}, Y_{i}\right]_{k} \in \mathcal{G}$. Note that $Z_{0}=$ $Z^{\prime \prime} \cap Y^{\prime} \subseteq Z^{\prime \prime} \cap Y_{i} \subseteq Z^{\prime \prime}$ for $i=1$, 2. If there were $Z^{\prime \prime} \cap Y_{i}=Z^{\prime \prime}$ for $i=1$ and $i=2$ we would have $Z^{\prime \prime} \subseteq Y^{\prime}$; thus $Z_{0}=Z^{\prime \prime} \cap Y_{i}$ for some i, say: $i=1$. Then $Z_{1} \subseteq Y_{1}$ and $Z_{1} \subseteq Z^{\prime \prime}$ yields $Z_{1} \subseteq Z_{0}$, so $Z_{1}=Z_{0}$ and we are through. Similarly, we prove that $\left[Z, Y_{i}\right]_{k} \in \mathcal{G}$ for some i and all $Z \in \overline{Z_{1}, Z_{2}}$.
(iii) Since $Z^{\prime} \subseteq Z_{0} \subseteq Z^{\prime \prime}$ and $Y^{\prime} \subseteq Y_{0} \subseteq Y^{\prime \prime}$, the claim follows by (i) and (ii).

Generally, quasi-pencils of segment subspaces are not transitive, that is, there may be pairs of distinct elements of a quasi-pencil that span different quasi-pencils. Indeed, if $Z_{1} \subseteq Y_{2}$ then for $\mathcal{X}_{0}=\left[Z_{1}, Y_{2}\right]_{k}$ we have $\mathcal{X}_{0} \in \overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$. But if $Z_{1} \neq Z_{2}$ then $\mathcal{X}_{2} \notin \overline{\mathcal{X}_{1}, \mathcal{X}_{0}}$, if $Y_{1} \neq Y_{2}$ then $\mathcal{X}_{1} \notin \overline{\mathcal{X}_{2}, \mathcal{X}_{0}}$. We avoid such cases and distinguish the following subclasses of quasi-pencils:
proper pencil is a quasi-pencil $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ with $Z_{1}=Z_{2}$ or $Y_{1}=Y_{2}$, i.e. iff $Z^{\prime}=Z^{\prime \prime}$ or $Y^{\prime}=Y^{\prime \prime}$. This condition may be expressed in pure geometrical terms as: \mathcal{X}^{\prime} and $\mathcal{X}^{\prime \prime}$ have equal indexes or co-indexes;
wafer is a quasi-pencil $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ determined by a pair of type (W3);
pencil means proper pencil or wafer;
projective pencil is a pencil such that $\mathcal{X}^{\prime \prime}$ is (up to an isomorphism) a projective space (actually it is a star or a top).

Arrangement of elements of a pencil in the lattice as well as geometrical arrangement is visualized in the following diagrams.

Diagram 1

Diagram 2

In some latter propositions we claim that Diagrams 1 and 2 can be suitably completed.
Now, pure geometrical characterization of pencils of segment subspaces can be given.
Proposition 2.5. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be adjacent segment subspaces of $\mathbf{P}_{k}(V)$. Either, $\mathcal{X}^{\prime} \neq \emptyset$ and $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is not a proper pencil, or, for every point $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}_{2}$ there is a point $U_{2} \in \mathcal{X}_{2} \backslash \mathcal{X}_{1}$ collinear with U_{1} and, consequently, $\mathcal{X}_{1} \triangleleft \mid \triangleright \mathcal{X}_{2}$.

Proof. Let $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}_{2}$. Since $\mathcal{X}^{\prime}=\left[Z^{\prime \prime}, Y^{\prime}\right]_{k}$, either $Z^{\prime \prime} \nsubseteq U_{1}$, or $U_{1} \nsubseteq Y^{\prime}$. Assume that $Z^{\prime \prime} \nsubseteq U_{1}$. Then $Z_{1} \neq Z_{2}$ and by $2.1 U_{1} \prec U_{1}+Z^{\prime \prime}$. Since $Y_{2} \preccurlyeq Y^{\prime \prime}$ and $U_{1}+Z^{\prime \prime} \subseteq Y^{\prime \prime}$ we have $Y_{2} \cap\left(U_{1}+Z^{\prime \prime}\right) \preccurlyeq U_{1}+Z^{\prime \prime}$ again by 2.1. Therefore $\mathcal{X}=\left[Z_{2}, Y_{2} \cap\left(U_{1}+Z^{\prime \prime}\right)\right]_{k} \neq \emptyset$. Every element of \mathcal{X} belongs to \mathcal{X}_{2} and is collinear with U_{1}. If $\mathcal{X}^{\prime}=\emptyset$, we are through.

Otherwise $Z^{\prime \prime} \subseteq Y^{\prime}$. Suppose that $\mathcal{X} \subseteq \mathcal{X}^{\prime}$. Since however $Z^{\prime \prime} \nsubseteq Z_{2}$ and $\operatorname{dim} Z_{2} \neq k$, it has to be $\operatorname{dim} Y_{2} \cap\left(U_{1}+Z^{\prime \prime}\right)=k$. In case the pencil $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is proper we have $Y_{1}=Y_{2}$, so $Y_{2} \cap\left(U_{1}+Z^{\prime \prime}\right)=Y_{1} \cap\left(U_{1}+Z^{\prime \prime}\right)=U_{1}+Z^{\prime \prime}$ which contradicts that $U_{1} \prec U_{1}+Z^{\prime \prime}$. Hence either $\mathcal{X} \backslash \mathcal{X}^{\prime} \neq \emptyset$, or $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is not a proper pencil.

In case where $\mathcal{X}^{\prime} \neq \emptyset$ and the quasi-pencil $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is not proper all points of \mathcal{X}_{2} collinear with points on $\mathcal{X}_{1} \backslash \mathcal{X}_{2}$ lie on \mathcal{X}^{\prime}. Still \mathcal{X}_{1} mutually adheres \mathcal{X}_{2} though.

Proposition 2.6. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be similar segments of $\mathbf{P}_{k}(V)$. If $\mathcal{X}_{1} \triangleleft \mid \triangleright \mathcal{X}_{2}$, then $\mathcal{X}_{1}, \mathcal{X}_{2}$ lie in a strong subspace of $\mathbf{P}_{k}(V)$ or they are adjacent.

Proof. Assume that there is a linear subspace D such that $2 \leq \operatorname{dim} D, D \subseteq Y_{1}$ and $D \cap Y_{2}=\Theta$. Consider two cases. First, suppose that there is no $U_{1} \in \mathcal{X}_{1}$ with $D \subseteq U_{1}$. In such a case we would have $\operatorname{dim} Z_{i}=k-1$, and because for $U_{1} \in \mathcal{X}_{1}$ with $U_{1} \subseteq Z_{1}+D$ there is $U_{2} \in \mathcal{X}_{2}$ collinear with U_{1}, we would find that $Z_{1}=Z_{2}$. Then $\mathcal{X}_{1}, \mathcal{X}_{2} \subseteq\left[Z_{1}, V\right]_{k}$, which is a star in $\mathbf{P}_{k}(V)$.

Now, take $U_{1} \in \mathcal{X}_{1}$ with $D \subseteq U_{1}$. In consequence, $\operatorname{dim} U_{1} \cap Y_{2} \leq k-2$. On the other hand, there is $U_{2} \in \mathcal{X}_{2}$ collinear with U_{1}. Since $U_{1} \cap U_{2} \subseteq U_{1} \cap Y_{2}$, we have $k-1 \leq \operatorname{dim} U_{1} \cap Y_{2}$ and contradiction arises. For vertices Z_{1}, Z_{2} the reasoning is dual.

In segments that belong to a pencil a vertex determines uniquely the base and conversely.
Lemma 2.7. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be segments of $\mathbf{P}_{k}(V)$ such that $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a pencil.
(i) If $Z_{1} \neq Z_{2}$, then for every $Z_{3} \in \overline{Z_{1}, Z_{2}}$ there is a unique $Y_{3} \in \overline{Y_{1}, Y_{2}}$ such that $\left[Z_{3}, Y_{3}\right]_{k} \in \mathrm{G}$.
(ii) If $Y_{1} \neq Y_{2}$, then for every $Y_{3} \in \overline{Y_{1}, Y_{2}}$ there is a unique $Z_{3} \in \overline{Z_{1}, Z_{2}}$ such that $\left[Z_{3}, Y_{3}\right]_{k} \in \mathrm{G}$. In consequence G is transitive and every two elements of G are of the same type.

Proof. (i) For G a proper pencil the claim is trivial, for a wafer take $Y_{3}=Y^{\prime}+Z_{3}$. Suppose it is not unique. Then $Z_{3} \subseteq Y^{\prime}$, and hence $Z_{3} \subseteq Z^{\prime \prime} \cap Y^{\prime} \subseteq Z^{\prime \prime}$. Since $Z_{3} \prec Z^{\prime \prime}$ contradiction with $2.4(\mathrm{iii})$ arises.
(ii) The reasoning is the same but we take $Z_{3}=Y_{3} \cap Z^{\prime \prime}$.

Lemma 2.8. Let segment subspaces $\mathcal{X}_{1}, \mathcal{X}_{2}$ determine a quasi-pencil $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$, and let $p=\mathbf{p}(H, B)$ be a line in $\mathbf{P}_{k}(V)$.
(i) If p crosses $\mathcal{X}_{1}, \mathcal{X}_{2}$ in distinct points, then $Z^{\prime} \subseteq H \subseteq Y^{\prime}$ and $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$.
(ii) If $Z^{\prime} \subseteq H \subseteq Y^{\prime}$ and $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$, then p crosses every $\mathcal{X} \in \mathrm{G}$.

Proof. (i) Straightforward.
(ii) Let $\mathcal{X}=[Z, Y]_{k} \in G$. Then $Z+H \subseteq B \cap Y$. Since $Z^{\prime} \preccurlyeq Z$ and $Y \preccurlyeq Y^{\prime \prime}$, we have $\operatorname{dim}(Z+H) \leq k \leq \operatorname{dim}(B \cap Y)$ by 2.1. Thus $p \cap \mathcal{X}=[Z+H, B \cap Y]_{k} \neq \emptyset$.

Lemma 2.9. Let G be a wafer in $\mathbf{P}_{k}(V)$ and $\mathcal{X}_{1}, \mathcal{X}_{2} \in \mathrm{G}$ distinct segments. Then
(i) for every point $U_{1} \in \mathcal{X}_{1}$ there is a unique point $U_{2}=\left(U_{1}+Z_{2}\right) \cap Y_{2}$ in \mathcal{X}_{2}, collinear with U_{1},
(ii) $Z^{\prime} \prec U \cap Z^{\prime \prime} \prec Z^{\prime \prime}$ and $Y^{\prime} \prec U+Y^{\prime} \prec Y^{\prime \prime}$ for all $U \in \bigcup \mathrm{G}$.

Proof. (i) By 2.5 for every point $U_{1} \in \mathcal{X}_{1}$ there is a point $U_{2} \in \mathcal{X}_{2}$ collinear with U_{1}. It is unique for if not, we would have either $Z_{2} \subseteq U_{1} \subseteq Y_{1}$, or $Z_{1} \subseteq U_{1} \subseteq Y_{2}$, in view of 2.2 and 2.3, which contradicts 2.7.
(ii) Wafers are transitive by 2.7 , hence we can assume that $U \in \mathcal{X}_{1}$ without loss of generality. Evidently $Z^{\prime} \subseteq U \cap Z^{\prime \prime} \subseteq Z^{\prime \prime}$, and it suffices to show that $U \cap Z^{\prime \prime} \prec Z^{\prime \prime}$. By 2.5 there is a line $p=\mathbf{p}(H, B)$ through U that crosses \mathcal{X}_{2}. Consequently by $2.8(\mathrm{i})$ we have $Z^{\prime \prime} \subseteq B$. This together with $U \prec B$ gives $U \cap Z^{\prime \prime} \preccurlyeq Z^{\prime \prime}$ by 2.1. Note that if $Z^{\prime \prime} \subseteq U$ then $Z_{2} \subseteq U \cap Y_{2} \subseteq Y_{1}$ which contradicts 2.7 .

One proves $Y^{\prime} \prec U+Y^{\prime} \prec Y^{\prime \prime}$ dually.

This is a crucial feature of wafers, which resemble to some extent nets or reguli (cf. [3, Ch. 10], in case of classical projective geometry comp. also e.g. [10, 11]). We will give characterization (ii) from 2.9 in terms of projections later.

