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Abstract. In this paper I describe a method – based on the projective interpre-
tation of the hyperbolic geometry – that determines the data and the density of
the optimal ball and horoball packings of each well-known Coxeter tiling (Coxeter
honeycomb) in the hyperbolic space H3.

1. Introduction

The regular Coxeter tilings or regular Coxeter honeycombs P are partitions of the hyperbolic
space Hn (n = 2) into congruent regular polytopes. A honeycomb with cells congruent to a
given regular polyhedron P exists if and only if the dihedral angle of P is a submultiple of
2π. All honeycombs for n = 3 with bounded cells were first found by Schlegel in 1883, those
with unbounded cells by H. S. M. Coxeter in his famous article [5].

Another approach to describing honeycombs involves the analysis of their symmetry
groups. If P is such a honeycomb, then any motion taking one cell into another takes the
whole honeycomb into itself. The symmetry group of a honeycomb is denoted by SymP .
Therefore the characteristic simplex F of any cell P ∈ P is a fundamental domain of the
group SymP generated by reflections in its facets (hyperfaces).
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The scheme of a regular polytope P is a weighted graph (characterizing P ⊂ Hn up
to congruence) in which the nodes, numbered by 0, 1, . . . , d correspond to the bounding
hyperplanes of F . Two nodes are joined by an edge if the corresponding hyperplanes are
not orthogonal. Let the set of weights (n1, n2, n3, . . . , nd−1) be the Schläfli symbol of P , and
nd the weight describing the dihedral angle of P that equals 2π

nd
, and F the Coxeter simplex

with the scheme

n n n n1 2 d-1 d

0 1 2 d-2 d-1 d

.

The ordered set (n1, n2, n3, . . . , nd−1, nd) is said to be the Schläfli symbol of the honeycomb
P . To every scheme there is a corresponding symmetric matrix (aij) of size (d + 1)× (d + 1)
where aii = 1 and, for i 6= j ∈ {0, 1, 2, . . . , d}, aij equals − cos π

nij
with all angles between the

facets i,j of F ; then nk =: nk−1,k, too. Reversing the numbers of the nodes in the scheme
of P (but keeping the weights), leads to the so called dual honeycomb P∗ whose symmetry
group coincides with SymP .

In [3], Böröczky and Florian determined the densest horosphere packing of H3 without
any symmetry assumption. They proved that this provides the general density upper bound
for all sphere packings (more precisely ball packings) of H3, where the density is related to
the Dirichlet-Voronoi cell of every ball, as follows:

s0 = (1 +
1

22
− 1

42
− 1

52
+

1

72
+

1

82
− − + + · · · )−1 ≈ 0.85327609.

This limit is achieved by the 4 horoballs touching each other in the ideal regular simplex
whose honeycomb has the Schläfli symbol (3, 3, 6), the horoball centres are just in the 4 ideal
vertices of the simplex. Beyond the universal upper bound there are a few results in this topic
([4], [14], [15], [16]), therefore our method seems to be suited for determining local optimal
ball and horoball packings for given hyperbolic tilings.

In this paper we investigate regular Coxeter honeycombs and their optimal ball and
horoball packings in the hyperbolic space H3. By SymPpqr we denote the symmetry group
of the honeycomb Ppqr, ((p, q, r) = (n1, n2, n3)), thus

Ppqr = {
⋃

γ ∈ SymPpq

γ(Fpqr)}.

Thus, for the density, we relate each ball or horoball, respectively, to its regular polytope
Ppqr which contains it, assumed not to be a Dirichlet-Voronoi cell.

These Coxeter-tilings are the following (according to the notation of H. S. M. Coxeter):

(p, q, r) = (3, 5, 3), (4, 3, 5), (5, 3, 4), (5, 3, 5), (1.1)

(3, 3, 6), (3, 4, 4), (4, 3, 6), (5, 3, 6), (1.2)

(3, 6, 3), (4, 4, 4), (6, 3, 6), (1.3)

(4, 4, 3), (6, 3, 3), (6, 3, 4), (6, 3, 5). (1.4)
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From these, in the first part of this paper, we shall consider every tiling, where a horosphere is
inscribed in each regular polyhedron which is infinite centred and has proper or ideal vertices.
Thus we obtain of the parameters (1.3–1.4) satisfying the above mentioned properties.

