On p-hyperelliptic Involutions of Riemann Surfaces

Ewa Tyszkowska
Institute of Mathematics, University of Gdansk Wita Stwosza 57, 80-952, Gdańsk, Poland e-mail: Ewa.Tyszkowska@math.univ.gda.pl

Abstract

A compact Riemann surface X of genus $g>1$ is said to be p hyperelliptic if X admits a conformal involution ρ, called a p-hyperelliptic involution, for which X / ρ is an orbifold of genus p. Here we give a new proof of the well known fact that for $g>4 p+1, \rho$ is unique and central in the group of all automorphisms of X. Moreover we prove that every two p-hyperelliptic involutions commute for $3 p+2 \leq g \leq 4 p+1$ and X admits at most two such involutions if $g>3 p+2$. We also find some bounds for the number of commuting p-hyperelliptic involutions and general bound for the number of central p-hyperelliptic involutions. Keywords: p-hyperelliptic Riemann surfaces, automorphisms of Riemann surfaces, fixed points of automorphisms

1. Introduction

A Riemann surface $X=\mathcal{H} / \Gamma$ of genus $g \geq 2$ is said to be p-hyperelliptic if X admits a conformal involution ρ, called a p-hyperelliptic involution, such that X / ρ is an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in [1] where they also proved that for $g>4 p+1$, p-hyperelliptic involution is unique and central in the group of all automorphisms of X. We prove these facts in a combinatorial way using the HurwitzRiemann formula and certain theorem of Macbeath [2] about fixed points of an automorphism of X; the Hurwitz-Riemann formula asserts that a p-hyperelliptic involution has $2 g+2-4 p$ fixed points. The advantage of our approach is that it allows us to study of p-hyperelliptic involutions in case $g \leq 4 p+1$ also. First we show that for g in range $3 p+2 \leq g \leq 4 p+1$,

0138-4821/93 \$ 2.50 © 2005 Heldermann Verlag
every two p-hyperelliptic involutions commute and afterwards we argue that X admits at most two such involutions for $3 p+2<g \leq 4 p+1$ and at most 6 for $g=3 p+2$. Finally we find some bounds for the number of commuting p-hyperelliptic involutions and general bound for the number of central p-hyperelliptic involutions.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each compact Riemann surface X of genus $g \geq 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ. Furthermore a group G of automorphisms of a surface $X=\mathcal{H} / \Gamma$ can be represented as $G=\Lambda / \Gamma$ for another Fuchsian group Λ. Each Fuchsian group Λ is given a signature $\sigma(\Lambda)=\left(g ; m_{1}, \ldots, m_{r}\right)$, where g, m_{i} are integers verifying $g \geq 0, m_{i} \geq 2$. The signature determines the presentation of Λ :

$$
\text { generators: } \quad x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{g}, b_{g} \text {, }
$$

relations: $\quad x_{1}^{m_{1}}=\cdots=x_{r}^{m_{r}}=x_{1} \cdots x_{r}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1$.
Such set of generators is called the canonical set of generators and often, by abuse of language, the set of canonical generators. Geometrically x_{i} are elliptic elements which correspond to hyperbolic rotations and the remaining generators are hyperbolic translations. The integers $m_{1}, m_{2}, \ldots, m_{r}$ are called the periods of Λ and g is the genus of the orbit space \mathcal{H} / Λ. Fuchsian groups with signatures $(g ;-)$ are called surface groups and they are characterized among Fuchsian groups as these ones which are torsion free.

The group Λ has associated to it a fundamental region whose area $\mu(\Lambda)$, called the area of the group, is:

$$
\begin{equation*}
\mu(\Lambda)=2 \pi\left(2 g-2+\sum_{i=1}^{r}\left(1-1 / m_{i}\right)\right) . \tag{1}
\end{equation*}
$$

If Γ is a subgroup of finite index in Λ, then we have the Riemann-Hurwitz formula which says that

$$
\begin{equation*}
[\Lambda: \Gamma]=\frac{\mu(\Gamma)}{\mu(\Lambda)} \tag{2}
\end{equation*}
$$

