On *p*-hyperelliptic Involutions of Riemann Surfaces

Ewa Tyszkowska

Institute of Mathematics, University of Gdańsk Wita Stwosza 57, 80–952, Gdańsk, Poland e-mail: Ewa.Tyszkowska@math.univ.gda.pl

Abstract. A compact Riemann surface X of genus g > 1 is said to be phyperelliptic if X admits a conformal involution ρ , called a p-hyperelliptic involution, for which X/ρ is an orbifold of genus p. Here we give a new proof of the well known fact that for g > 4p + 1, ρ is unique and central in the group of all automorphisms of X. Moreover we prove that every two p-hyperelliptic involutions commute for $3p + 2 \leq g \leq 4p + 1$ and X admits at most two such involutions if g > 3p + 2. We also find some bounds for the number of commuting p-hyperelliptic involutions and general bound for the number of central p-hyperelliptic involutions. Keywords: p-hyperelliptic Riemann surfaces, automorphisms of Riemann surfaces, fixed points of automorphisms

1. Introduction

A Riemann surface $X = \mathcal{H}/\Gamma$ of genus $g \ge 2$ is said to be *p*-hyperelliptic if X admits a conformal involution ρ , called a *p*-hyperelliptic involution, such that X/ρ is an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in [1] where they also proved that for g > 4p + 1, *p*-hyperelliptic involution is unique and central in the group of all automorphisms of X. We prove these facts in a combinatorial way using the Hurwitz-Riemann formula and certain theorem of Macbeath [2] about fixed points of an automorphism of X; the Hurwitz-Riemann formula asserts that a *p*-hyperelliptic involution has 2g + 2 - 4p fixed points. The advantage of our approach is that it allows us to study of *p*-hyperelliptic involutions in case $g \le 4p + 1$ also. First we show that for g in range $3p + 2 \le g \le 4p + 1$,

0138-4821/93 $2.50 \odot 2005$ Heldermann Verlag

every two *p*-hyperelliptic involutions commute and afterwards we argue that X admits at most two such involutions for $3p + 2 < g \leq 4p + 1$ and at most 6 for g = 3p + 2. Finally we find some bounds for the number of commuting *p*-hyperelliptic involutions and general bound for the number of central *p*-hyperelliptic involutions.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each compact Riemann surface X of genus $g \ge 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ . Furthermore a group G of automorphisms of a surface $X = \mathcal{H}/\Gamma$ can be represented as $G = \Lambda/\Gamma$ for another Fuchsian group Λ . Each Fuchsian group Λ is given a signature $\sigma(\Lambda) = (g; m_1, \ldots, m_r)$, where g, m_i are integers verifying $g \ge 0, m_i \ge 2$. The signature determines the presentation of Λ :

```
generators: x_1, \ldots, x_r, a_1, b_1, \ldots, a_g, b_g,
relations: x_1^{m_1} = \cdots = x_r^{m_r} = x_1 \cdots x_r [a_1, b_1] \cdots [a_g, b_g] = 1.
```

Such set of generators is called the *canonical set of generators* and often, by abuse of language, the set of *canonical generators*. Geometrically x_i are elliptic elements which correspond to hyperbolic rotations and the remaining generators are hyperbolic translations. The integers m_1, m_2, \ldots, m_r are called the *periods* of Λ and g is the genus of the orbit space \mathcal{H}/Λ . Fuchsian groups with signatures (g; -) are called *surface groups* and they are characterized among Fuchsian groups as these ones which are torsion free.

The group Λ has associated to it a fundamental region whose area $\mu(\Lambda)$, called the *area* of the group, is:

$$\mu(\Lambda) = 2\pi \left(2g - 2 + \sum_{i=1}^{r} (1 - 1/m_i) \right).$$
(1)

If Γ is a subgroup of finite index in Λ , then we have the *Riemann-Hurwitz formula* which says that

$$[\Lambda:\Gamma] = \frac{\mu(\Gamma)}{\mu(\Lambda)}.$$
(2)

The points of \mathcal{H} with non-trivial stabilizers in Λ fall into r Λ -orbits o_1, \ldots, o_r such that every point belonging to o_i has a stabilizer which is a cyclic group of order m_i . The points of Xwith non-trivial stabilizers fall into r G-orbits O_1, \ldots, O_r , where $O_i = \pi(o_i)$ and $\pi : \mathcal{H} \to X$ is a projection map. Furthermore a homomorphism $\theta : \Lambda \to G$ induces an isomorphism between stabilizers and so the stabilizer of $y \in O_i$ is cyclic of order m_i . The number of fixed points of an automorphism of X can be calculated by the following theorem of Macbeath [2].