In the second part we consider the Coxeter honeycombs with parameters (1.1). In these
cases the cells have proper centres and vertices, too, thus we investigate the ball packings
where each ball lies in its regular polyhedron Ppqr.

In the third section we discuss tilings, where each vertex of the regular polyhedra is at
the infinity. These polyhedra with parameters (1.2) will be called total asymptotic. In this
part we shall consider two types:

1. The horoball centres lie in the infinite vertices of the cells and each polyhedron of the
honeycomb contains only one horoball type.

2. The ball centres lie in the middle of the polyhedra.

With our method, based on the projective interpretation of hyperbolic geometry [11], [13],
in each case we have determined the volume of the cells, moreover, we have computed the
density of the optimal ball and horoball packings. This method can be generalized to the
higher dimensions as well. The computations were carried out by Maple V Release 5 up to
30 decimals.

2. The optimal horoball packings for honeycombs with parameters (1.3–1.4)

2.1. The homogeneous coordinate system

In this section we consider those Coxeter tilings, where the infinite regular polyhedra are
circumscribed about a horosphere and the polyhedra have proper or ideal vertices. These
honeycombs are given by the parameters (p, q, r) (Fig. 1) where the faces are regular p-gons,
q edges of this polyhedron meet in each vertex, and the dihedral angles of two faces are 2π

r
.

In Fig. 1 we display a part of the infinite regular polyhedron of a Coxeter tiling, where A3

is the centre of a horosphere, the centre of a regular polygon is denoted by A2 (A2 is also
the common point of this face and the optimal horosphere), A0 is one of its vertices, and
we denote by A1 the footpoint of A2 on an edge of this face. It is sufficient to consider the
optimal horoball packing in the orthoscheme A0A1A2A3 because the tiling can be constructed
from such orthoschemes as fundamental domain of SymPpqr.

We consider the real projective 3-space P3(V4, V ∗
4 ) where the one-, two- and three-

dimensional subspaces of the 4-dimensional real vector space V4 represent the points, lines
and planes of P3, respectively. The point X(x) and the plane α(a) are incident if and only if
xa = 0, i.e. the value of the linear form a on the vector x is equal to zero (x ∈ V4 \ {0}, a ∈
V ∗

4 \ {0}). The straight lines of P3 are characterized by 2-subspaces of V4 or of V ∗
4 , i.e. by 2

points or dually by 2 planes, respectively [11].

We introduce a projective coordinate system, by a vector basis bi (i = 0, 1, 2, 3) for P3,
with the following coordinates of the points of the infinite regular polyhedron (see Fig. 1),
A0(1, x1, 0, 0), A1(1, t1,−t2, 0), A2(1, 0, 0, 0), A3(1, 0, 0, 1).
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2.2. Description of the horosphere in the hyperbolic space H3

We shall use the Cayley-Klein ball model of the hyperbolic space H3 in the Cartesian homo-
geneous rectangular coordinate system introduced in (2.1) (see Fig. 2). The equation of the
horosphere with centre A3(1, 0, 0, 1) through the point S(1, 0, 0, s) is obtained [16] by Fig. 2:

0 = −2s(x0)2 − 2(x3)2 + 2(s + 1)(x0x3) + (s− 1)((x1)2 + (x2)2) (2.1)

in the projective coordinates (x0, x1, x2, x3). In the Cartesian rectangular coordinate system
this equation is the following:

2(x2 + y2)

1− s
+

4(z − s+1
2

)2

(1− s)2
= 1, where x :=

x1

x0
, y :=

x2

x0
, z :=

x3

x0
. (2.2)

The site of this horosphere in the part of the infinite regular polyhedron is illustrated in
Fig. 1.
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2.3. The data of the cells of the regular honeycombs

By the projective method we can calculate the coordinates which are collected in Table 1.