Lemma 2.10. Let G be a quasi-pencil in $\mathbf{P}_{k}(V)$ and $\mathcal{X}_{1}, \mathcal{X}_{2} \in G$ distinct segments.
(i) If $\mathcal{X}_{3} \in G$ and a line p crosses $\mathcal{X}_{1}, \mathcal{X}_{2}$, then p crosses \mathcal{X}_{3}.
(ii) If $\mathcal{X}_{3} \in \mathrm{G}$, then for every $U_{3} \in \mathcal{X}_{3}$ there is a line p through U_{3} crossing $\mathcal{X}_{1}, \mathcal{X}_{2}$.
(iii) If a line p crosses $\mathcal{X}_{1}, \mathcal{X}_{2}$ in distinct points and $U_{3} \in p$, then there is $\mathcal{X}_{3} \in \mathrm{G}$ such that $U_{3} \in \mathcal{X}_{3}$.

Proof. (i) Let $U_{i} \in p \cap \mathcal{X}_{i}$ for $i=1,2$. If $U_{1} \neq U_{2}$, we are through by 2.8. Otherwise, $U_{1}=U_{2} \in \mathcal{X}_{3}$.
(ii) Let $U_{3} \in \mathcal{X}_{3} \in \mathrm{G}$. Since $Z_{3} \preccurlyeq Z^{\prime \prime}$ and $Y^{\prime} \preccurlyeq Y_{3}$, we have $U_{3} \preccurlyeq U_{3}+Z^{\prime \prime}$ and $U_{3} \cap Y^{\prime} \preccurlyeq U_{3}$ by 2.1. For this reason we can take $H \in\left[Z^{\prime}, U_{3} \cap Y^{\prime}\right]_{k-1}$ and $B \in\left[U_{3}+Z^{\prime \prime}, Y^{\prime \prime}\right]_{k+1}$. The line $p=\mathbf{p}(H, B)$ crosses \mathcal{X}_{1} and \mathcal{X}_{2} by 2.8(ii).
(iii) By $2.8 p=\mathbf{p}(H, B)$, where $Z^{\prime} \subseteq H \subseteq Y^{\prime}$ and $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$. If $Z^{\prime \prime} \nsubseteq U_{3}$, then in view of $2.1 Z_{3}:=U_{3} \cap Z^{\prime \prime} \prec Z^{\prime \prime}$ since $U_{3} \prec B$. Otherwise we take $Z_{3}:=Z_{1}$. Analogously, either $Y_{3}:=U_{3}+Y^{\prime}$ or $Y_{3}:=Y_{1}$. In any of these cases $\mathcal{X}_{3}:=\left[Z_{3}, Y_{3}\right]_{k}$ satisfies required conditions.

The above lemma is an announcement of geometrical characterization of pencils of segment subspaces in $\mathbf{P}_{k}(V)$. Two conditions are critical to that description:
$\left(*_{1}\right)$ if a line p crosses \mathcal{X}_{1} and \mathcal{X}_{2}, then p crosses \mathcal{X}_{3},
$\left(*_{2}\right)$ for every $U_{3} \in \mathcal{X}_{3}$ there is a line p through U_{3} crossing $\mathcal{X}_{1}, \mathcal{X}_{2}$ in distinct points.
Lemma 2.10 says that quasi-pencils satisfy ($*_{1}$), and ($*_{2}$) in a weaker form.
Lemma 2.11. Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}$ be segment subspaces of $\mathbf{P}_{k}(V)$ such that $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a pencil. Then:
(i) If $\mathcal{X}_{3} \in \mathrm{G}$, then $\left(*_{1}\right)$ and $\left(*_{2}\right)$ hold.
(ii) If G is not projective, the condition $\left(*_{1}\right)$ implies $Z_{3} \subseteq Z^{\prime \prime}$ and $Y^{\prime} \subseteq Y_{3}$.
(iii) The condition $\left(*_{2}\right)$ implies $Z^{\prime} \subseteq Z_{3}$ and $Y_{3} \subseteq Y^{\prime \prime}$.

Proof. (i) By 2.10, $\left(*_{1}\right)$ holds. It is clear that $\left(*_{2}\right)$ holds for wafers by definition and 2.8. Therefore we can assume that $Z_{1}=Z_{2}$ or $Y_{1}=Y_{2}$.

Let $U_{3} \in \mathcal{X}_{3}$. Evidently $\mathcal{X}_{1} \cap \mathcal{X}_{2} \subseteq \mathcal{X}_{3}$. Hence, if $U_{3} \in \mathcal{X}_{1} \cap \mathcal{X}_{2}$, then we take any line $p \subseteq \mathcal{X}_{1}$ through U_{3}, and $U_{1} \in p$ such that $U_{1} \neq U_{3}$. As $U_{3} \in p \cap \mathcal{X}_{2}$ we are through.

In case $U_{3} \notin \mathcal{X}_{1} \cap \mathcal{X}_{2}$, by 2.5 we have $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}_{3}$ collinear with U_{3}. Since $\mathcal{X}_{2} \in \mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{3}}$ by transitivity, the line $\overline{U_{1}, U_{3}}$ crosses \mathcal{X}_{2} in some point U_{2} by $\left(*_{1}\right)$.
(ii) Let $B \in\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k+1}$. Observe that $B \neq Y^{\prime \prime}$ as G is not projective. Estimation of dimensions gives that $k-1 \leq \operatorname{dim}\left(B \cap Y^{\prime}\right)$. Evidently $Z^{\prime} \subseteq B$, hence there is $H \in\left[Z^{\prime}, B \cap\right.$ $\left.Y^{\prime}\right]_{k-1}$. According to $2.8($ ii $)$ the line $p=\mathbf{p}(H, B)$ crosses $\mathcal{X}_{1}, \mathcal{X}_{2}$. By $\left(*_{1}\right)$ there is a point $U_{3} \in p \cap \mathcal{X}_{3}$. We have shown that $Z_{3} \subseteq \bigcap\left\{B: B \in\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k+1}\right\}=Z^{\prime \prime}$. The proof of $Y^{\prime} \subseteq Y_{3}$ runs dually.
(iii) Let $U_{3} \in \mathcal{X}_{3}$. By $\left(*_{2}\right)$ there is a line $p=\mathbf{p}(H, B)$ crossing $\mathcal{X}_{1}, \mathcal{X}_{2}$ in distinct points. Hence by $2.8 Z^{\prime} \subseteq H \subseteq U_{3}$. Since U_{3} is arbitrary we have $Z^{\prime} \subseteq \bigcap\left\{U_{3}: U_{3} \in\left[Z_{3}, Y_{3}\right]_{k}\right\}=Z_{3}$. The proof of $Y_{3} \subseteq Y^{\prime \prime}$ runs dually.

Lemma 2.12. If $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}$ are segment subspaces of $\mathbf{P}_{k}(V)$ satisfying $\left(*_{1}\right)$, ($*_{2}$) such that $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a pencil, then either $\mathcal{X}_{3} \in \mathrm{G}$, or G is a projective pencil.

Proof. Assume that G is a pencil but not projective. In view of $2.11 Z^{\prime} \subseteq Z_{3} \subseteq Z^{\prime \prime}$ and $Y^{\prime} \subseteq Y_{3} \subseteq Y^{\prime \prime}$.

We start with showing that $\mathcal{X}_{3} \neq \mathcal{X}^{\prime}$. In view of 2.8 every line $p=\mathbf{p}(H, B)$ such that $Z^{\prime} \subseteq H \subseteq Y^{\prime}$ and $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$ crosses both \mathcal{X}_{1} and \mathcal{X}_{2}. In particular we can take p so that $Z^{\prime \prime} \nsubseteq H$, that is, $p \cap \mathcal{X}_{i} \nsubseteq \mathcal{X}_{3-i}, i=1,2$. On the other hand, there is $U_{3} \in p \cap \mathcal{X}_{3}$ by ($*_{1}$). If $\mathcal{X}_{3}=\mathcal{X}_{1} \cap \mathcal{X}_{2}$, we would have $p \subseteq \mathcal{X}_{1} \cap \mathcal{X}_{2}$ as $U_{3} \neq U_{i}$ and $U_{i}, U_{3} \in p \cap \mathcal{X}_{i}$ for $i=1,2$.

Now, assume that $\mathcal{X}_{3}=\mathcal{X}^{\prime \prime}$ and $Y^{\prime} \neq Y^{\prime \prime}$. Then consider a point $U_{3} \in \mathcal{X}_{3}$ such that $U_{3}+Y^{\prime}=Y^{\prime \prime}$. Such a point exists since $\operatorname{dim} Z^{\prime}<k-1$. By $\left(*_{2}\right)$ and 2.8 we have a line $p=\mathbf{p}(H, B)$ with $Z^{\prime} \subseteq H \subseteq Y^{\prime}$ and $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$. Since $H \prec U_{3}$ and $H \subseteq Y^{\prime}$, we have $Y^{\prime} \preccurlyeq U_{3}+Y^{\prime}=Y^{\prime \prime}$ by 2.1 , which contradicts with previous assumption. In case $Z^{\prime} \neq Z^{\prime \prime}$ we will lead to contradiction dually.

If G is a proper pencil, then $\mathcal{X}_{3}=\mathcal{X}^{\prime}, \mathcal{X}_{3}=\mathcal{X}^{\prime \prime}$ or $\mathcal{X}_{3} \in \mathrm{G}$ and we are through by the above reasoning.

Now, consider the case where G is a wafer. Note that $\operatorname{dim} Z^{\prime}<k-1$ and $\operatorname{dim} Y^{\prime \prime}>k+1$ give $\left[Z^{\prime}, Y^{\prime}\right]_{k},\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k} \neq \emptyset$. Let $U_{3} \in \mathcal{X}_{3}=\left[Z^{\prime}, Y^{\prime}\right]_{k}$. We will show that there is no line through U_{3} which crosses \mathcal{X}_{1} and \mathcal{X}_{2} in distinct points. Indeed, if such a line exists, by 2.8 $U_{3} \subseteq U_{3}+Z^{\prime \prime} \subseteq B$ for some B such that $Z^{\prime \prime} \subseteq B \subseteq Y^{\prime \prime}$. Hence either $U_{3}+Z^{\prime \prime}=U_{3}$, or $U_{3}+Z^{\prime \prime}=B$. In the first case $Z^{\prime \prime} \subseteq U_{3} \subseteq Y^{\prime}$, which means that \mathcal{X}^{\prime} is non-empty and thus G is not a wafer. In the second case, since $U_{3} \prec B$ and $U_{3} \subseteq Y^{\prime}$, we have $Y^{\prime} \preccurlyeq Y^{\prime}+B=$ $Y^{\prime}+U_{3}+Z^{\prime \prime}=Y^{\prime \prime}$ by 2.1. This contradicts that G is a wafer. Dually, we prove the same for $\mathcal{X}_{3}=\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k}$.
Accordingly, if $\mathcal{X}_{3} \cap\left[Z^{\prime}, Y^{\prime}\right]_{k} \neq \emptyset$ or $\mathcal{X}_{3} \cap\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k} \neq \emptyset$, then \mathcal{X}_{3} does not satisfy ($*_{2}$). In particular, this yields that $Z_{3} \neq Z^{\prime}, Z^{\prime \prime}$ and $Y_{3} \neq Y^{\prime}, Y^{\prime \prime}$.

Theorem 2.13. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be distinct, similar segment subspaces in $\mathbf{P}_{k}(V)$.
(i) $\mathcal{X}_{1}, \mathcal{X}_{2}$ determine a proper pencil iff $\mathcal{X}^{\prime} \neq \emptyset$ and $\operatorname{idx}\left(\mathcal{X}^{\prime}\right)=\operatorname{idx}\left(\mathcal{X}^{\prime \prime}\right)$ or $\operatorname{coidx}\left(\mathcal{X}^{\prime}\right)=$ $\operatorname{coidx}\left(\mathcal{X}^{\prime \prime}\right)$. In this case $\mathcal{X}_{3} \in \overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ iff \mathcal{X}_{3} is similar to \mathcal{X}_{1} and $\mathcal{X}^{\prime} \subseteq \mathcal{X}_{3} \subseteq \mathcal{X}^{\prime \prime}$.
(ii) $\mathcal{X}_{1}, \mathcal{X}_{2}$ determine a wafer iff for every $U_{1} \in \mathcal{X}_{1}$ there is a unique $U_{2} \in \mathcal{X}_{2}$ with $U_{1} \sim U_{2}$, and conversely.
(iii) If $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a non-projective pencil, then $\mathcal{X}_{3} \in \overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ iff \mathcal{X}_{3} satisfies $\left(*_{1}\right)$ and ($*_{2}$).