Theorem 2.1. Let $X = H/\Gamma$ be a Riemann surface with the automorphism group $G = \Lambda/\Gamma$ and let x_1, \ldots, x_r be elliptic canonical generators of Λ with periods m_1, \ldots, m_r respectively. Let $\theta : \Lambda \to G$ be the canonical epimorphism and for $1 \neq g \in G$ let $\varepsilon_i(g)$ be 1 or 0 according as g is or is not conjugate to a power of $\theta(x_i)$. Then the number F(g) of points of X fixed by g is given by the formula

$$F(g) = |N_G(\langle g \rangle)| \sum_{i=1}^r \varepsilon_i(g)/m_i.$$
(3)

3. On *p*-hyperelliptic involutions of Riemann surfaces

Here we deal with the number of *p*-hyperelliptic involutions which a Riemann surface can admit. Along the chapter X is a *p*-hyperelliptic Riemann surface of genus $g \ge 2$ and we call its *p*-hyperelliptic involutions briefly by *p*-involutions. First we give a new proof of the well known result of H. Farkas and I. Kra.

Theorem 3.1. A p-involution of a surface X of genus g > 4p + 1 is unique and central in the full automorphism group of X.

Proof. Suppose that a Riemann surface $X = \mathcal{H}/\Gamma$ admits two distinct *p*-involutions ρ and ρ' . Then they generate a dihedral group G, say of order 2n and there exist a Fuchsian group Λ and an epimorphism $\theta : \Lambda \to G$ with the kernel Γ . If x_i is a canonical elliptic generator of Λ corresponding to some period $m_i > 2$ then $\theta(x_i) \in \langle \rho \rho' \rangle$. But none conjugation of ρ nor of ρ' belongs to $\langle \rho \rho' \rangle$ and so in terms of Macbeath's theorem $\varepsilon_i(\rho) = \varepsilon_i(\rho') = 0$.

Now if n is odd then $|N_G(\langle \rho \rangle)| = 2$ and $F(\rho) = 2g + 2 - 4p$ implies that Λ has 2g + 2 - 4p periods equal to 2. If n is even then $|N_G(\langle \rho \rangle)| = 4$ and so g+1-2p canonical elliptic generators are mapped by θ onto conjugates of ρ . Similarly another g+1-2p canonical elliptic generators are mapped by θ onto conjugates of ρ' . So in both cases $\sigma(\Lambda) = (\gamma; 2, ..., 2, m_{s+1}, ..., m_r)$, for s = 2g + 2 - 4p and some integer $r \geq s$. Now applying the Hurwitz-Riemann formula for (Λ, Γ) , we obtain $2g - 2 = 2n(2\gamma - 2 + g + 1 - 2p + \sum_{i=s+1}^{r}(1 - 1/m_i))$ which implies

$$g-1 \ge n(g-1-2p).$$
 (4)

Since $n \ge 2$, it follows that $g \le 4p + 1$. Thus for g > 4p + 1 a p-involution is unique.

Now given $g \in G$, $g\rho g^{-1}$ has the same number of fixed points as ρ . So by the Hurwitz-Riemann formula it is also a *p*-involution which implies that $g\rho g^{-1} = \rho$ for g > 4p + 1.

Theorem 3.2. Every two p-involutions of a Riemann surface X of genus $3p+2 \le g \le 4p+1$ commute. Moreover for $3p+2 < g \le 4p+1$, X can admit two and no more such involutions.

Proof. Let X be a Riemann surface of genus $3p + 2 \le g \le 4p + 1$. If X admits two p-involutions then they generate the group $D_n = \Lambda/\Gamma$ for some n satisfying the inequality (4), which implies

$$n \le 1 + \frac{2p}{g - 1 - 2p}.\tag{5}$$

Thus n = 2 and so every two *p*-involutions of X commute. Moreover their product cannot be a *p*-involution. Otherwise, by Theorem 2.1, Λ would have the signature $(\gamma; 2, {}^{3(g+1-2p)}, 2)$ and applying the Hurwitz-Riemann formula for (Λ, Γ) we would obtain $2\gamma = 3p - g$ and consequently $g \leq 3p$, a contradiction. So if X admits three *p*-involutions ρ_1, ρ_2, ρ_3 then they generate the group $G = Z_2 \oplus Z_2 \oplus Z_2$ which can be identified with Δ/Γ for some Fuchsian group Δ with a signature $(\delta; 2, ..., 2)$. Let $\theta : \Delta \to G$ be the canonical epimorphism and let s_k denote the number of elliptic generators of Δ which are transformed by θ onto ρ_k , for k = 1, 2, 3. Then by Theorem 2.1, $s_k = (g + 1 - 2p)/2$ for k = 1, 2, 3 and so applying the Hurwitz-Riemann formula for (Δ, Γ) we obtain $2g - 2 = 8(2\delta - 2 + 3(g + 1 - 2p)/4 + t/2)$, where t = r - 3(g + 1 - 2p)/2. Thus $\delta = (2 + 3p - g - t)/4 \ge 0$ if and only if $g \le 3p + 2$. Consequently a surface X of genus $3p + 2 < g \le 4p + 1$ admits at most two p-involutions.