Table 1

(p, q, r) t1 t2 x1 Wpqr

(3, 6, 3) 1
4

√
3

4
1 0.16915693

(4, 4, 3) 1
2
√

2
1

2
√

2
1√
2

0.07633047

(4, 4, 4) 1
2

1
2

1 0.22899140

(6, 3, 3)
√

3
4

1
4

1√
3

0.04228923

(6, 3, 4)
√

3
2
√

2
1

2
√

2
1√
2

0.10572308

(6, 3, 5)
√

6
√

10+
√

2

16

√
2
√

10+
√

2

16

√
2
√

7+3
√

5√
3(
√

5+1)
0.17150166

(6, 3, 6) 3
4

√
3

4
1 0.25373540

By means of the theorem of N. I. Lobachevsky on the volume of orthoschemes in the hyper-
bolic 3-space (its application was described in [7] and [14]) we have determined the volume of
each orthoscheme A0A1A2A3 for the parameters (1.3–1.4). The volumes Wpqr are summarized
in Table 1.

2.4. On the optimal horoballs

It is clear that the optimal horosphere has to touch the faces of its containing regular polyhe-
dron. Thus the optimal horoball passes through the point A2(1, 0, 0, 0) and the parameter s
in the equation of the optimal horosphere is 0 (see Section 2.2). The orthoscheme A0A1A2A3

and its images under SymPpqr divide the optimal horosphere into congruent horospherical
triangles (see Fig. 1). The vertices A′

0, A
′
1, A

′
2 = A2(1, 0, 0, 0) of such a triangle are in the

edges A0A3, A2A3, A1A3, respectively, and on the optimal horosphere. Therefore, their
coordinates can be determined in the Cayley-Klein model.

The lengths of the sides of the horospherical triangle (they are horocycles) are determined
by the classical formula of J. Bolyai (see Fig. 3.):

l(x) = k sinh
x

k
(at present k = 1). (2.3)

The volume of the horoball pieces can be calculated by the formula of J. Bolyai. If the area
of the figure A on the horosphere is A, the volume determined by A and the aggregate of
axes drawn from A is equal to

V =
1

2
kA (we assume that k = 1 here). (2.4)

It is well known that the intrinsic geometry of the horosphere is Euclidean, therefore, the
area Apqr of the horospherical triangle A′

0 A′
1 A′

2 is obtained by the formula of Heron.
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Definition 2.1. The density of the horoball packing for the regular honeycombs (1.3−−1.4)
is defined by the following formula:

δpqr :=
1
2
kApqr

Wpqr

. (2.5)

In Table 2 we have collected the results of the optimal horoball packings for the parameters
(1.3–1.4).

Table 2

(p, q, r) Apqr δpqr

(3, 6, 3) 0.21650635 0.63995706
(4, 4, 3) 0.06250000 0.81880805
(4, 4, 4) 0.25000000 0.54587203
(6, 3, 3) 0.03608439 0.85327609
(6, 3, 4) 0.07216878 0.68262087
(6, 3, 5) 0.09447006 0.55084110
(6, 3, 6) 0.21650635 0.42663804

Remark 2.2. In the case (6, 3, 3) we have obtained the arrangement of the densest horo-
sphere packing [3].

3. The optimal ball packings to the regular honeycombs with parameters (1.1)

In Fig. 4 we have illustrated a part of the regular polyhedron of a Coxeter tiling, where A3 is
the centre of a cell, the centre of a regular polygon is denoted by A2, A0 is one of its vertices
and we denote by A1 the midpoint of an edge of this face. The regular polyhedra can be
constructed with such orthoschemes. The cells for these parameters have proper vertices and
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centres. The volume of every regular polyhedron Ppqr is denoted by V (Ppqr). In this section
we are interested in ball packings, where the congruent balls with radius Rpqr lie in cells of
the above mentioned tilings.

Definition 3.1. The density of the ball packing to any Coxeter honeycomb (1.1) can be
defined by the following formula:

δpqr :=
2π{sinh(Rpqr) cosh(Rpqr)−Rpqr}

V (Ppqr)
. (3.1)

It is clear that the optimal ball with centre A3 has to touch the faces of its regular polyhedron
(see Fig. 4.).
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Figure 4.

Thus the optimal ball passes through the point A2, and the optimal radius A2A3 of these
tilings can be calculated by hyperbolic trigonometry. The following equation is obtained from
the right-angled triangle A0A2A3:

Ropt
pqr := A2A3 = arcosh

cos α

sin β
= arcosh

−a23√
a22a33

, (3.2)

where the angles α = A2A0A3∠ and β = A0A3A2∠ can be determined from the regular
polytopes. On the other hand Ropt

pqr can be computed also with our projective method [9],
[13], where (aij) = (aij)−1 and aij = − cos π

nij
(see Section 1).