The points of \mathcal{H} with non-trivial stabilizers in Λ fall into $r \Lambda$-orbits o_{1}, \ldots, o_{r} such that every point belonging to o_{i} has a stabilizer which is a cyclic group of order m_{i}. The points of X with non-trivial stabilizers fall into $r G$-orbits O_{1}, \ldots, O_{r}, where $O_{i}=\pi\left(o_{i}\right)$ and $\pi: \mathcal{H} \rightarrow X$ is a projection map. Furthermore a homomorphism $\theta: \Lambda \rightarrow G$ induces an isomorphism between stabilizers and so the stabilizer of $y \in O_{i}$ is cyclic of order m_{i}. The number of fixed points of an automorphism of X can be calculated by the following theorem of Macbeath [2]. Theorem 2.1. Let $X=H / \Gamma$ be a Riemann surface with the automorphism group $G=\Lambda / \Gamma$ and let x_{1}, \ldots, x_{r} be elliptic canonical generators of Λ with periods m_{1}, \ldots, m_{r} respectively. Let $\theta: \Lambda \rightarrow G$ be the canonical epimorphism and for $1 \neq g \in G$ let $\varepsilon_{i}(g)$ be 1 or 0 according as g is or is not conjugate to a power of $\theta\left(x_{i}\right)$. Then the number $F(g)$ of points of X fixed by g is given by the formula

$$
\begin{equation*}
F(g)=\left|N_{G}(\langle g\rangle)\right| \sum_{i=1}^{r} \varepsilon_{i}(g) / m_{i} . \tag{3}
\end{equation*}
$$

3. On p-hyperelliptic involutions of Riemann surfaces

Here we deal with the number of p-hyperelliptic involutions which a Riemann surface can admit. Along the chapter X is a p-hyperelliptic Riemann surface of genus $g \geq 2$ and we call its p-hyperelliptic involutions briefly by p-involutions. First we give a new proof of the well known result of H. Farkas and I. Kra.

Theorem 3.1. A p-involution of a surface X of genus $g>4 p+1$ is unique and central in the full automorphism group of X.

Proof. Suppose that a Riemann surface $X=\mathcal{H} / \Gamma$ admits two distinct p-involutions ρ and ρ^{\prime}. Then they generate a dihedral group G, say of order $2 n$ and there exist a Fuchsian group Λ and an epimorphism $\theta: \Lambda \rightarrow G$ with the kernel Γ. If x_{i} is a canonical elliptic generator of Λ corresponding to some period $m_{i}>2$ then $\theta\left(x_{i}\right) \in\left\langle\rho \rho^{\prime}\right\rangle$. But none conjugation of ρ nor of ρ^{\prime} belongs to $\left\langle\rho \rho^{\prime}\right\rangle$ and so in terms of Macbeath's theorem $\varepsilon_{i}(\rho)=\varepsilon_{i}\left(\rho^{\prime}\right)=0$.

Now if n is odd then $\left|N_{G}(\langle\rho\rangle)\right|=2$ and $F(\rho)=2 g+2-4 p$ implies that Λ has $2 g+2-4 p$ periods equal to 2 . If n is even then $\left|N_{G}(\langle\rho\rangle)\right|=4$ and so $g+1-2 p$ canonical elliptic generators are mapped by θ onto conjugates of ρ. Similarly another $g+1-2 p$ canonical elliptic generators are mapped by θ onto conjugates of ρ^{\prime}. So in both cases $\sigma(\Lambda)=\left(\gamma ; 2, . \stackrel{s}{.}, 2, m_{s+1}, \ldots, m_{r}\right)$, for $s=2 g+2-4 p$ and some integer $r \geq s$. Now applying the Hurwitz-Riemann formula for (Λ, Γ), we obtain $2 g-2=2 n\left(2 \gamma-2+g+1-2 p+\sum_{i=s+1}^{r}\left(1-1 / m_{i}\right)\right)$ which implies

$$
\begin{equation*}
g-1 \geq n(g-1-2 p) \tag{4}
\end{equation*}
$$

Since $n \geq 2$, it follows that $g \leq 4 p+1$. Thus for $g>4 p+1$ a p-involution is unique.
Now given $g \in G, g \rho g^{-1}$ has the same number of fixed points as ρ. So by the HurwitzRiemann formula it is also a p-involution which implies that $g \rho g^{-1}=\rho$ for $g>4 p+1$.