Proof. (i) Straightforward by the definition of a proper pencil.
(ii) \Rightarrow : by 2.9(i).
\Leftarrow : Contrary to the definition of a wafer assume that $Z_{1} \subseteq Y_{2}$. Then $Z_{1} \subseteq Y^{\prime}$. Consider points U_{1}, U_{2} such that $Z_{1} \subseteq U_{1} \subseteq Y^{\prime}, U_{2} \in \mathcal{X}_{2}$, and $U_{1}, U_{2} \in p=\mathbf{p}(H, B)$. Observe that $B \subseteq Y_{2}$ and all points in $\left[Z_{2}, B\right]_{k} \subseteq \mathcal{X}_{2}$ are collinear with U_{1}. In case $Z_{2} \subseteq Y_{1}$ we proceed the same way.
(iii) Immediate by 2.11 and 2.12 .

3. Shift projections

In [13] general projections in projective spaces have been introduced. Let X_{1}, X_{2}, C be subspaces of V such that $\operatorname{dim} X_{1}=\operatorname{dim} X_{2}, X_{1} \subseteq C+X_{2}$. Then, according to the definition,
a projection with center C, from subspace X_{1} onto subspace X_{2}, in symbols $\Phi_{C_{2}}^{X_{1}}$, is a map $U \rightsquigarrow(U+C) \cap X_{2}$ for $U \subseteq X_{1}$. This projection may be considered a composition of two maps $U \rightsquigarrow U+C$ and $U \rightsquigarrow U \cap X_{2}$. They are commonly known in lattice theory as shifts, though they have also their pure geometric nature as meet and join of points, lines, planes and so on. In this context, shift projections defined by (3) and (4) can be thought of as analogues of a perspective in a projective geometry. They are technical but very useful tools in this paper. Another approach to perspectivity determined by the intrinsic geometry of a space of pencils is discussed in Section 6.

Let us begin with a known fact for modular lattices, slightly reformulated.

Fact 3.1. (Grätzer [8, Th. 2, Ch. IV.1]) If $Z \cap F=Y \cap F$ and $Z+G=Y+G$, then maps $f, g:[Z, Y] \longrightarrow \operatorname{Sub}(V)$ such that $f=U \rightsquigarrow U+F$, and $g=U m \longrightarrow U G$ are bijections.

The maximal segment on which f from 3.1 is a bijection is $[\Theta, Y]$, where Y is a linear complement of F in V. Dually, the maximal segment for g is $[Z, V]$, where Z is a linear complement of G in V. Note that f is always a bijection on $[Y \cap F, Y]$ and g on $[Z, Z+G]$.

We define two projections, J-projection

$$
\begin{equation*}
\mathrm{J}_{Y, Z}:[Z \cap Y, Y] \longrightarrow[Z, Z+Y], \quad U \rightsquigarrow U+Z, \tag{3}
\end{equation*}
$$

and M-projection

$$
\begin{equation*}
\mathrm{M}_{Y, Z}:[Z, Z+Y] \longrightarrow[Z \cap Y, Y], \quad U \rightsquigarrow U \cap Y . \tag{4}
\end{equation*}
$$

By 3.1 they are bijections. We use notation $\mathrm{J}_{Y, Z}=\left.\right|_{[Z, Z+Y]} ^{[Z \cap Y, Y]}$ and $\mathrm{M}_{Y, Z}=\left.\right|_{[Z \cap Y, Y]} ^{[Z, Z+Y]}$. Observe that if $\mathcal{X}_{i}=\left[Z_{i}, Y_{i}\right], i=1,2$ and there is a J-projection (M-projection) $f=\downarrow_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ then, $f=\mathrm{J}_{Y_{1}, Z_{2}}\left(f=\mathrm{M}_{Y_{2}, Z_{1}}\right)$. Note also that f is a lattice isomorphism between $\mathcal{X}_{1}, \mathcal{X}_{2}$, thus, preserves the height (rank) of elements in the lattice \mathcal{X}_{1}. Evidently, $\left(\downarrow_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}\right)^{-1}=\downarrow_{\mathcal{X}_{1}}^{\mathcal{X}_{2}}$. We use notion J or M-projection with respect to a map $f=\left.\right|_{\left[Z_{2}, Y_{2}\right]} ^{\left[Z_{1}, Y_{1}\right]}$ between two sublattices of $\mathfrak{L}(V)$, as well as to the map $f^{\prime}=\left.\right|_{\left[Z_{2}, Y_{2}\right]_{m}} ^{\left[Z_{1}, Y_{1}\right]_{k}}=f \mid \operatorname{Sub}_{k}(V)$ between corresponding spaces of pencils (cf. 3.2).
Lemma 3.2. Let Y_{1}, Z_{2} be subspaces of V and $Z_{1}=Z_{2} \cap Y_{1}, Y_{2}=Z_{2}+Y_{1}$. J-projection $\mathrm{J}_{Y_{1}, Z_{2}}$ maps $\left[Z_{1}, Y_{1}\right]_{k}$ onto $\left[Z_{2}, Y_{2}\right]_{m}$ and M-projection $\mathrm{M}_{Y_{1}, Z_{2}}$ maps $\left[Z_{2}, Y_{2}\right]_{m}$ onto $\left[Z_{1}, Y_{1}\right]_{k}$, where $k-\operatorname{dim} Z_{1}=m-\operatorname{dim} Z_{2}$. Moreover, $\operatorname{dim} Y_{1}-k=\operatorname{dim} Y_{2}-m$ and thus $\operatorname{pdim}\left(\left[Z_{1}, Y_{1}\right]_{k}\right)=$ $\operatorname{pdim}\left(\left[Z_{2}, Y_{2}\right]_{m}\right)$.
Proof. Since $U \cap Z_{2}=Z_{1}$ for every $U \in \mathcal{X}_{1}$, we have $m=\operatorname{dim}\left(U+Z_{2}\right)=k+\operatorname{dim} Z_{2}-\operatorname{dim} Z_{1}$. Analogously we find that $U+Y_{1}=Y_{2}$ for every $U \in \mathcal{X}_{2}$, and $k=\operatorname{dim}\left(U \cap Y_{1}\right)=m+\operatorname{dim} Y_{1}-$ $\operatorname{dim} Y_{2}$.

Note that if f is a J or M-projection and $\operatorname{dm}(f)$ is a line, then $\operatorname{rg}(f)$ is also a line. Such J-projections map lines of $\mathbf{P}_{k}(V)$ onto lines of $\mathbf{P}_{m}(V)$, and M-projections act conversely.

Lemma 3.3. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be segment subspaces of $\mathbf{P}_{k}(V), \mathbf{P}_{m}(V)$ respectively, and let $f: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ be a J-projection or M-projection. If \mathcal{E}_{1} is a segment subspace such that $\mathcal{E}_{1} \subseteq \mathcal{X}_{1}$, then $f \mid \mathcal{E}_{1}$ is a J-projection or an M-projection, respectively, of \mathcal{E}_{1} onto some segment subspace $\mathcal{E}_{2} \subseteq \mathcal{X}_{2}$.

Proof. Let $\mathcal{X}_{i}=\left[Z_{i}, Y_{i}\right]_{k_{i}}, i=1,2$. Assume that $f=\mathrm{J}_{Y_{1}, Z_{2}}$ and $\mathcal{E}_{1}=\left[Z_{1}^{\prime}, Y_{1}^{\prime}\right]_{k}$. We have $Z_{1}=Z_{2} \cap Y_{1}, Y_{2}=Z_{2}+Y_{1}$ and $f(U)=U+Z_{2}$ for all $Y \in \mathcal{X}_{1}$. Accordingly, f maps $\left[Z_{1}^{\prime}, Y_{1}^{\prime}\right]_{k}$ onto $\left[Z_{1}^{\prime}+Z_{2}, Y_{1}^{\prime}+Z_{2}\right]_{m}$ and $f(U)=U+\left(Z_{1}^{\prime}+Z_{2}\right)$ for $U \in \mathcal{E}_{1}$. Clearly, $Y_{1}^{\prime}+\left(Z_{1}^{\prime}+Z_{2}\right)=Y_{1}^{\prime}+Z_{2}$, and $Y_{1}^{\prime} \cap\left(Z_{1}^{\prime}+Z_{2}\right)=Z_{1}^{\prime}+\left(Y_{1}^{\prime} \cap Z_{2}\right)=Z_{1}^{\prime}$ since $Y_{1}^{\prime} \cap Z_{2} \subseteq Z_{1}$. In result, $f \mid \mathcal{E}_{1}$ is a J-projection. For M-projections the reasoning runs dually.

The straightforward consequence is that every J- and M-projection is a collineation (cf. 3.6). Next two lemmas give criteria for how to compose J- and M-projections.

Lemma 3.4. If f, g are J-projections, or M-projections, such that $\operatorname{dm}(g)=\operatorname{rg}(f)$, then $g f$ is a J -projection or an M -projection respectively.

Proof. Assume that $f=\downarrow_{\left[Z_{2}, Y_{2}\right]}^{\left[Z_{1}, Y_{1}\right]}$ and $g=\downarrow_{\left[Z_{3}, Y_{3}\right]}^{\left[Z_{2}, Y_{2}\right]}$. . Then, $Z_{1}=Z_{2} \cap Y_{1}, Y_{2}=Z_{2}+Y_{1}$, $Z_{2}=Z_{3} \cap Y_{2}$ and $Y_{3}=Z_{3}+Y_{2}$. It is seen that $Z_{1}=Z_{2} \cap Y_{3}$ and $Y_{3}=Z_{3}+Y_{1}$, which means that $g f=\mathrm{J}_{Y_{1}, Z_{3}}$.

Note that when f, g are M-projections, then f^{-1}, g^{-1} are J -projections and $\operatorname{dm}\left(f^{-1}\right)=$ $\operatorname{rg}\left(g^{-1}\right)$. Hence, $(g f)^{-1}$ is a J and $f g$ an M-projection.

Lemma 3.5. Let \mathcal{X} be a segment in $\mathbf{P}_{k}(V)$, and let l, m be such that $l \leq k \leq m$ and there are subspaces similar to \mathcal{X} in $\mathbf{P}_{l}(V)$ and $\mathbf{P}_{m}(V)$. Then, there is an M-projection g and a J-projection f on \mathcal{X} such that $\operatorname{rg}(g), \operatorname{rg}(f)$ are segments in $\mathbf{P}_{l}(V), \mathbf{P}_{m}(V)$ respectively.

Proof. We will find g only, as procedure for f is dual. Let $\mathcal{X}=[Z, Y]_{k}$. Observe that (*): $k-\operatorname{dim} Z \leq l \leq k$. First, take $Q \subseteq Y$ such that $Q+Z=Y$ and $\operatorname{dim} Q-l=\operatorname{dim} Y-k$ (cf. 3.2). Such Q exists in view of (*). Then g is an M-projection $U m \in U Q$ on \mathcal{X}, in other words $g=\mathrm{M}_{Y \cap Q, Z}$. Clearly, $Z+(Y \cap Q)=Y$ and $Z \cap(Y \cap Q)=Z \cap Q$ which means that $g(\mathcal{X})=[Z \cap Q, Y \cap Q]_{l}$.

For convenience we assign to every linear map $\varphi: Y_{1} / Z_{1} \longrightarrow Y_{2} / Z_{2}$ a map $\tilde{\varphi}:\left[Z_{1}, Y_{1}\right] \longrightarrow$ $\left[Z_{2}, Y_{2}\right]$ such that $\tilde{\varphi}(U)=W$ iff $\varphi\left(U / Z_{1}\right)=W / Z_{2}$ for $U \in\left[Z_{1}, Y_{1}\right], W \in\left[Z_{2}, Y_{2}\right]$. In the context of spaces of pencils $\tilde{\varphi}_{k}=\tilde{\varphi} \mid \operatorname{Sub}_{k}(V)$.