Again, we have calculated the volume Wpqr of the orthoschemes A0A1A2A3 for the pa-
rameters (1.1).

The volumes Wpqr and the volumes V (Ppqr) of the regular polyhedra Ppqr are summarized
in Table 3.

Table 3

(p, q, r) Wpqr V (Ppqr)
(3, 5, 3) 0.03905029 120 ·W353 ≈ 4.68603427
(4, 3, 5) 0.03588506 48 ·W435 ≈ 1.72248304
(5, 3, 4) 0.03588506 120 ·W534 ≈ 4.30620760
(5, 3, 5) 0.09332554 120 ·W535 ≈ 11.19906474
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The optimal radius and optimal density are summarized by the formulas (3.1), (3.2) in the
following table:

Table 4

(p, q, r) Ropt
pqr δpqr

opt

(3, 5, 3) 0.86829804 0.68002717
(4, 3, 5) 0.53063753 0.38437165
(5, 3, 4) 0.80846083 0.58553917
(5, 3, 5) 0.99638450 0.45079491

4. The optimal ball and horoball packings of the honeycombs with parameters
(1.2)

In these cases under consideration the cells of the regular tilings have ideal vertices and proper
centers. Fig. 5 shows a part of a total asymptotic regular polyhedron of a Coxeter tiling,
where A3 is the centre of a cell, the centre of an asymptotic regular polygon is denoted by
A2, A0 is one of its ideal vertices and we denote with A1 the “midpoint” (i.e. the footpoint
of A2) of an edge of this face.

1
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A

A

0 A
2
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Figure 5.

4.1. The optimal ball packings

In this subsection we consider the ball packings where the congruent balls with radius Rpqr lie
in cells of the above mentioned Coxeter honeycombs. The volume of each regular polyhedron
is denoted by V (Ppqr). As in Section 3, the density can be defined by the formula (3.1). It
is clear that the optimal ball passes through the point A2, and the optimal radius A2A3 of
these tilings can be calculated by hyperbolic trigonometry. The optimal radius Ropt

pqr = A2A3

is the distance of parallelism of the angle A0A3A2∠, thus the equation (4.1) follows from the
formula of J. Bolyai (see (3.2)).

tanh Rpqr = cos βi (i = 1, 2, 3, 4) ⇔

⇔ Ropt
pqr = A2A3 = arcosh

1

sin βi

= arcosh
−ai

23√
ai

22a
i
33

. (4.1)
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We obtain the values βi from the metric data of the regular polytopes:

1. Tetrahedron {3, 3}: β1 = arccos 1
3
,

2. Cube {4, 3}: β2 = arccos 1√
3
,

3. Octahedron {3, 4}: β3 = arccos 1√
3
,

4. Dodecahedron {5, 3}: β4 = arccos
√

5+2
√

5
15

.

The volumes Wpqr of the orthoschemes A0A1A2A3 can be calculated for the parameters
(1.2), similarly to Sections 2 and 3. The regular, total asymptotic polyhedra of Ppqr can
be constructed from these orthoschemes, thus the volume V (Ppqr) can be determined. The
optimal radius and the optimal density, respectively, is obtained by formulas (4.1) and (3.1).
The results are collected in Table 5.

Table 5

(p, q, r) Ropt
pqr = artanhβi V (Ppqr) δpqr

opt

(3, 3, 6) 0.34657359 1.01494161 0.17597899
(4, 3, 6) 0.65847895 5.07470803 0.25697101
(3, 4, 4) 0.65847895 3.66386238 0.35592299
(5, 3, 6) 1.08393686 20.58019935 0.32739972

4.2. The optimal horoball packings

In our cases (1.2) the vertices of a regular cell Ei, i = 0, 1, 2, 3, 4 . . . , (Fig. 6) lie on the
absolute of H3, therefore these vertices can be centres of some horoballs.