Now we shall prove that Riemann surfaces of such genera with two *p*-involutions actually exist. For, let Δ be a Fuchsian group with the signature (0; 2, .r., 2), where r = g+3 and let us define an epimorphism $\theta : \Delta \to Z_2 \oplus Z_2 = \langle \rho \rangle \oplus \langle \rho' \rangle$ by the assignment $\theta(x_1) = \cdots = \theta(x_s) = \rho, \theta(x_{s+1}) = \cdots = \theta(x_{2s}) = \rho', \theta(x_{2s+1}) = \cdots = \theta(x_r) = \rho\rho'$, where s = g+1-2p. Since *s* and r-2s have the same parities, it follows that the relation $\theta(x_1) \cdots \theta(x_r) = 1$ holds. Moreover by Theorem 2.1, $F(\rho) = F(\rho') = 2g+2-4p$ and so by the Hurwitz-Riemann formula, ρ and ρ' are two commuting *p*-involutions.

Proposition 3.3. Let ρ_1, \ldots, ρ_l be pairwise commuting p-involutions of a surface X of genus g and let they generate the group $G_k = Z_2 \oplus \stackrel{k}{\ldots} \oplus Z_2$, where $l \ge k$. Then

- (i) $g \equiv 1 (2^{k-2})$ and $p \equiv 1 (2^{k-3})$,
- (ii) the integers k and l are limited in the following cases:

$k \leq 2$	and	$l \leq 3$	if	$g \equiv 0(2)$
$k \leq 3$	and	$l \leq 4$	if	$p \equiv 0 (2)$
$k \leq 3$	and	$l \leq 7$	if	$g \equiv 3 (4)$
$k \leq 4$	and	$l \leq 15$	if	$p \equiv 3 (4)$

Proof. (i) Suppose that pairwise commuting p-involutions of a Riemann surface X generate a group $G_k = Z_2 \oplus .^k . \oplus Z_2$. Then G_k can be identified with Δ/Γ for a Fuchsian group Δ with the signature $(\gamma; 2, .^r, ., 2)$. Applying the Hurwitz-Riemann formula for (Δ, Γ) we obtain $g - 1 = 2^{k-2}(4\gamma - 4 + r)$ which implies that $g \equiv 1 (2^{k-2})$. Furthermore, by Theorem 2.1, a p-involution $\rho \in G_k$ admits fixed points in $(g + 1 - 2p)/2^{k-2}$ orbits and so in particular $g + 1 - 2p \equiv 0 (2^{k-2})$. Consequently $p \equiv 1 (2^{k-3})$.

(ii) The restrictions for k are direct consequence of the conditions from (i). We need only to show that for even p, the group G_3 can admit at most 4 p-involutions. For, let us suppose that the product of two p-involution $\rho_1, \rho_2 \in G_3$ is a p-involution. Then they generate the group G_2 isomorphic with Λ/Γ , where Λ is a Fuchsian group with the signature $(\delta; 2, {}^{3(g+1-2p)}, 2)$. Thus $\delta = (3p - g)/2$ and so $3p - g \equiv 0$ (2). However p is even and g is odd which implies that 3p - g is odd, a contradiction. Consequently in this case G_3 may admit only one more p-involution, namely $\rho_1 \rho_2 \rho_3$ and so $l \leq 4$.

By Proposition 3.3, the number of pairwise commuting *p*-involutions corresponding to given p is limited for $p \equiv 0$ (2) or $p \equiv 3$ (4). The next proposition give a bound for such number for $p \equiv 1$ (4).

Proposition 3.4. Let $p = 1 + 2^m \alpha$, where α is odd and $m \ge 2$. Then the number of pairwise commuting p-involutions of a Riemann surface X of genus $g \ne 2p-1$ does not exceed $2^n \alpha + 5$, where n is the least integer in range $0 \le n \le m+2$ such that $2^n \alpha \ge m-n-1$.