Proposition 3.6. Let Y_{1}, Z_{2} be subspaces of V with $Z_{1}=Z_{2} \cap Y_{1}, Y_{2}=Z_{2}+Y_{1}$.
(i) Shift projections $f=\left.\right|_{\left[Z_{2}, Y_{2}\right]_{m}} ^{\left[Z_{1}, Y_{1}\right]_{k}}, g=\left.\right|_{\left[Z_{1}, Y_{1}\right]_{k}} ^{\left[Z_{2}, Y_{2}\right]_{m}}$ determine collineation between $\mathbf{P}_{r}\left(Y_{1} / Z_{1}\right)$ and $\mathbf{P}_{r}\left(Y_{2} / Z_{2}\right)$, where $r=k-\operatorname{dim} Z_{1}=m-\operatorname{dim} Z_{2}$.
(ii) There is a linear bijection $\varphi: Y_{1} / Z_{1} \longrightarrow Y_{2} / Z_{2}$ with $\tilde{\varphi}_{k}=f$ and $\tilde{\varphi}_{k}^{-1}=g$.

Proof. (i) Immediate consequence of 3.3.
(ii) Assume that $Y_{1}=Z_{1} \oplus M$ for some subspace M. Then, it is seen that $Z_{2} \cap M=\Theta$ and $Y_{2}=Z_{2}+Y_{1}=Z_{2} \oplus M$, since $Z_{1}=Y_{1} \cap Z_{2}$. By 3.2 we have $k-\operatorname{dim} Z_{1}=m-\operatorname{dim} Z_{2}=: r$.

In case of $f=\mathrm{J}_{Y_{1}, Z_{2}}$, consider $U \in\left[Z_{1}, Y_{1}\right]_{k}$. Then $U=Z_{1} \oplus N$, where $N \in \operatorname{Sub}_{r}(M)$, and $f(U)=Z_{2}+N$ as $Z_{1} \subseteq Z_{2}$. For $g=\mathrm{M}_{Y_{1}, Z_{2}}$ and $W \in\left[Z_{2}, Y_{2}\right]_{m}$ we find that $W=Z_{2}+N$ and $g(W)=Z_{1}+N$, where $N \in \operatorname{Sub}_{r}(M)$. Hence, the map $\varphi=v+Z_{1} \rightsquigarrow v+Z_{2}$, where $v \in M$, is a requested linear bijection with $f(U)=W$ iff $\varphi\left(U / Z_{1}\right)=W / Z_{2}$ iff $g(W)=U$.

4. Projections between segment subspaces

Usually, in projective geometry, projections are considered maps between lines. In this paper we deal with more general projections, namely, projections between segment subspaces. In this section we give geometrical definitions of our two projections: a generalized central projection (5) and a slide (6). Also their analytical interpretations are given (4.2, 4.6).

According to general theory, a subspace of codimension 1 is a maximal proper subspace. In case \mathcal{X}, \mathcal{Y} are segment subspaces of $\mathbf{P}_{k}(V)$, and \mathcal{X} is not strong, \mathcal{Y} is of codimension 1 in \mathcal{X} iff $\mathcal{Y} \subseteq \mathcal{X}$ and (i) $\operatorname{pdim} \mathcal{Y}=\operatorname{pdim} \mathcal{X}-(0,1)$, or (ii) $\operatorname{pdim} \mathcal{Y}=\operatorname{pdim} \mathcal{X}-(1,0)$. If \mathcal{X} is a star \mathcal{Y} needs to satisfy (i), if \mathcal{X} is a top (ii). Note that if G is a proper pencil and $\mathcal{X} \in \mathrm{G}$, then \mathcal{X}^{\prime} is of codimension 1 in \mathcal{X} and \mathcal{X} is of codimension 1 in $\mathcal{X}^{\prime \prime}$.

In a partial linear space, we say that subspaces $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ are complementary in a subspace \mathcal{X} if $\mathcal{Y}_{1} \cap \mathcal{Y}_{2}=\emptyset$ and $\left\langle\mathcal{Y}_{1}, \mathcal{Y}_{2}\right\rangle=\mathcal{X}$.

Lemma 4.1. Let $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ be complementary segment subspaces of codimension 1 in a segment \mathcal{X} in $\mathbf{P}_{k}(V)$.
(i) For every point $U_{1} \in \mathcal{Y}_{1}$ there is a point $U_{2} \in \mathcal{Y}_{2}$ collinear with U_{1}.
(ii) Every line through $U_{1} \in \mathcal{Y}_{1}$ misses \mathcal{Y}_{2} or meets \mathcal{Y}_{2} in a single point.

Proof. (i) Let $\mathcal{X}=[Z, Y]_{k}, \mathcal{Y}_{i}=\left[Z_{i}, Y_{i}\right]_{k}$ and $U_{1} \in \mathcal{Y}_{1}$. Since $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ are complementary of codimension 1 in \mathcal{X} we can assume without loss of generality that $Z_{1}=Z \prec Z_{2}, Y_{1} \prec Y=Y_{2}$ and $Z_{2} \nsubseteq Y_{1}$. Clearly $Z_{2} \nsubseteq U_{1}$ and hence $U_{1} \prec Z_{2}+U_{1}$ by 2.1. We find that $\mathcal{Y}=\left[Z_{2}, Z_{2}+U_{1}\right]_{k}$ is non empty, and $\mathcal{Y} \subseteq \mathcal{Y}_{2}$ as $U_{1} \subseteq Y=Y_{2}$. Every point of \mathcal{Y} is adjacent, i.e. collinear, with U_{1}.
(ii) Assume contrary to our claim that U_{1}, U_{2}, U_{3} lie on some line $q, U_{1} \in \mathcal{Y}_{1}$ and $U_{2}, U_{3} \in \mathcal{Y}_{2}$ are distinct. Hence $q \subseteq \mathcal{Y}_{2}$ and consequently $U_{1} \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}=\emptyset$.

Lemma 4.2. Let $\mathrm{G}=\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ be a proper pencil, $\mathcal{X}_{3} \in \mathrm{G}, \mathcal{X}_{3} \neq \mathcal{X}_{1}, \mathcal{X}_{2}$, and \mathcal{Y} a subspace of codimension 1 in \mathcal{X}_{3} such that $\mathcal{X}^{\prime}, \mathcal{Y}$ are complementary in \mathcal{X}_{3}.
(i) If $Z_{1}=Z_{2}=Z$ then $\mathcal{Y}=\left[W, Y_{3}\right]_{k}$, where $Z \prec W \subseteq Y_{3}$, and $Z=Y^{\prime} \cap W, Y_{3}=Y^{\prime}+W$.
(ii) If $Y_{1}=Y_{2}=Y$ then $\mathcal{Y}=\left[Z_{3}, W\right]_{k}$, where $Z_{3} \subseteq W \prec Y$, and $Y=Z^{\prime \prime}+W, Z_{3}=Z^{\prime \prime} \cap W$.
(iii) For $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}^{\prime}$ there is a unique $U_{3} \in \mathcal{Y} \backslash \mathcal{X}^{\prime}$ collinear with U_{1}.
(iv) For $U_{1} \in \mathcal{X}_{1}$ there is a unique $U_{2} \in \mathcal{X}_{2}$ collinear with U_{1}, such that a line through U_{1}, U_{2} crosses \mathcal{Y}. If $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}^{\prime}$, then $U_{2} \in \mathcal{X}_{2} \backslash \mathcal{X}^{\prime}$, if $U_{1} \in \mathcal{X}^{\prime}$, then $U_{2}=U_{1}$. Moreover, if $Z_{1}=Z_{2}$, then $U_{2}=\left(U_{1}+W\right) \cap Y_{2}$, if $Y_{1}=Y_{2}$, then $U_{2}=\left(U_{1} \cap W\right)+Z_{2}$.

Proof. (i) We have $\mathcal{X}^{\prime}=\left[Z, Y^{\prime}\right]_{k}, \mathcal{X}_{3}=\left[Z, Y_{3}\right]_{k}$. Segments $\mathcal{X}^{\prime}, \mathcal{Y}$ are complementary, hence $\mathcal{Y}=\left[W, Y_{3}\right]_{k}$ and $Z \prec W$. Since $Y^{\prime} \prec Y_{3}, W \subseteq Y_{3}$ and $W \nsubseteq Y^{\prime}$ we find that $Y^{\prime} \cap W \prec W$ by
2.1. It is easily seen that $Z \subseteq Y^{\prime} \cap W$ which yields $Z=Y^{\prime} \cap W$. Equality $Y_{3}=Y^{\prime}+W$ can be shown by similar argument.
(ii) is a dual case to (i).
(iii) Assume that $Z_{1}=Z_{2}=Z$. Then $\mathcal{Y}=\left[W, Y_{3}\right]_{k}$ by (i). Let $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}^{\prime}$. By 2.1 we have $H=U_{1} \cap Y^{\prime} \prec U_{1}$ since $Y^{\prime} \prec Y_{1}, U_{1} \subseteq Y_{1}$ and $U_{1} \nsubseteq Y^{\prime}$. Take $U_{3}=H+W$ and note that $H \prec U_{3}$ again by 2.1, as $Z \prec W, Z \subseteq H$ and $W \nsubseteq H$ by (i). Hence U_{1}, U_{3} are collinear. Evidently, $U_{3} \in \mathcal{Y}=\mathcal{Y} \backslash \mathcal{X}^{\prime}$. Suppose that U_{3} is not unique. Then $W \subseteq U_{1}$ or $U_{1} \subseteq Y_{3}$ by 2.2 and 2.3. In the first case $W \subseteq Y^{\prime}$, in the latter $U_{1} \in \mathcal{X}_{3}$, but both are invalid. For $Y_{1}=Y_{2}$ we proceed dually.
(iv) Let $U_{1} \in \mathcal{X}_{1} \backslash \mathcal{X}^{\prime}$. By (iii) there is a unique $U_{3} \in \mathcal{Y} \subseteq \mathcal{X}_{3}$ collinear with U_{1}, and by 2.11(i) there is $U_{2} \in \mathcal{X}_{2}$ such that $U_{2} \in \overline{U_{1}, U_{3}}$. Suppose that $U_{2} \in \mathcal{X}^{\prime}$. Then $U_{1} \in \overline{U_{2}, U_{3}} \subseteq \mathcal{X}_{3}$ and hence $U_{1} \in \mathcal{X}_{1} \cap \mathcal{X}_{3}=\mathcal{X}^{\prime}$ which is false. The point U_{2} is unique, for if not, there would be another $U_{2}^{\prime} \in \mathcal{X}_{2}$ and $U_{1}, U_{2}, U_{2}^{\prime}, U_{3}$ would be collinear as U_{3} is unique. In that case $U_{1} \in \overline{U_{2}, U_{2}^{\prime}} \subseteq \mathcal{X}_{2}$ which is false.
If $U_{1} \in \mathcal{X}^{\prime}$, and $U_{2} \neq U_{1}$, then $U_{3} \in \overline{U_{1}, U_{2}} \subseteq \mathcal{X}_{2}$ which is impossible as $\mathcal{Y} \cap \mathcal{X}_{2}=\emptyset$.
Now, we shall find the formula for U_{2} when $Z_{1}=Z_{2}=Z$. First note that $U_{1} \prec U_{1}+W$ by 2.1 as $Z \prec W$ by (i), $Z \subseteq U_{1}$ and $W \nsubseteq U_{1}$. Indeed, if $W \subseteq U_{1}$, then $W \subseteq Y^{\prime}$ and contradiction with (i) arises. Since $Y_{2} \prec Y^{\prime \prime}, U_{1}+W \subseteq Y^{\prime \prime}$ and $U_{1}+W \nsubseteq Y_{2}$ we have $U_{2}:=\left(U_{1}+W\right) \cap Y_{2} \prec U_{1}+W$. Hence U_{1}, U_{2} are collinear and $U_{2} \in \mathcal{X}_{2}$. Note that $\overline{U_{1}, U_{2}}=\mathbf{p}\left(U_{1} \cap Y_{2}, U_{1}+W\right)$. Therefore, $\overline{U_{1}, U_{2}} \cap \mathcal{Y}=\left[\left(U_{1} \cap Y_{2}\right)+W,\left(U_{1}+W\right) \cap Y_{3}\right]_{k}$ by (i). It is easily seen that $\left(U_{1} \cap Y_{2}\right)+W \subseteq\left(U_{1}+W\right) \cap Y_{3}$. Moreover, $\operatorname{dim}\left(\left(U_{1}+W\right) \cap Y_{3}\right)=k$ similarly as above for U_{2}. Finally, the line $\overline{U_{1}, U_{2}}$ crosses \mathcal{Y} and we are through. For $Y_{1}=Y_{2}$ we proceed analogously.
 condition

$$
\begin{equation*}
\dot{\Phi}_{\mathcal{X}_{2}}^{\mathcal{Y}_{1}}\left(U_{1}\right)=U_{2} \quad \text { iff } \quad U_{1}, U_{2}, U_{3} \text { are collinear for some } U_{3} \in \mathcal{Y} . \tag{5}
\end{equation*}
$$