Theorem 3.2. Every two p-involutions of a Riemann surface X of genus $3 p+2 \leq g \leq 4 p+1$ commute. Moreover for $3 p+2<g \leq 4 p+1, X$ can admit two and no more such involutions.

Proof. Let X be a Riemann surface of genus $3 p+2 \leq g \leq 4 p+1$. If X admits two p involutions then they generate the group $\mathrm{D}_{n}=\Lambda / \Gamma$ for some n satisfying the inequality (4), which implies

$$
\begin{equation*}
n \leq 1+\frac{2 p}{g-1-2 p} \tag{5}
\end{equation*}
$$

Thus $n=2$ and so every two p-involutions of X commute. Moreover their product cannot be a p-involution. Otherwise, by Theorem $2.1, \Lambda$ would have the signature $\left(\gamma ; 2,{ }^{3(g+1-2 p)}, 2\right)$ and applying the Hurwitz-Riemann formula for (Λ, Γ) we would obtain $2 \gamma=3 p-g$ and consequently $g \leq 3 p$, a contradiction. So if X admits three p-involutions $\rho_{1}, \rho_{2}, \rho_{3}$ then they generate the group $G=Z_{2} \oplus Z_{2} \oplus Z_{2}$ which can be identified with Δ / Γ for some Fuchsian group Δ with a signature $(\delta ; 2, \stackrel{r}{.}, 2)$. Let $\theta: \Delta \rightarrow G$ be the canonical epimorphism and let s_{k} denote the number of elliptic generators of Δ which are transformed by θ onto ρ_{k}, for $k=1,2,3$. Then by Theorem 2.1, $s_{k}=(g+1-2 p) / 2$ for $k=1,2,3$ and so applying the Hurwitz-Riemann formula for (Δ, Γ) we obtain $2 g-2=8(2 \delta-2+3(g+1-2 p) / 4+t / 2)$,
where $t=r-3(g+1-2 p) / 2$. Thus $\delta=(2+3 p-g-t) / 4 \geq 0$ if and only if $g \leq 3 p+2$. Consequently a surface X of genus $3 p+2<g \leq 4 p+1$ admits at most two p-involutions.

Now we shall prove that Riemann surfaces of such genera with two p-involutions actually exist. For, let Δ be a Fuchsian group with the signature ($0 ; 2, . \stackrel{r}{.}, 2$), where $r=g+3$ and let us define an epimorphism $\theta: \Delta \rightarrow Z_{2} \oplus Z_{2}=\langle\rho\rangle \oplus\left\langle\rho^{\prime}\right\rangle$ by the assignment $\theta\left(x_{1}\right)=\cdots=\theta\left(x_{s}\right)=$ $\rho, \theta\left(x_{s+1}\right)=\cdots=\theta\left(x_{2 s}\right)=\rho^{\prime}, \theta\left(x_{2 s+1}\right)=\cdots=\theta\left(x_{r}\right)=\rho \rho^{\prime}$, where $s=g+1-2 p$. Since s and $r-2 s$ have the same parities, it follows that the relation $\theta\left(x_{1}\right) \cdots \theta\left(x_{r}\right)=1$ holds. Moreover by Theorem 2.1, $F(\rho)=F\left(\rho^{\prime}\right)=2 g+2-4 p$ and so by the Hurwitz-Riemann formula, ρ and ρ^{\prime} are two commuting p-involutions.

Proposition 3.3. Let $\rho_{1}, \ldots, \rho_{l}$ be pairwise commuting p-involutions of a surface X of genus g and let they generate the group $G_{k}=Z_{2} \oplus . \stackrel{k}{.} \oplus Z_{2}$, where $l \geq k$. Then
(i) $g \equiv 1\left(2^{k-2}\right)$ and $p \equiv 1\left(2^{k-3}\right)$,
(ii) the integers k and l are limited in the following cases:

$$
\begin{array}{lll}
k \leq 2 & \text { and } \quad l \leq 3 & \text { if } g \equiv 0(2) \\
k \leq 3 & \text { and } \quad l \leq 4 & \text { if } p \equiv 0(2) \\
k \leq 3 & \text { and } \quad l \leq 7 & \text { if } g \equiv 3(4) \\
k \leq 4 & \text { and } \quad l \leq 15 & \text { if } \\
p \equiv 3(4) .
\end{array}
$$