Proof. Given such p, let X be a Riemann surface whose pairwise commuting p-involutions generate $G_k = Z_2 \oplus .^k . \oplus Z_2$. Then by Proposition 3.3, $k \leq m+3$. So let us write k = m+3-nfor some integer n in range $0 \leq n \leq m+2$ and let $G_k = \Delta/\Gamma$ for a Fuchsian group Δ with a signature $(\gamma; 2, .., 2)$. Since no single G_k -orbit contains fixed points of two different pinvolutions, it follows that $r \geq ks$, where s is the number of G_k -orbits containing fixed points of a single *p*-involution. In order to check the greatest value of k, we consider the minimum value of s and the maximum value of r. Thus we take s = 1 and $\gamma = 0$. By Theorem 2.1, $s = (g + 1 - 2p)/2^{k-2}$ and so s = 1 for $g = 1 + 2^{m+1-n} + 2^{m+1}\alpha$. But the Hurwitz-Riemann formula for such g and $\gamma = 0$ gives $r = 2^n\alpha + 5$ which clearly limits the number of *p*-involutions in G_k . Since for s = 1, the epimorphism $\theta : \Delta \to G_k$ cannot be defined for r < k + 1, it follows that n is the least integer satisfying the inequality $2^n\alpha \ge m - n - 1$. \Box

Proposition 3.5. Let X be a p-hyperelliptic Riemann surface of genus g = 3p + 2. Then X admits at most 2 p-involutions if $p \equiv 0$ (2) or $p \equiv 3$ (4) and at most 3 if $p \equiv 1$ (4) and p > 5. For p = 1 or p = 5, X can admit 5 or 6 and no more p-involutions respectively.

Proof. By Theorem 3.2, all p-involutions of a Riemann surface of genus g = 3p + 2 commute one to each other and so they generate the group $G_k = Z_2 \oplus .^k . \oplus Z_2$ for some k. Let $G_k = \Delta/\Gamma$ for some Fuchsian group Δ , say with a signature $(\gamma; 2, .^r, ., 2)$. Denote by s_k the number of G_k -orbits containing the fixed points of a single p-involution from G_k . By Theorem 2.1, $s_k = (g + 1 - 2p)/2^{k-2} = (p + 3)/2^{k-2}$. Thus $k \leq 2$ for p even and $k \leq 3$ and s_k is odd for $p \equiv 3$ (4). However, by the Hurwitz-Riemann formula for k = 3 and (Δ, Γ) , we have $2\gamma + r - 3s_3 = 0$, which implies $\gamma = 0$ and $r = 3s_3$ in virtue of obvious $r \geq 3s_3$. Therefore, for $p \equiv 3$ (4), an epimorphism $\theta : \Delta \to G_3$ actually can not exist. Consequently $k \leq 2$ if $p \equiv 0$ (2) or $p \equiv 3$ (4). Furthermore X admits at most 2 p-involutions in these cases since, by the proof of the Theorem 3.2, a product of two p-involutions cannot be a p-involution for g > 3p.

Now let $p \equiv 1$ (4). First we shall show that $k \leq 5$ and that surfaces whose *p*-involutions generate G_4 or G_5 exist only for $p \leq 5$. For, let us write $p = 4\alpha + 1$ for some integer α . Then $g = 1 + 4(1 + 3\alpha)$ and $s_k = (\alpha + 1)/2^{k-4}$. Let *n* and *m* be the greatest integers such that $g \equiv 1$ (2^{*n*}) and $p \equiv 1$ (2^{*m*}). Then for even α , we have n = 2 which by (i) of the Proposition 3.3 implies $k \leq 4$ and for odd α , m = 2 and consequently $k \leq 5$.

Now let $t = r - ks_k$. Applying the Hurwitz-Riemann formula for (Δ, Γ) and k = 4, we obtain $1 = 4\gamma + \alpha + t$. Thus $\gamma = 0$ and either $\alpha = 1, r = 4s_4$ or $\alpha = 0, r = 4s_4 + 1$. Consequently $p = 5, s_4 = 2$ and $\sigma(\Delta) = (0; 2, 2, 2, 2, 2, 2, 2, 2)$ or $p = 1, s_4 = 1$ and $\sigma(\Delta) = (0; 2, 2, 2, 2, 2, 2, 2)$. So there exists exactly one possible epimorphism $\theta : \Delta \to G_4$ whose image is generated by *p*-involutions and it is given by the assignment

$$\theta(x_i) = \rho_j \text{ for } 1 \le j \le k, (j-1)s_k < i \le js_k, \tag{6}$$

in the first case and by the assignment

$$\theta(x_i) = \rho_j, \ \theta(x_{ks_k+1}) = \rho_1 \cdots \rho_k \text{ for } 1 \le j \le k, (j-1)s_k < i \le js_k$$

$$\tag{7}$$

in the second one, where k = 4. Thus the surface whose *p*-involutions generate G_4 exists only for p = 1 or p = 5 and the corresponding group G_4 admits exactly five or four *p*-involutions respectively.