Lemma 4.2 actually says that for all $\mathcal{X}_{1}, \mathcal{X}_{2}$ that determine a proper pencil there is a generalized central projection of \mathcal{X}_{1} onto \mathcal{X}_{2}. If G consists of lines then \mathcal{Y} is a single point $\mathcal{Y}=\{C\}$, and $\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}=\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$ is an ordinary central projection of the line \mathcal{X}_{1} onto \mathcal{X}_{2} with the center C. Let us define generally that $\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}:=\oint_{\mathcal{X}_{2}}^{\substack{\mathcal{X}_{1} \\ 1 \\ \mathcal{C}_{1}}}$, whenever it is a function. One can see, if $\Phi_{\mathcal{X}_{2}}^{\boldsymbol{X}_{1}}$ is defined, then C adheres \mathcal{X}_{i} for $i=1,2$. Note that if \mathcal{X} is a strong subspace of $\mathbf{P}_{k}(V)$, \mathcal{Y}_{1} is of codimension 1 in \mathcal{X} and \mathcal{Y}_{2} is complementary to \mathcal{Y}_{1} in \mathcal{X}, then \mathcal{Y}_{2} is a point. In particular, if a pencil G is projective with $Z^{\prime}=Z^{\prime \prime}=Z$, then $\mathcal{X}^{\prime}=\left[Z, Y^{\prime}\right]_{k}$ and $\mathcal{Y}=\{C\}$ complementary to \mathcal{X}^{\prime} satisfies $C \nsubseteq Y^{\prime}$. Under these circumstances the claim of 4.2 remains valid for $\mathcal{Y}=\left[C, Y_{3}\right]_{k}$, and $\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}=\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$ is a plain projection. Recall that in view of [13] the formula 4.2(iv), which defines the projection, remains valid as well. Dually for $Y^{\prime}=Y^{\prime \prime}$.

Lemma 4.3. Let $\mathcal{X}=[Z, Y]_{k}$ be a non-trivial segment subspace and C be a point not in \mathcal{X} such that $C \mid \triangleright \mathcal{X}$. Then there is a maximal strong subspace containing both C and \mathcal{X}, and either
(i) \mathcal{X} is a star and $Z=C \cap Y$, or
(ii) \mathcal{X} is a top and $Y=Z+C$.

Proof. Immediately by $2.2 \mathcal{X}$ is strong. In view of 2.3 either \mathcal{X} is a star and $Z \subseteq C \cap Y \subsetneq C$, or \mathcal{X} is a top and $C \subsetneq C+Z \subseteq Y$.

As an immediate consequence of 4.3 we obtain
Proposition 4.4. Let \mathcal{X}_{i} be segment subspaces and $f=\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$ be a central projection. Then $\mathcal{X}_{1}, \mathcal{X}_{2}$ and C lie in a strong subspace Π of $\mathbf{P}_{k}(V)$ and f is an ordinary central projection in the projective space Π.

Proposition 4.5. For every generalized central projection $h=\Phi_{\substack{\mathcal{X}_{1} \\ \mathcal{X}_{2} \\ \mathcal{L}_{2}}}$, if $Z_{1}=Z_{2}$ and $m=k+1$, or $Y_{1}=Y_{2}$ and $m=k-1$, then there are shifts f, g such that $h=f g$ and f, g have their ranges and domains in $\mathbf{P}_{k}(V)$ or $\mathbf{P}_{m}(V)$.

Proof. Consider the case where $Z_{1}=Z_{2}$ and $m=k+1$. In view of 4.2(iv) we take $g=$ $\downarrow_{\left[Z_{1}+W, Y_{1}+W\right]_{k}}^{\mathcal{X}_{1}}$ and $f=\left.\right|_{\mathcal{X}_{2}} ^{\left[Z_{1}+W, Y_{1}+W\right]_{k}}$. If $Y_{1}=Y_{2}$ and $m=k-1$ we take $g=\downarrow_{\left[Z_{1} \cap W, Y_{1} \cap W\right]_{k}}^{\mathcal{X}_{1}}$ and $g=\left.\right|_{\mathcal{X}_{2}} ^{\left[Z_{1} \cap W, Y_{1} \cap W\right]_{k}}$.

For a wafer G , according to 2.9(i), one can define a slide $\zeta_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}=\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$, where $\mathcal{X}_{1}, \mathcal{X}_{2} \in \mathrm{G}$ are distinct segments, by

$$
\begin{equation*}
{ }_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}\left(U_{1}\right)=U_{2} \quad \text { iff } \quad U_{1}, U_{2} \text { are collinear. } \tag{6}
\end{equation*}
$$

It is seen that for all $\mathcal{X}_{1}, \mathcal{X}_{2}$ that determine a wafer there is a slide of \mathcal{X}_{1} onto \mathcal{X}_{2}. As long as central projections confirm projective nature of spaces of pencils, slides indicate features of ruled quadrics. In the context of classical projective geometry slides are referred to as net projections (cf. [3, Ch. 10]). Further, we use the short term projection for slides, central projections and generalized central projections, that is those projections which act within $\mathbf{P}_{k}(V)$.

Proposition 4.6. For every slide $h=\zeta_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$, and $m=k \pm 1$ there are shifts f, g such that $h=f g$ and f, g have their ranges and domains in $\mathbf{P}_{k}(V)$ or $\mathbf{P}_{m}(V)$.

Proof. In view of 2.9(i), $h\left(U_{1}\right)=\left(U_{1}+Z_{2}\right) \cap Y_{2}=\left(U_{1} \cap Y_{2}\right)+Z_{2}$ by modularity, for all $U_{1} \in \mathcal{X}_{1}$. Clearly, $U_{1}+Z_{2}=U_{1}+Z^{\prime \prime}$ and $U_{1} \cap Y_{2}=U_{1} \cap Y^{\prime}$. Therefore, if $m=k+1$ we take $g=\downarrow_{\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k+1}}^{\mathcal{X}_{1}}$ and $f=\left.\right|_{\mathcal{X}_{2}} ^{\left[Z^{\prime \prime}, Y^{\prime \prime}\right]_{k+1}}$. If $m=k-1$, then $g=\left.\right|_{\left[Z^{\prime}, Y^{\prime}\right]_{k-1}} ^{\mathcal{X}_{1}}$ and $f=\left.\right|_{\mathcal{X}_{2}} ^{\left[Z^{\prime}, Y^{\prime}\right]_{k-1}}$.

Combining 4.5, 4.6, and 3.2 we find that a projection of \mathcal{X}_{1} onto \mathcal{X}_{2} is a collineation between corresponding subspaces of our space of pencils.
For any segment $\mathcal{X}=[Z, Y]_{k}$ with $Z \neq \Theta$ or $Y \neq V$ we can find a proper pencil G such that $\mathcal{X} \in \mathrm{G}$. To find a wafer we need $Z \neq \Theta$ and $Y \neq V$. These conditions are equivalent to existence of a (generalized) central projection or a slide h, respectively, with $\mathrm{dm}(h)=\mathcal{X}$ or $\operatorname{rg}(h)=\mathcal{X}$. Note also that $Z \neq \Theta$ means $\operatorname{idx}(X) \neq k$, and $Y \neq V$ for finite-dimensional V means that $\operatorname{coidx}(\mathcal{X}) \neq \operatorname{dim} V-k$.

Proposition 4.7. Let \mathcal{X}_{i} be segments such that $Z_{i} \neq \Theta$ and $Y_{i} \neq V, i=1,2$. If (i): $h=\oint_{\substack{\mathcal{X}_{1} \\ \mathcal{X}_{2}}}^{\substack{\mathcal{C}_{2} \\ \hline}}$ is a central projection, or (ii): $h=\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$ is a generalized central projection, then there are slides f, g such that $h=g f$.

Proof. Since central projections are valid for proper pencils only, there are two cases to examine.
(1) Set $Z_{1}=Z_{2}=Z^{\prime}=Z^{\prime \prime}=: Z$, then $Z \neq \Theta$. We shall construct a segment \mathcal{X}_{0} which forms wafers with $\mathcal{X}_{1}, \mathcal{X}_{2}$. So, consider Y_{0} such that $Z \nsubseteq Y_{0} \prec Y^{\prime \prime}$.

In case (i) $C \in\left[Z, Y^{\prime \prime}\right]_{k}$ and we take $Z_{0}:=C \cap Y_{0}$. Since $C \subseteq Y^{\prime \prime}$ and $C \nsubseteq Y_{0}$ we find that $Z_{0} \prec C$ by 2.1. Due to 4.4 which says that $Z \prec C$ we have $Z+Z_{0}=C$. Note that $Z_{0} \nsubseteq Y_{1}, Y_{2}$ since otherwise, if $Z_{0} \subseteq Y_{i}$, then $C \subseteq Y_{i}$ and thus $C \in \mathcal{X}_{i}$, which is false as C is the center of projection between $\mathcal{X}_{1}, \mathcal{X}_{2}$. We set $\mathcal{Y}=\{C\}$.

In case (ii) $\mathcal{Y}=\left[W, Y_{3}\right]_{k}$ such that $Y_{3} \in \overline{Y_{1}, Y_{2}}, Z \prec W$ and $Y^{\prime} \cap W=Z$ by 4.2(i). We take $Z_{0}:=W \cap Y_{0}$. As $W \subseteq Y^{\prime \prime}$ and $W \nsubseteq Y_{0}$ we have $Z_{0} \prec W$ by 2.1. Note that $Z_{0} \nsubseteq Y_{1}, Y_{2}$. Indeed, if $Z_{0} \subseteq Y_{i}$, where i is 1 or 2 , then $Z_{0} \subseteq Y^{\prime}$ as $Z_{0} \subseteq Y_{3}$. Moreover, $Z_{0} \subseteq Y^{\prime} \cap W=Z$, thus $Z_{0}=Z$, and the contradiction arises since $Z \nsubseteq Y_{0}$.

Eventually, we take $\mathcal{X}_{0}=\left[Z_{0}, Y_{0}\right]_{k}$. It is seen that $\mathcal{X}_{0}, \mathcal{X}_{i}$ are of type (W3), hence $\mathcal{X}_{0}, \mathcal{X}_{i}$ determine a wafer. Therefore, one can take slides $f:=\zeta_{\mathcal{X}_{0}}^{\mathcal{X}_{1}}, g:=\zeta_{\mathcal{X}_{2}}^{\mathcal{X}_{0}}$. For every $U_{i} \in \mathcal{X}_{i}$, such that $U_{2}=h\left(U_{1}\right)$ the line $\overline{U_{1}, U_{2}}=\mathbf{p}(H, B)$ contains some $U_{3} \in \mathcal{Y}$, so $C \subseteq B$ in (i), and $W \subseteq B$ in (ii). Moreover, $Y_{0} \prec Y^{\prime \prime}, B \subseteq Y^{\prime \prime}$ and $B \nsubseteq Y_{0}$, therefore $B \cap Y_{0} \prec B$ by 2.1. Consequently $U_{0}:=B \cap Y_{0}$ is a point in \mathcal{X}_{0}. It is easily seen that $U_{0}, U_{1}, U_{2} \prec B$, hence U_{0} is collinear with U_{1} and U_{2}. Then $f\left(U_{1}\right)=U_{0}, g\left(U_{0}\right)=U_{2}$ and finally $h=g f$.
(2) In case $Y_{1}=Y_{2}=Y^{\prime}=Y^{\prime \prime}$ the proof runs dually.