Proof. (i) Suppose that pairwise commuting p-involutions of a Riemann surface X generate a group $G_{k}=Z_{2} \oplus . \stackrel{k}{.} \oplus Z_{2}$. Then G_{k} can be identified with Δ / Γ for a Fuchsian group Δ with the signature $(\gamma ; 2, . r, 2)$. Applying the Hurwitz-Riemann formula for (Δ, Γ) we obtain $g-1=2^{k-2}(4 \gamma-4+r)$ which implies that $g \equiv 1\left(2^{k-2}\right)$. Furthermore, by Theorem 2.1, a p-involution $\rho \in G_{k}$ admits fixed points in $(g+1-2 p) / 2^{k-2}$ orbits and so in particular $g+1-2 p \equiv 0\left(2^{k-2}\right)$. Consequently $p \equiv 1\left(2^{k-3}\right)$.
(ii) The restrictions for k are direct consequence of the conditions from (i). We need only to show that for even p, the group G_{3} can admit at most $4 p$-involutions. For, let us suppose that the product of two p-involution $\rho_{1}, \rho_{2} \in G_{3}$ is a p-involution. Then they generate the group G_{2} isomorphic with Λ / Γ, where Λ is a Fuchsian group with the signature ($\delta ; 2,{ }^{3(g+1-2 p)}, 2$). Thus $\delta=(3 p-g) / 2$ and so $3 p-g \equiv 0(2)$. However p is even and g is odd which implies that $3 p-g$ is odd, a contradiction. Consequently in this case G_{3} may admit only one more p-involution, namely $\rho_{1} \rho_{2} \rho_{3}$ and so $l \leq 4$.

By Proposition 3.3, the number of pairwise commuting p-involutions corresponding to given p is limited for $p \equiv 0(2)$ or $p \equiv 3(4)$. The next proposition give a bound for such number for $p \equiv 1$ (4).

Proposition 3.4. Let $p=1+2^{m} \alpha$, where α is odd and $m \geq 2$. Then the number of pairwise commuting p-involutions of a Riemann surface X of genus $g \neq 2 p-1$ does not exceed $2^{n} \alpha+5$, where n is the least integer in range $0 \leq n \leq m+2$ such that $2^{n} \alpha \geq m-n-1$.

Proof. Given such p, let X be a Riemann surface whose pairwise commuting p-involutions generate $G_{k}=Z_{2} \oplus .{ }^{k} . \oplus Z_{2}$. Then by Proposition 3.3, $k \leq m+3$. So let us write $k=m+3-n$ for some integer n in range $0 \leq n \leq m+2$ and let $G_{k}=\Delta / \Gamma$ for a Fuchsian group Δ with a signature $(\gamma ; 2, \ldots r, 2)$. Since no single G_{k}-orbit contains fixed points of two different p involutions, it follows that $r \geq k s$, where s is the number of G_{k}-orbits containing fixed points
of a single p-involution. In order to check the greatest value of k, we consider the minimum value of s and the maximum value of r. Thus we take $s=1$ and $\gamma=0$. By Theorem 2.1, $s=(g+1-2 p) / 2^{k-2}$ and so $s=1$ for $g=1+2^{m+1-n}+2^{m+1} \alpha$. But the HurwitzRiemann formula for such g and $\gamma=0$ gives $r=2^{n} \alpha+5$ which clearly limits the number of p-involutions in G_{k}. Since for $s=1$, the epimorphism $\theta: \Delta \rightarrow G_{k}$ cannot be defined for $r<k+1$, it follows that n is the least integer satisfying the inequality $2^{n} \alpha \geq m-n-1$.

Proposition 3.5. Let X be a p-hyperelliptic Riemann surface of genus $g=3 p+2$. Then X admits at most 2 -involutions if $p \equiv 0(2)$ or $p \equiv 3(4)$ and at most 3 if $p \equiv 1$ (4) and $p>5$. For $p=1$ or $p=5, X$ can admit 5 or 6 and no more p-involutions respectively.