If the symmetry group SymPpqr of these tilings coincides with the symmetry group of the
horospheres, then the optimal horoball packing corresponds to the optimal horoball packing
of the dual Coxeter tilings P∗

pqr. Thus we have not obtained any new optimal horosphere
packings. Therefore, we investigate the horoball packings with one horoball type in each
polyhedron of Ppqr. We shall use the Cayley-Klein ball model of the hyperbolic space H3 in
the Cartesian homogeneous rectangular coordinate system. We introduce for each Coxeter
tiling a projective coordinate system, by vector bases bi (i = 0, 1, 2, 3) for P3.

4.2.1. The tetrahedron (3,3,6)

It is clear that in this case the optimal horoball packing corresponds to the optimal horoball
packing of the Coxeter honeycomb with parameter (3, 6, 3), as we have illustrated with
horoball centre E3 in the Fig. 6.

By the notation of Section 2 and by Definition 2.1 (see Fig. 1, Fig. 6)

W363 = W 1
336 ≈ 0.16915693, A363 = A1

336 ≈ 0.21650635,

δ363 = δ1
336 ≈ 0.63995706.
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4.2.2. The octahedron (3,4,4)

Fig. 7.a shows a projective coordinate system introduced by a Cartesian rectangular coor-
dinate system with the homogeneous coordinates E0(1, 0, 0, 0), E1(1, 1, 0, 0), E2(1, 0, 1, 0),
E3(1, 0, 0, 1). We consider the horoball packings with one horoball type whose center is
E3(1, 0, 0, 1). The equation of such horospheres were determined in the Subsection 2.2. It
is clear that the optimal horosphere has to touch those faces of the octahedron that do not
include the vertex E3(1, 0, 0, 1) (Fig. 7.a). By the projective method (see [11], [14], [15], [16])
wee can calculate the coordinates of a footpoint Y (y), the intersection of the perpendicular
from the point E3(e3) on the plane (u) where the plane (u) is a side plane of the octahedron.
The coordinates of this footpoint are Y (y) = (1, 1

2
, 1

2
, 0). This point is the “midpoint” of the

edge E1E2. In order to find the equation of the optimal horosphere with centre E3(1, 0, 0, 1)
we have substituted the coordinates of the footpoints Y (y) into the equation of the horo-
sphere, and we have obtained the value of the parameter s and so the equation of the optimal
horosphere (see Fig. 7.a):

s = −1

3
;

3

2
x2 +

3

2
y2 +

9

4
(z − 1

3
)2 − 1 = 0. (4.2)
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The octahedra with common vertex E3 divide the optimal horosphere into congruent horo-
spherical quadrangles. The vertices H0, H1, H2, H4 of such a quadrangle are in the edges
E3E0, E3E1, E3E2, E3E4, respectively, and on the optimal horosphere. Therefore, their
coordinates can be determined in the Cayley-Klein model. They are summarized in Table 6.
The area of the horospherical quadrilateral H0H1H2H4 is denoted by Aopt

344 (see Fig. 7.a).

Table 6

Hi(hi)/ Octahedron

H0(h0) (1, 0,−4
5
, 1

5
)

H1(h1) (1, 4
5
, 0, 1

5
)

H2(h2) (1, 0, 4
5
, 1

5
)

H4(h4) (1,−4
5
, 0, 1

5
)

Similar to the above sections we have calculated the volume V (P344) of the regular octahedron
P344 and we have determined the density of the optimal horoball packing by formulas (2.2),
(2.3), (2.4), and according to Definition 2.1

δopt
344 =

1
2
Aopt

344

V (P344)
≈ 2.00000000

3.66386238
≈ 0.54587203. (4.3)

Remark 4.1. The optimal density of the horoball packing of the Coxeter honeycomb (3, 4, 4)
corresponds to the optimal density of (4, 4, 4) (see 4.3 and Table 2.).

4.2.3. The cube (4,3,6)

Analogous to 4.2.2 we introduce a projective coordinate system, by an orthogonal vector
basis bi (i = 0, 1, 2, 3) with signature (−1, 1, 1, 1) for P3, with the following coordinates of
the vertices of the infinite regular cube (see Fig. 7.b), in the Cayley-Klein ball model:

E0(1,−
√

2√
3
,

√
2

3
,
1

3
), E1(1,−

√
2√
3
,−
√

2

3
,−1

3
), E2(1, 0, 2

√
2

3
,−1

3
),

E3(1, 0, 0, 1), E4(1,

√
2√
3
,−
√

2

3
,−1

3
).