For convenience we apply the following convention:

$$
\mathcal{E}_{i}=\left[T_{i}, S_{i}\right]_{k}, \quad \mathcal{E}^{\prime}=\mathcal{E}_{1} \cap \mathcal{E}_{2}=\left[T^{\prime \prime}, S^{\prime}\right]_{k} \quad \text { and } \quad \mathcal{E}^{\prime \prime}=\left\langle\mathcal{E}_{1} \cup \mathcal{E}_{2}\right\rangle=\left[T^{\prime}, S^{\prime \prime}\right]_{k} .
$$

Lemma 4.8. Let f be a projection of \mathcal{X}_{1} on \mathcal{X}_{2}. For a segment $\mathcal{E}_{1} \subseteq \mathcal{X}_{1}$, and $\mathcal{E}_{2}=f\left(\mathcal{E}_{1}\right)$, either $\mathcal{E}_{1}=\mathcal{E}_{2}$ or $\mathcal{E}_{1}, \mathcal{E}_{2}$ determine a pencil. If $\overline{\mathcal{E}_{1}, \mathcal{E}_{2}}$ is a proper pencil, then $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a proper pencil, and additionally, if $\operatorname{idx}\left(\mathcal{E}^{\prime}\right)=\operatorname{idx}\left(\mathcal{E}^{\prime \prime}\right)$, then $\operatorname{idx}\left(\mathcal{X}^{\prime}\right)=\operatorname{idx}\left(\mathcal{X}^{\prime \prime}\right)$, if $\operatorname{coidx}\left(\mathcal{E}^{\prime}\right)=$ $\operatorname{coidx}\left(\mathcal{E}^{\prime \prime}\right)$, then $\operatorname{coidx}\left(\mathcal{X}^{\prime}\right)=\operatorname{coidx}\left(\mathcal{X}^{\prime \prime}\right)$.

Proof. Let $\mathcal{E}_{2}:=f\left(\mathcal{E}_{1}\right)$. If f is a slide then $\mathcal{X}_{1}, \mathcal{X}_{2}$ determine a wafer. Hence, $\mathcal{X}^{\prime}=\emptyset$ and for every $U_{1} \in \mathcal{E}_{1}$ there is a unique $U_{2} \in \mathcal{E}_{2}$ such that $U_{1} \sim U_{2}$, and consequently, by 2.13(ii) $\mathcal{E}_{1}, \mathcal{E}_{2}$ determine a wafer.

The case where f is a generalized central projection $\Phi_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$ and $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a proper pencil remains. So, assume that $Z_{1}=Z_{2}=Z$. Then by $4.2(\mathrm{iv}) T_{2}=\left(T_{1}+W\right) \cap Y_{2}, S_{2}=$ $\left(S_{1}+W\right) \cap Y_{2}$. Observe that $T^{\prime}=T_{1} \cap T_{2}=T_{1} \cap Y_{2} \preccurlyeq T_{1}$, and similarly $S^{\prime}=S_{1} \cap S_{2}=$ $S_{1} \cap Y_{2} \preccurlyeq S_{1}$. This means that either $\mathcal{E}_{1}=\mathcal{E}_{2}$, or $\mathcal{E}_{1}, \mathcal{E}_{2}$ span a quasi-pencil. If it is not a wafer then $T_{1} \subseteq S_{2}$ or $T_{2} \subseteq S_{1}$ by (W3). But then, in the first case, $T_{1} \subseteq Y_{2}$, and hence $T_{2}=T_{1}+\left(W \cap Y_{2}\right)=T_{1}+\left(W \cap Y_{3} \cap Y_{2}\right)=T_{1}+Z=T_{1}$ by 4.2(i) as $Y^{\prime} \cap W=Z$. Analogously in the second case with respect to $\begin{aligned} & \mathcal{X}_{\chi_{1}}^{\mathcal{X}_{2}}\end{aligned}$ we get $T_{1}=T_{2}$. The proof for $Y_{1}=Y_{2}$ runs dually, hence, $\overline{\mathcal{E}_{1}, \mathcal{E}_{2}}$ is a pencil.

Actually, we have shown that if $\overline{\mathcal{E}_{1}, \mathcal{E}_{2}}$ is a proper pencil, then $\overline{\mathcal{X}_{1}, \mathcal{X}_{2}}$ is a proper pencil. Moreover, for $Z_{1}=Z_{2}$ we have shown that $T_{1}=T_{2}$, and dually for $Y_{1}=Y_{2}$ we have $S_{1}=S_{2}$. This suffices for the remaining justification.
Proposition 4.9. If f is a projection of \mathcal{X}_{1} on \mathcal{X}_{2}, and \mathcal{E}_{1} is a segment such that $\mathcal{E}_{1} \subseteq \mathcal{X}_{1}$, then $f \mid \mathcal{E}_{1}$ is a projection.
Proof. Let $\mathcal{E}_{2}:=f\left(\mathcal{E}_{1}\right)$. If f is a slide, then $\mathcal{E}_{1}, \mathcal{E}_{2}$ determine a wafer, and hence, $f \mid \mathcal{E}_{1}$ is a slide. If $f=\oint_{\mathcal{X}_{2}}^{\mathcal{X}_{1}}$. is a generalized central projection, by 4.8 we have two cases. First assume that $\mathcal{E}_{1}, \mathcal{E}_{2}$ determine a wafer. Then for $U_{1} \in \mathcal{E}_{1}$ we have $f\left(U_{1}\right)=\zeta_{\mathcal{E}_{2}}^{\mathcal{E}_{1}}\left(U_{1}\right)$ by 2.9(i). Therefore, $f \mid \mathcal{E}_{1}$ is a slide.
Now, assume that $\mathcal{E}_{1}, \mathcal{E}_{2}$ determine a proper pencil such that $T_{1}=T_{2}=T$. We shall find \mathcal{Y}^{\prime} such that $f \mid \mathcal{E}_{1}=\Phi_{\mathcal{E}_{2}}^{\mathcal{\varepsilon}_{\mathcal{L}^{\prime}}}$. First, note that $Z_{1}=Z_{2}=Z$ by 4.8. Since $Y^{\prime} \prec Y_{1}$ and $S_{1} \subseteq Y_{1}$, we have $S_{1}+Y^{\prime}=Y_{1}$, for if not we would have $S_{1} \subseteq Y^{\prime}$ which yields $\mathcal{E}_{1} \subseteq \mathcal{X}^{\prime}$ and thus $\mathcal{E}_{1}=\mathcal{E}_{2}$ by 4.2(iv). Let $\mathcal{E}_{3}:=\left[T, S^{\prime}+W\right]_{k}$. Observe that $S^{\prime} \preccurlyeq S^{\prime}+W$ by 2.1 as $Z \prec W$ by 4.2(i) and $Z \subseteq S^{\prime}$. Moreover $W \nsubseteq S^{\prime}$ since otherwise $W \subseteq Y^{\prime}$ which contradicts 4.2(i). Hence $S^{\prime} \prec S^{\prime}+W$. Note also that $S^{\prime \prime}=S_{1}+\left(\left(S_{1}+W\right) \cap Y_{2}\right)$ by 4.2(iv), and further $S^{\prime \prime}=\left(S_{1}+Y_{2}\right) \cap\left(S_{1}+W\right)=\left(S_{1}+Y^{\prime}+Y_{2}\right) \cap\left(S_{1}+W\right)=Y^{\prime \prime} \cap\left(S_{1}+W\right)=S_{1}+W$. Hence $S^{\prime}+W \subseteq S^{\prime \prime}$. Consequently $\mathcal{E}_{3} \in \overline{\mathcal{E}_{1}, \mathcal{E}_{2}}$. Similarly, as for S^{\prime} above, we can show for T that $T \prec T+W$. It is easily seen that $\mathcal{E}^{\prime}=\left[T, S^{\prime}\right]_{k}$ and $\mathcal{Y}^{\prime}:=\left[T+W, S^{\prime}+W\right]_{k}$ are complementary of codimension 1 in \mathcal{E}_{3}. Therefore, $h:=\Phi_{\mathcal{E}_{2}^{\prime}}^{\mathcal{E}_{1}^{\prime}}$ is a generalized central projection. Immediate consequence of formulas for f and h given by $4.2(\mathrm{iv})$ we have $f \mid \mathcal{E}_{1}=h$. In case $S_{1}=S_{2}$ we proceed dually.

5. Projectivities

Let $\Omega(k)$ be the set of all meaningful compositions of slides, central projections and generalized central projections in $\mathbf{P}_{k}(V)$. Elements of $\Omega(k)$ are called projectivities. Let $\Omega(k, m)$ be the class of all compositions $f_{1} \circ \cdots \circ f_{n}$, every f_{i} being a shift projection and $\operatorname{dm}\left(f_{i}\right), \operatorname{rg}\left(f_{i}\right)$ being subspaces of $\mathbf{P}_{k}(V)$ and $\mathbf{P}_{m}(V)$. In $\Omega(k)$ we distinguish the subclass $\Omega_{c}(k)$ given by central projections and generalized central projections. Clearly, $\Omega(k)$ is a category with segment subspaces of $\mathbf{P}_{k}(V)$ as objects, and $\Omega(k, m)$ is a category with segments of $\mathbf{P}_{k}(V)$ and $\mathbf{P}_{m}(V)$ as objects.

In order to have a projectivity between two arbitrary segment subspaces $\mathcal{X}_{1}, \mathcal{X}_{2}$ in a space of pencils we have to guarantee that Z_{1}, Z_{2} can be connected with a polygonal path
(a sequence of subspaces of V, in which neighbour elements are adjacent), as well as Y_{1}, Y_{2}. There is no problem with Z_{1}, Z_{2}, but we have to assume in this section additionally that either

$$
\begin{equation*}
\operatorname{dim} Y_{1}, \operatorname{dim} Y_{2}<\infty\left(\text { i.e. coidx } \mathcal{X}_{i}<\infty\right) \quad \text { or } \quad \operatorname{codim} Y_{1}, \operatorname{codim} Y_{2}<\infty . \tag{7}
\end{equation*}
$$

If f is a projection, then $\mathrm{dm}(f), \operatorname{rg}(f)$ are similar i.e. $\operatorname{pdim} \operatorname{rg}(f)=\operatorname{pdim} \mathrm{dm}(f)$. Accordingly, to any geometrical dimension δ, we associate the full subcategory $\Omega(k ; \delta)$ of $\Omega(k)$, obtained by restricting the class of objects to segments \mathcal{X} such that $\operatorname{pdim} \mathcal{X}=\delta$ and (7) holds. Analogously we define $\Omega(k, m ; \delta)^{1}$.

In this terminology the class of projectivities defined in [14] is the category $\Omega_{c}(k ;(1,1))$ as lines has pencil dimension $(1,1)$.
Lemma 5.1. Let $h \in \Omega(k, l ; \delta)$ such that $\operatorname{dm}(h), \operatorname{rg}(h)$ are segments in $\mathbf{P}_{k}(V)$. If $m<l<k$ or $k<l<m$, and $\Omega(k, m ; \delta) \neq \emptyset$, then $h \in \Omega(k, m ; \delta)$.
Proof. Assume that $k<l<m$. By definition, $h=g_{n} f_{n} \cdots g_{1} f_{1}$ for some J-projections f_{i} and M-projections g_{i}. Since $\operatorname{dm}(h)$ and $\operatorname{rg}\left(f_{1}\right)$ are similar, there is a J-projection $t=\left.\right|_{[Z, Y]_{m}} ^{\operatorname{rg} f_{1}}$ by 3.5, such that $t f_{1}=\left.\right|_{[Z, Y]_{m}} ^{\mathrm{dm} h}$ and $g_{1} t^{-1}=\left.\right|_{\mathrm{rg} h} ^{[Z, Y]_{m}}$. It is easily seen that, $g_{1} f_{1}=\left(g_{1} t^{-1}\right)\left(t f_{1}\right) \in$ $\Omega(k, m)$. We can repeat this reasoning for $i=2, \ldots, n$, thus we get our claim. In case $m<l<k$ we proceed analogously.
Proposition 5.2. If $h \in \Omega(k ; \delta), m \neq k$ and $\Omega(k, m ; \delta) \neq \emptyset$, then $h \in \Omega(k, m ; \delta)$.
Proof. If h is a slide, then by $4.6 h \in \Omega(k, k-1 ; \delta) \cap \Omega(k, k+1 ; \delta)$, and by 5.1 we are through. If h is a generalized central projection, then depending on $\operatorname{pdim} \operatorname{dm}(h)$ we apply either, 4.5 together with 5.1, or 4.7 and the above property of slides.