Proof. By Theorem 3.2, all p-involutions of a Riemann surface of genus $g=3 p+2$ commute one to each other and so they generate the group $G_{k}=Z_{2} \oplus . k . \oplus Z_{2}$ for some k. Let $G_{k}=\Delta / \Gamma$ for some Fuchsian group Δ, say with a signature $(\gamma ; 2, . r, 2)$. Denote by s_{k} the number of G_{k}-orbits containing the fixed points of a single p-involution from G_{k}. By Theorem 2.1, $s_{k}=(g+1-2 p) / 2^{k-2}=(p+3) / 2^{k-2}$. Thus $k \leq 2$ for p even and $k \leq 3$ and s_{k} is odd for $p \equiv 3$ (4). However, by the Hurwitz-Riemann formula for $k=3$ and (Δ, Γ), we have $2 \gamma+r-3 s_{3}=0$, which implies $\gamma=0$ and $r=3 s_{3}$ in virtue of obvious $r \geq 3 s_{3}$. Therefore, for $p \equiv 3$ (4), an epimorphism $\theta: \Delta \rightarrow G_{3}$ actually can not exist. Consequently $k \leq 2$ if $p \equiv 0(2)$ or $p \equiv 3(4)$. Furthermore X admits at most $2 p$-involutions in these cases since, by the proof of the Theorem 3.2, a product of two p-involutions cannot be a p-involution for $g>3 p$.

Now let $p \equiv 1$ (4). First we shall show that $k \leq 5$ and that surfaces whose p-involutions generate G_{4} or G_{5} exist only for $p \leq 5$. For, let us write $p=4 \alpha+1$ for some integer α. Then $g=1+4(1+3 \alpha)$ and $s_{k}=(\alpha+1) / 2^{k-4}$. Let n and m be the greatest integers such that $g \equiv 1\left(2^{n}\right)$ and $p \equiv 1\left(2^{m}\right)$. Then for even α, we have $n=2$ which by (i) of the Proposition 3.3 implies $k \leq 4$ and for odd $\alpha, m=2$ and consequently $k \leq 5$.

Now let $t=r-k s_{k}$. Applying the Hurwitz-Riemann formula for (Δ, Γ) and $k=4$, we obtain $1=4 \gamma+\alpha+t$. Thus $\gamma=0$ and either $\alpha=1, r=4 s_{4}$ or $\alpha=0, r=4 s_{4}+1$. Consequently $p=5, s_{4}=2$ and $\sigma(\Delta)=(0 ; 2,2,2,2,2,2,2,2)$ or $p=1, s_{4}=1$ and $\sigma(\Delta)=$ $(0 ; 2,2,2,2,2)$. So there exists exactly one possible epimorphism $\theta: \Delta \rightarrow G_{4}$ whose image is generated by p-involutions and it is given by the assignment

$$
\begin{equation*}
\theta\left(x_{i}\right)=\rho_{j} \text { for } 1 \leq j \leq k,(j-1) s_{k}<i \leq j s_{k}, \tag{6}
\end{equation*}
$$

in the first case and by the assignment

$$
\begin{equation*}
\theta\left(x_{i}\right)=\rho_{j}, \theta\left(x_{k s_{k}+1}\right)=\rho_{1} \cdots \rho_{k} \text { for } 1 \leq j \leq k,(j-1) s_{k}<i \leq j s_{k} \tag{7}
\end{equation*}
$$

in the second one, where $k=4$. Thus the surface whose p-involutions generate G_{4} exists only for $p=1$ or $p=5$ and the corresponding group G_{4} admits exactly five or four p-involutions respectively.

Similarly for $k=5$ we obtain $4 \gamma+\alpha+t=2$. Since for even α we have $k \leq 4$, it follows that $\alpha=1, \gamma=0$ and $r=5 s_{5}+1$. Thus $p=5, s_{5}=1$ and Δ has the signature ($0 ; 2,2,2,2,2,2$). Now the assignment (7) defines the only possible epimorphism onto G_{5}. Thus the surface whose p-involutions generate G_{5} exists only for $p=5$ and the corresponding group G_{5} admits exactly six 5 -involutions.