Similar to 4.2.2 we have obtained the following results:

1. The equation of the optimal horosphere with centre E3 corresponds to the formula (4.2).
The site of this horosphere in the part of the infinite regular polyhedron is illustrated
in Fig. 7.b.

2. The cubes with common vertex E3 divide the optimal horosphere into congruent horo-
spherical triangles. The coordinates of the vertices H1, H2, H3 of such a triangle are
collected in the following table:
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Table 7

Hi(hi) Cube

H1(h1) (1, 0,−4
√

2
7

, 3
7
)

H2(h2) (1, 2
√

6
7

, 2
√

2
7

, 3
7
)

H3(h3) (1,−2
√

6
7

, 2
√

2
7

, 3
7
)

3. We have calculated the volume V (P436) of the regular cube P436 and the area of the
horospherical triangle H1 H2 H3 which is denoted by Aopt

436. Thus the density of the
optimal horoball packing for cube (4,3,6) with one horoball type is

δopt
436 =

1
2
Aopt

436

V (P436)
≈ 2.59807621

5.07470803
≈ 0.51196565. (4.4)

4.2.4. The dodecahedron (5,3,6)

Similar to 4.2.2 we introduce a projective coordinate system for P3, with the following coor-
dinates of the vertices of the infinite regular dodecahedron (see Fig. 8), in the Cayley-Klein
ball model:

E0(1,−
√

5− 1

2
√

6
,

√
5 + 3

2
√

6
,

√
5

3
), E1(1, 0,

2
√

2

3
,−1

3
),

E2(1,

√
2√
3
,

√
2

3
,
1

3
), E3(1, 0, 0, 1).

x

y z

E3

E

2E
1

E
0

Figure 8.

Analogous to 4.2.2 and 4.2.3 we have obtained the following results:

1. The optimal horosphere has to touch some faces of the dodecahedron which do not
include the vertex E3(1, 0, 0, 1) (Fig. 8), thus, in order to find the equation of the
optimal horosphere, we have to calculate the coordinates of the footpoint Y (y) of the
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perpendicular from the point E3(e3) on the side plane E0E1E2 (see Fig. 8) of the
dodecahedron:

Y (y) = (1,− (−3 +
√

5)2
√

6

4 (−17 + 7
√

5)
,
(−3 +

√
5)
√

2(1 +
√

5)

4 (−17 + 7
√

5)
,
−3 +

√
5

(−17 + 7
√

5)
).

2. The equation of the optimal horosphere with centre E3 is

s = 0; 2x2 + 2y2 + 4(z − 1

2
)2 − 1 = 0. (4.5)

This horosphere touches, for example, the face E0E1E2 of the regular dodecahedron
and passes through the centre of the Cayley-Klein model.

3. The dodecahedra with common vertex E3 divide the optimal horosphere into congruent
horospherical triangles. The coordinates of the vertices H1, H2, H3 of such a triangle
are collected in the following table:

Table 8

Hi(hi) Dodecahedron

H1(h1) (1,
√

6(2
√

5−1)
38

,
√

2(3
√

5+8)
38

, 3
√

5+8
19

)

H2(h2) (1,−
√

6(5
√

5+7)
76

,
√

2(3
√

5−11)
76

, 3
√

5+8
19

)

H3(h3) (1,
√

6(
√

5+9)
76

,−
√

2(9
√

5+5)
76

, 3
√

5+8
19

)

4. We have determined the volume V (P436) of the regular dodecahedron of P536 and the
area of the horospherical triangle H1 H2 H3 which is denoted by Aopt

536. Thus the density
of the optimal horoball packing for honeycomb (5,3,6) with one horoball type is

δopt
536 =

1
2
Aopt

536

V (P536)
≈ 8.90373963

20.58019935
≈ 0.43263622. (4.6)

The way of putting any analog questions for determining the optimal ball and horoball
packings of tilings in hyperbolic n-space (n > 2) seems to be interesting and timely. Our
projective method is suited to study and to solve these problems. We shall consider the
optimal horoball packings for the higher dimensional Coxeter honeycombs in a forthcoming
paper.

Acknowledgement. I thank Prof. Emil Molnár for helpful comments to this paper.

References
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