Proposition 5.3. For $h \in \Omega(k, m)$ there is a linear bijection φ such that $\tilde{\varphi}_{k}=h$.
Proof. Immediate by 3.6 as h can be decomposed into J- and M-projections.
In view of the above and 3.6(i) the following conclusion arises:
Corollary 5.4. Every projection is a linear collineation.
Lemma 5.5. If $\mathcal{X}_{a}, \mathcal{X}_{b}$ are distinct, similar segments in $\mathbf{P}_{k}(V)$, there are segments \mathcal{X}_{0}, \ldots, \mathcal{X}_{r} such that $\mathcal{X}_{0}=\mathcal{X}_{a}, \mathcal{X}_{r}=\mathcal{X}_{b}$ and $\overline{\mathcal{X}_{i-1}, \mathcal{X}_{i}}$ is a proper pencil, $i=1, \ldots, r$.
Proof. Let $\mathcal{X}_{a}=\left[Z_{a}, Y_{a}\right]_{k}, \mathcal{X}_{b}=\left[Z_{b}, Y_{b}\right]_{k}$. First consider the case where $Y_{a}=Y_{b}=Y$. Then, by connectedness of appropriate space of pencils there are Z_{0}, \ldots, Z_{r} such that $Z_{0}=Z_{a}$, $Z_{r}=Z_{b}$ and Z_{i-1}, Z_{i} are adjacent for $i=1, \ldots, r$. The sequence $\mathcal{X}_{i}=\left[Z_{i}, Y\right]_{k}$, where $i=0, \ldots, r$, satisfies our claim.

For distinct Y_{a}, Y_{b}, take Y_{0}, \ldots, Y_{s} such that $Y_{0}=Y_{a}, Y_{s}=Y_{b}$ and Y_{i-1}, Y_{i} are adjacent for $i=1, \ldots, s$. Then take $Z_{0}:=Z_{a}, Z_{i} \in \operatorname{Sub}_{\operatorname{dim} Z_{0}}\left(Y_{i-1} \cap Y_{i}\right)$, for $i=1, \ldots, s$ and $Z_{s+1}:=Z_{b}$. Observe that for every pair $\left[Z_{i}, Y_{i}\right]_{k},\left[Z_{i+1}, Y_{i}\right]_{k}, i=0, \ldots, s$ we can proceed as in the first considered case, hence the required sequence \mathcal{X}_{i} now, is formed by concatenation.

[^0]Lemma 5.6. For similar segments $\mathcal{X}_{1}, \mathcal{X}_{2}$ in $\mathbf{P}_{k}(V)$ there is $\xi \in \Omega_{c}(k)$ such that $\operatorname{dm}(\xi)=\mathcal{X}_{1}$ and $\operatorname{rg}(\xi)=\mathcal{X}_{2}$.

Proof. Straightforward by 5.5 as for every two neighbour segments, in the sequence joining $\mathcal{X}_{1}, \mathcal{X}_{2}$, there is a central or generalized central projection.

Proposition 5.7. Let \mathcal{X} be a segment in $\mathbf{P}_{k}(V)$. If φ is a linear bijection such that $\tilde{\varphi}_{k}: \mathcal{X} \longrightarrow$ \mathcal{X}, then $\tilde{\varphi}_{k} \in \Omega_{c}(k)$.

Proof. Let us extend the map $\varphi: Y / Z \longrightarrow Y / Z$ to the map $\psi: V / Z \longrightarrow V / Z$ so that it is a linear bijection. The map ψ restricted to any subspace of V / Z can be decomposed into projections in the projective space $\mathbf{P}_{1}(V / Z)$. So we have projections ξ_{1}, \ldots, ξ_{r} in $\mathbf{P}_{1}(V / Z)$ such that $(\varphi)_{1}^{*}=(\psi \mid Y / Z)_{1}^{*}=\xi_{r} \circ \cdots \circ \xi_{1}$. Every projection $\xi_{i}=\oint_{\left[\theta, Q_{2}\right]_{1}}^{\left[\theta\left(Y_{1}\right]_{1}\right.}$ induces a central
 $\mathbf{P}_{m}(V / Z), m=k-\operatorname{dim} Z$.

Corollary 5.8. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be segments in $\mathbf{P}_{k}(V)$. If φ is a linear bijection such that $\tilde{\varphi}_{k}: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$, then $\tilde{\varphi}_{k} \in \Omega_{c}(k)$.

Proof. By 5.6 there is a $\xi \in \Omega_{c}(k)$ such that $\xi: \mathcal{X}_{2} \longrightarrow \mathcal{X}_{1}$, which by 5.3 is a linear bijection ψ such that $\tilde{\psi}_{k}=\xi$. Hence we have a linear bijection $\varphi \psi$ such that $h=(\widetilde{\varphi \psi})_{k}: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{1}$. But $h \in \Omega_{c}(k)$ by 5.7. Hence $\tilde{\varphi}_{k}=\xi^{-1} h$.

Corollary 5.9. Let h be a map such that $\operatorname{dm}(h), \operatorname{rg}(h)$ are subset of points of $\mathbf{P}_{k}(V)$. The following conditions are equivalent:
(1) $h \in \Omega_{c}(k)$,
(2) $h \in \Omega(k)$,
(3) $h \in \Omega(k, m)$, provided that $\Omega(k, m ; \operatorname{pdim}(\operatorname{dm}(h))) \neq \emptyset$,
(4) $h=\tilde{\varphi}_{k}$, where φ is a linear bijection.

Proof. (1) implies (2) trivially.
(2) implies (3) by 5.2 .
(3) implies (4) by 5.3 , and finally
(4) implies (1) by 5.8 .

The equivalence $(1) \equiv(4)$ is a direct analogue of the known characterization of projectivities in projective geometry. Note, as a tricky observation:

Corollary 5.10. Let h be as in 5.9 and $\delta=\operatorname{pdim}(\operatorname{dm}(h))$. If $\Omega(k ; \delta)$ contains at least one slide, then $h \in \Omega(k)$ iff h is a composition of slides.

Proposition 5.11. Let \mathcal{X}_{i} be segments in $\mathbf{P}_{k_{i}}(V), i=1,2$. If $\xi: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$, then $\xi=\tilde{\varphi}_{k_{1}}$ for some linear bijection φ iff $\xi \in \Omega\left(k_{1}, k_{2}\right)$.

Proof. \Rightarrow : By 3.5 there is $f \in \Omega\left(k_{1}, k_{2}\right)$ such that $\operatorname{dm}(f)=\mathcal{X}_{2}$ and $\operatorname{rg}(f)=: \mathcal{X}_{1}^{\prime}$ is a segment in $\mathbf{P}_{k_{1}}(V)$. By $5.3 f=\tilde{\psi}_{k_{2}}$ for some linear bijection ψ. Hence we obtain $h=f \tilde{\varphi}=\widetilde{\psi \varphi}: \mathcal{X} 1 \longrightarrow$ \mathcal{X}_{1}^{\prime}, by $5.8 h \in \Omega_{c}(k)$, and by 5.9 we are through.
\Leftarrow : Follows from 5.3.
Proposition 5.12. If f is a collineation of $\mathbf{P}_{k}(V)$ which preserves stars and tops, then the following are equivalent:
(1) $f \mid \mathcal{X} \in \Omega(k)$ for some segment \mathcal{X},
(2) $f \mid \mathcal{X} \in \Omega(k)$ for all segments \mathcal{X}.

Proof. (1) implies (2): f is given by a bijective semi-linear map φ on V, i.e. $f=\varphi_{k}^{*}$ (cf. [1, Ch. II.10]). By (1) and $5.9 \varphi_{k}^{*} \mid \mathcal{X}$ is proportional to a linear map, and φ is proportional to a linear bijection which suffices to state (2).
(2) implies (1) trivially.

6. Projections onto pencils of segments

The principle intention of this section is to give basic, but general, description of projections onto pencils of segment subspaces.

Let G be a pencil of segment subspaces in $\mathbf{P}_{k}(V)$ determined by $\mathcal{X}_{1}, \mathcal{X}_{2}$. In view of 2.10(iii) whenever a line p intersects two members of G , and does not intersect \mathcal{X}^{\prime}, then for every point U on p there is $\mathcal{X} \in \mathrm{G}$ through U. The \mathcal{X} is unique since otherwise U need to lie on \mathcal{X}^{\prime}. Conversely, for every such \mathcal{X} the point U on p is unique, for if not, we would have $p \subseteq \mathcal{X}$. Eventually, there is a one-to-one correspondence $h=\xi_{p}^{\mathrm{G}}$ between members of G and points on p given with the following condition:

$$
\begin{equation*}
h(\mathcal{X}) \in \mathcal{X} \cap p, \quad \text { for } \mathcal{X} \in \mathrm{G} . \tag{8}
\end{equation*}
$$

Compositions of maps of the above form can be used to characterize wafers of lines (Proposition 6.5), and to distinguish perspectivities and characterize projectivities in terms of them (Corollary 6.8). Evidently $\xi_{\mathrm{G}}^{p}=\left(\xi_{p}^{\mathrm{G}}\right)^{-1}=h^{-1}$, and $U \in h^{-1}(U) \in \mathrm{G}$ for $U \in p$.

Proposition 6.1. Let G be a proper pencil of segments and p a line such that ξ_{G}^{p} is a reasonable projection.
(i) If $Z^{\prime}=Z^{\prime \prime}=Z$, then $\xi_{\mathbf{G}}^{p}(U)=[Z, f(U)]_{k}$ for $U \in p$, where $f=\left.\right|_{\mathbf{p}\left(Y^{\prime}, Y^{\prime \prime}\right)} ^{p}$.
(ii) If $Y^{\prime}=Y^{\prime \prime}=Y$, then $\xi_{\mathbf{G}}^{p}(U)=[g(U), Y]_{k}$ for $U \in p$, where $g=\left.\right|_{\mathbf{p}\left(Z^{\prime}, Z^{\prime \prime}\right)} ^{p}$.

Proof. (i) Let $U \in p$ and $p=\mathbf{p}(H, B)$. Clearly $H \prec U$, by $2.8 H \subseteq Y^{\prime}$, and $U \nsubseteq Y^{\prime}$ since otherwise $U \in \mathcal{X}^{\prime}$. Hence $Y^{\prime} \prec U+Y^{\prime}$ by 2.1. Therefore $U \in\left[Z, U+Y^{\prime}\right]_{k} \in \mathrm{G}$, and $\xi_{\mathrm{G}}^{p}(U)=[Z, f(U)]_{k}$, where $f=U m U+Y^{\prime}$.
(ii) is dual to (i).

Proposition 6.2. Let G be a wafer and p a line crossing two members of G . Then $\xi_{\mathrm{G}}^{p}(U)=$ $[g(U), f(U)]_{k}$ for $U \in p$, where $f=\left.\right|_{\mathbf{p}\left(Y^{\prime}, Y^{\prime \prime}\right)} ^{p}, g=\left.\right|_{\mathbf{p}\left(Z^{\prime}, Z^{\prime \prime}\right)} ^{p}$.

Proof. Let $U \in p$. By 2.9(ii) we find that $U \in\left[U \cap Z^{\prime \prime}, U+Y^{\prime}\right]_{k} \in \mathrm{G}$, and hence $\xi_{\mathrm{G}}^{p}(U)=$ $[g(U), f(U)]_{k}$, where $f=U \rightsquigarrow U+Y^{\prime}$ and $g=U \rightsquigarrow U \cap Z^{\prime \prime}$ are required maps.

This is 2.9(ii) expressed in terms of projections. In view of 3.6 a projection ξ_{G}^{p} in 6.1 induces a linear map. Note that in 6.2 for a wafer G we have the shift $h=\left.\right|_{\mathbf{p}\left(Y^{\prime}, Y^{\prime \prime}\right)} ^{\mathbf{p}\left(Z^{\prime}, Z^{\prime \prime}\right.}$ given, therefore $f=h g$ and in consequence f, g are mutually definable. It justifies to state that projection ξ_{G}^{p} induces a linear map in that case too.

We say that a pencil G^{\prime} extends G if for every $\mathcal{X} \in G$ there is a unique $\mathcal{Y} \in \mathrm{G}^{\prime}$ with $\mathcal{X} \subseteq \mathcal{Y}$, and for every $\mathcal{Y} \in \mathrm{G}^{\prime}$ there is a unique $\mathcal{X} \in \mathrm{G}$ with $\mathcal{X} \subseteq \mathcal{Y}$.

Lemma 6.3. If G is a pencil of segments of dimension δ, and there exists a pencil of segments of dimension δ^{\prime}, with $\delta \leq \delta^{\prime}$, then there is a pencil G^{\prime} of the same type as G such that G^{\prime} extends G.