Similarly for k = 5 we obtain $4\gamma + \alpha + t = 2$. Since for even α we have $k \leq 4$, it follows that $\alpha = 1, \gamma = 0$ and $r = 5s_5 + 1$. Thus $p = 5, s_5 = 1$ and Δ has the signature (0; 2, 2, 2, 2, 2, 2, 2). Now the assignment (7) defines the only possible epimorphism onto G_5 . Thus the surface whose *p*-involutions generate G_5 exists only for p = 5 and the corresponding group G_5 admits exactly six 5-involutions. Summing up, for p > 5 and $p \equiv 1$ (4) we have $k \leq 3$. However, from the first part of the proof s_3 is even and Δ has the signature $(0; 2, \stackrel{3s_3}{\ldots}, 2)$. Thus the assignment (6) for k = 3, defines the only possible epimorphism $\Delta \to G_3$ whose image is generated by *p*-involutions and so the group G_3 contains exactly 3 *p*-involutions.

Let us notice that for arbitrary positive integer $k \ge 5$, we can find integers p and g such that there exists a Riemann surface of genus g admitting k pairwise commuting p-involutions. Indeed for $g = 1 + (k-4)2^{k-3}$ and $p = 1 + (k-5)2^{k-4}$ we can take a Fuchsian group Δ with the signature $(0; 2, .^k, ., 2)$ and define an epimorphism $\theta : \Delta \to Z_2 \oplus \overset{k-1}{\ldots} \oplus Z_2 = \langle \rho_1 \rangle \oplus \cdots \oplus \langle \rho_{k-1} \rangle$ by the assignment $\theta(x_i) = \rho_i$ for $i = 1, \ldots, k-1$ and $\theta(x_k) = \rho_1 \cdots \rho_{k-1}$. Then $\Gamma = \ker \theta$ is a surface Fuchsian group of orbit genus g and ρ_i are p-involutions of a Riemann surface $X = \mathcal{H}/\Gamma$.

At the end of the paper we give a bound for the number of all central p-involutions of a surface X.

Theorem 3.6. Let X be a p-hyperelliptic Riemann surface of genus $g \ge 2$ and let G be its automorphism group of order 2N. Assume that the canonical projection $X \to X/G$ is ramified at r points with multiplicities m_1, \ldots, m_r . Then for $g \ne 2p - 1$, the number of central p-involutions of X does not exceed

$$(N\sum_{i=1}^{r} 1/m_i)/(g+1-2p).$$

Proof. Here $X = \mathcal{H}/\Gamma$ for some Fuchsian surface group Γ with the signature (g; -) and $G = \Delta/\Gamma$ for some Fuchsian group Δ with the signature $(\delta; m_1, \ldots, m_r)$. Let x_1, \ldots, x_r be canonical elliptic generators of Δ and let $\theta : \Delta \to G$ be the canonical epimorphism. Assume that X admits a central p-involution ρ . If $g \neq 2p - 1$ then ρ has fixed points and so it is conjugate to $\theta(x_i)^{m_i/2}$ for some x_i corresponding to an even period m_i . However since ρ is central, it follows that actually $\rho = \theta(x_i)^{m_i/2}$. In particular for distinct p-involutions ρ and ρ' , $\varepsilon_i(\rho) \neq \varepsilon_i(\rho')$. Moreover by Theorem 2.1, $N \sum_{i=1}^r \varepsilon_i(\rho)/m_i = g + 1 - 2p = N \sum_{i=1}^r \varepsilon_i(\rho')/m_i$. Thus if n is the number of all p-involutions of X then $n(g + 1 - 2p) \leq N \sum_{i=1}^r 1/m_i$ and so the theorem is proved.

Acknowledgement. The author wishes to thank the referee for his comments and suggestion.

References

- Farkas, H. M.; Kra, I.: *Riemann Surfaces*. Graduate Texts in Mathematics **71**, Springer-Verlag, New York - Heidelberg - Berlin 1980.
 Zbl 0475.30001
- Macbeath, A. M.: Action of automorphisms of a compact Riemann surface on the first homology group. Bull. Lond. Math. Soc. 5 (1973), 103–108.
 Zbl 0259.30016

Received August 2, 2004