Summing up, for $p>5$ and $p \equiv 1$ (4) we have $k \leq 3$. However, from the first part of the proof s_{3} is even and Δ has the signature $\left(0 ; 2, \stackrel{3 s_{3}, 2}{ }\right.$). Thus the assignment (6) for $k=3$, defines the only possible epimorphism $\Delta \rightarrow G_{3}$ whose image is generated by p-involutions and so the group G_{3} contains exactly $3 p$-involutions.

Let us notice that for arbitrary positive integer $k \geq 5$, we can find integers p and g such that there exists a Riemann surface of genus g admitting k pairwise commuting p-involutions. Indeed for $g=1+(k-4) 2^{k-3}$ and $p=1+(k-5) 2^{k-4}$ we can take a Fuchsian group Δ with the signature $(0 ; 2, . . ., 2)$ and define an epimorphism $\theta: \Delta \rightarrow Z_{2} \oplus \stackrel{k-1}{\cdot} \oplus Z_{2}=\left\langle\rho_{1}\right\rangle \oplus \cdots \oplus\left\langle\rho_{k-1}\right\rangle$ by the assignment $\theta\left(x_{i}\right)=\rho_{i}$ for $i=1, \ldots, k-1$ and $\theta\left(x_{k}\right)=\rho_{1} \cdots \rho_{k-1}$. Then $\Gamma=\operatorname{ker} \theta$ is a surface Fuchsian group of orbit genus g and ρ_{i} are p-involutions of a Riemann surface $X=\mathcal{H} / \Gamma$.

At the end of the paper we give a bound for the number of all central p-involutions of a surface X.

Theorem 3.6. Let X be a p-hyperelliptic Riemann surface of genus $g \geq 2$ and let G be its automorphism group of order $2 N$. Assume that the canonical projection $X \rightarrow X / G$ is ramified at r points with multiplicities m_{1}, \ldots, m_{r}. Then for $g \neq 2 p-1$, the number of central p-involutions of X does not exceed

$$
\left(N \sum_{i=1}^{r} 1 / m_{i}\right) /(g+1-2 p) .
$$

Proof. Here $X=\mathcal{H} / \Gamma$ for some Fuchsian surface group Γ with the signature $(g ;-)$ and $G=\Delta / \Gamma$ for some Fuchsian group Δ with the signature $\left(\delta ; m_{1}, \ldots, m_{r}\right)$. Let $x_{1}, \ldots x_{r}$ be canonical elliptic generators of Δ and let $\theta: \Delta \rightarrow G$ be the canonical epimorphism. Assume that X admits a central p-involution ρ. If $g \neq 2 p-1$ then ρ has fixed points and so it is conjugate to $\theta\left(x_{i}\right)^{m_{i} / 2}$ for some x_{i} corresponding to an even period m_{i}. However since ρ is central, it follows that actually $\rho=\theta\left(x_{i}\right)^{m_{i} / 2}$. In particular for distinct p-involutions ρ and ρ^{\prime}, $\varepsilon_{i}(\rho) \neq \varepsilon_{i}\left(\rho^{\prime}\right)$. Moreover by Theorem 2.1, $N \sum_{i=1}^{r} \varepsilon_{i}(\rho) / m_{i}=g+1-2 p=N \sum_{i=1}^{r} \varepsilon_{i}\left(\rho^{\prime}\right) / m_{i}$. Thus if n is the number of all p-involutions of X then $n(g+1-2 p) \leq N \sum_{i=1}^{r} 1 / m_{i}$ and so the theorem is proved.

Acknowledgement. The author wishes to thank the referee for his comments and suggestion.

References

[1] Farkas, H. M.; Kra, I.: Riemann Surfaces. Graduate Texts in Mathematics 71, SpringerVerlag, New York - Heidelberg - Berlin 1980.

Zbl 0475.30001
[2] Macbeath, A. M.: Action of automorphisms of a compact Riemann surface on the first homology group. Bull. Lond. Math. Soc. 5 (1973), 103-108.

Zbl 0259.30016