Proof. Let $\delta=\left(k-k_{1}, k_{2}-k\right)$ and $\delta^{\prime}=\left(k-m_{1}, m_{2}-k\right)$. Then $m_{1} \leq k_{1}$ and $k_{2} \leq m_{2}$. Consider Q, R such that $Z^{\prime}+Q=Z^{\prime \prime}+Q, Y^{\prime} \cap R=Y^{\prime \prime} \cap R$ and $\operatorname{dim} Z \cap Q=m_{1}$ for $Z \in\left[Z^{\prime}, Z^{\prime \prime}\right]_{k_{1}}$, and $\operatorname{dim} Y+R=m_{2}$ for $Y \in\left[Y^{\prime}, Y^{\prime \prime}\right]_{k_{2}}$. By 3.1 maps $f=Z m Z \cap Q$ with $\operatorname{dm}(f)=\left[Z^{\prime}, Z^{\prime \prime}\right]_{k_{1}}$, and $g=Y m Y+R$ with $\operatorname{dm}(g)=\left[Y^{\prime}, Y^{\prime \prime}\right]_{k_{2}}$ form a bijection $h: \mathrm{G} \longrightarrow \mathrm{G}^{\prime}$ such that $h\left([Z, Y]_{k}\right)=[f(Z), g(Y)]_{k}$. The pencil G^{\prime} has the same type as G since $\mathrm{dm}(f), \operatorname{rg}(f)$, and $\mathrm{dm}(g), \operatorname{rg}(g)$ are similar.

Lemma 6.4. Let p_{1}, p_{2} be adjacent lines such that $\mathrm{G}=\overline{p_{1}, p_{2}}$ is a wafer. If q_{1}, q_{2} are lines such that q_{i} crosses p_{j} for $i, j=1,2$, then q_{1}, q_{2} determine a wafer.

Proof. By 2.10 (iii) and 2.8 we find that $q_{1} \triangleleft \mid \triangleright q_{2}$, then by $2.6 q_{1}, q_{2}$ are adjacent since if they lie on a strong subspace, lines p_{1}, p_{2} would also lie on a strong subspace.

Now, suppose that $W_{1} \in q_{1}, W_{2}, U_{2} \in q_{2}, W_{2} \neq U_{2}$ and $W_{1} \sim W_{2}, U_{2}$. We can assume that $p_{1}^{\prime}:=\overline{W_{1}, W_{2}} \in \mathrm{G}$. Through U_{2} there goes a line $p_{2}^{\prime} \in \mathrm{G}$ by 2.10 (iii). Note that $\mathrm{G}=\overline{p_{1}^{\prime}, p_{2}^{\prime}}$. Since $U_{2} \sim W_{1}, W_{2}$ the contradiction arises with 2.9(i).

In projective geometry Steiner's construction of a quadric is well known. The same idea we can utilize to construct wafers.

Proposition 6.5. Let p_{1}, p_{2} be adjacent lines such that $\mathrm{G}=\overline{p_{1}, p_{2}}$ is a wafer. Then stars $S_{i}=\boldsymbol{S}\left(p_{i}\right)$ as well as tops $T_{i}=\boldsymbol{T}\left(p_{i}\right)$ determine proper pencils S , T respectively, and

$$
\overline{p_{1}, p_{2}}=\{S \cap f(S): S \in \mathrm{~S}\},
$$

where $f=\xi_{\mathrm{T}}^{q} \circ \xi_{q}^{\mathrm{S}}$ for some line q that crosses S and T .
Proof. Stars S_{1}, S_{2} are adjacent and tops T_{1}, T_{2} are adjacent since lines p_{1}, p_{2} are adjacent. This suffices to have proper pencils S, T respectively.

Let $U_{1} \in p_{1}$. By 2.9(i) there is a unique $U_{2} \in p_{2}$ collinear with U_{1}. Set $q=\overline{U_{1}, U_{2}}$. Consider a line q^{\prime} through $U_{1}^{\prime} \in p_{1}, U_{1}^{\prime} \neq U_{1}$, taken analogously as q. Note that q, as well as q^{\prime}, crosses S and T properly, hence by 6.1 there are suitable projections ξ_{T}^{q}, ξ_{q}^{S}. Their
composition $f=\xi_{\top}^{q} \circ \xi_{q}^{\mathrm{S}}$ is meaningful and $p_{i}=S_{i} \cap f\left(S_{i}\right)$. Moreover, since G is a wafer and q crosses G there is a projection ξ_{q}^{G} by 6.2.

Let $p \in \mathrm{G}$. Consider $U=\xi_{q}^{\mathrm{G}}(p)$ and take $S=\xi_{\mathrm{S}}^{q}(U), T=\xi_{\mathrm{T}}^{q}(U)$. By $2.8 q^{\prime}$ crosses S in U^{\prime}. Then $U \sim U^{\prime}$ and by $6.4 q, q^{\prime}$ determine a wafer, hence $U^{\prime} \in p$. In consequence $p \subseteq S$. Similarly $p \subseteq T$, hence $S \cap T=p$. Clearly $T=f(S)$.

Following another idea of projective geometry we introduce a concept of perspectivity to be a $\operatorname{map} \xi_{q}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p}$, where p, q are lines and G a pencil of segment subspaces in $\mathbf{P}_{k}(V)$. Compositions of such perspectivities are already known projectivities.

Lemma 6.6. If G is a pencil of segments and p, q are lines such that $\xi_{q}^{\mathrm{G}}, \xi_{\mathrm{G}}^{p}$ are reasonable projections, then $\xi_{q}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p} \in \Omega(k)$.
Proof. Let $U \in p$ and $\mathcal{X}=[Z, Y]_{k} \in \mathrm{G}$. Assume that G is a proper pencil with $Z^{\prime}=Z^{\prime \prime}=Z$. Then $\xi_{\mathrm{G}}^{p}(U)=\left[Z, U+Y^{\prime}\right]_{k}$ and $\xi_{q}^{\mathrm{G}}(\mathcal{X})=Y \cap B$, where $q=\mathbf{p}(H, B)$, by 6.1(i). Hence $\xi_{q}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p}(U)=\left(U+Y^{\prime}\right) \cap B$.

Now, assume that G is a wafer. By 6.2 we have $\xi_{\mathrm{G}}^{p}(U)=\left[U \cap Z^{\prime \prime}, U+Y^{\prime}\right]_{k}$ and $\xi_{q}^{\mathrm{G}}(\mathcal{X})=$ $Z+H=Y \cap B$. Hence, $\xi_{q}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p}(U)=\left(U \cap Z^{\prime \prime}\right)+H=\left(U+Y^{\prime}\right) \cap B$.

In both cases $\xi_{q}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p}$ is a composition of shift projections.
Lemma 6.7. For every slide $f=\Phi_{p_{2}}^{p_{1}}$ or a central projection $f=\Phi_{p_{2}}^{p_{1}}$, and arbitrary δ such that $\mathbf{P}_{k}(V)$ contains segments of dimension δ, there is a pencil G of segments \mathcal{X} with $\operatorname{pdim} \mathcal{X}=\delta$ such that $f=\xi_{p_{2}}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p_{1}}$.
Proof. Let U_{1}, U_{2} be distinct points on p_{1}, and W_{1}, W_{2} points on p_{2} such that $U_{i} \sim W_{i}$. We consider lines $q_{i}=\overline{U_{i}, W_{i}}$.

In case where f is a slide, p_{1}, p_{2} determine a wafer and by 6.4 lines q_{i} determine a wafer, which can be extended to a wafer G of segments of dimension δ by 6.3 .

If f is a central projection, then p_{1}, p_{2} determine a proper pencil and lines q_{1}, q_{2} can be extended to some proper pencil of segments of dimension δ by 6.3.

It is seen that $\xi_{p_{2}}^{\mathrm{G}}, \xi_{\mathrm{G}}^{p_{1}}$ are well defined in both cases and $f=\xi_{p_{2}}^{\mathrm{G}} \circ \xi_{\mathrm{G}}^{p_{1}}$.
Proposition 6.8. $h \in \Omega(k ;(1,1))$ iff h is a composition of perspectivities.
Proof. $\Rightarrow:$ by 6.7 and 5.9 as ξ is a composition of slides and central projections.
\Leftarrow : by 6.6.
Proposition 6.9. Let p_{1}, p_{2} be lines of $\mathbf{P}_{k}(V)$ and $h: p_{1} \longrightarrow p_{2}$ such that $h=g f$ for some shifts f, g. Then h is a perspectivity.
Proof. Let us drop the trivial case where $f=g=\mathrm{id}$. Then either, f is a J-projection and g is an M-projection, or conversely, as $k<m$ or $m<k$. Both cases are mutually dual so, we investigate the first one. Let $p_{i}=\mathbf{p}\left(H_{i}, B_{i}\right)$ and $f=\left.\right|_{p_{2}} ^{t}, g=\left.\right|_{t} ^{p_{1}}$ for some line t of $\mathbf{P}_{m}(V)$. Assume that $f=U m U+Q$ and $g=U m \cup \cap R$. Then $H_{2}=\left(H_{1}+Q\right) \cap R$ and $B_{2}=\left(B_{1}+Q\right) \cap R$. Consider a pencil G of segments $[\Theta, Y]_{k}$ where $Y \in t$. Observe that $Y=U+Q$ for some $U \in p_{1}$. It is seen that lines p_{i} cross all elements of G . Hence we have projections $\xi_{p_{2}}^{\mathrm{G}}, \xi_{\mathrm{G}}^{p_{1}}$ such that $\xi_{\mathrm{G}}^{p_{i}}\left(U_{i}\right)=\left[\Theta, U_{1}+Q\right]_{k}$, for $U_{i} \in p_{i}$, which proves our claim.

References

[1] Artin, E.: Geometric Algebra. Interscience, New York 1957.
Zbl 0077.02101
[2] Bichara, A.; Tallini, G.: On a characterization of Grassmann space representing the h-dimensional subspaces in a projective space. Ann. Discrete Math. 18 (1983), 113-132.

Zbl 0506.51019
[3] Brauner, H.: Geometrie projektiver Räume. I, II. Bibliographisches Institut, Mannheim 1976.

I: Zbl 0332.50010 II: Zbl 0336.50002
[4] Brauner, H.: Zur Theorie linearer Abbildungen. Abh. Math. Sem. Univ. Hamburg 53 (1983), 154-169.

Zbl 0519.51003
[5] Burau, W.: Mehrdimensionale projektive und höhere Geometrie. Mathematische Monographien 5, VEB Deutscher Verlag der Wissenschaften, Berlin 1961. Zbl 0098.34001
[6] Coxeter, H.: Introduction to geometry. John Wiley \& Sons Inc. New York 1961. Zbl 0095.34502
[7] Coxeter, H.: The real projective plane. Springer-Verlag, Heidelberg 1993. Zbl 0772.51001
[8] Grätzer, G.: General lattice theory. Birkhäuser Verlag, Basel, Stuttgart 1978. Zbl 0385.06015
[9] Hartshorne, R.: Foundations of projective geometry. W. A. Benjamin, Inc., New York 1967.

Zbl 0152.38702
[10] Herzer, A.: $\operatorname{Hom}(U, W)$ und affine Grassmann-Geometrie. Mitt. Math. Sem. Giessen 164 (1984), 199-215.

Zbl 0538.51022
[11] Metz, R.: Der affine Raum verallgemeinerter Reguli. Geom. Dedicata 10(1-4) (1981), 337-367.

Zbl 0453.51003
[12] Müller, E.; Kruppa, E.: Lehrbuch der darstellenden Geometrie. 5 ed., Springer-Verlag, Vienna 1948.

Zbl 0030.26804
[13] Oryszczyszyn, H.; Prażmowski, K.: On projections in projective spaces. Demonstr. Math. XXXI(1) (1998), 193-202.

Zbl 0916.51004
[14] Oryszczyszyn, H.; Prażmowski, K.: On projections in spaces of pencils. Demonstr.Math.XXXI(4) (1998), 825-833. Zbl 0930.51003
[15] Pickert, G.: Projectivities in projective planes. In: Geometry - von Staudt's point of view. P. Plaumann and K. Strambach, eds. D. Reidel Publishing Company, Dordrecht, Boston, London 1981, 1-49. Zbl 0496.51002
[16] Tallini, G.: Partial line spaces and algebraic varieties. Symp. Math. 28 (1986), 203-217. Zbl 0616.51019
[17] Żynel, M.: Subspaces and embeddings of spaces of pencils. Submitted to Rend. Sem. Mat. Messina.

Received December 21, 2001, revised version May 14, 2005

[^0]: ${ }^{1}$ Note that given $\delta=\left(n_{1}, n_{2}\right)$ the maximal m such that $\mathbf{P}_{m}(V)$ contains a subspace \mathcal{X} with $\operatorname{pdim} \mathcal{X}=\delta$ is $\operatorname{dim} V-n_{2}$ and the minimal is n_{1}.

