# On Boundaries of Unions of Sets with Positive Reach 

J. Rataj*<br>Mathematical Institute of Charles University<br>Sokolovská 83, 18675 Praha 8, Czech Republic<br>e-mail: rataj@karlin.mff.cuni.cz


#### Abstract

A local regular behavior at almost all boundary points of a set in $\mathbb{R}^{d}$ representable as a locally finite union of sets with positive reach is shown. As an application, a limit formula for the volume of dilation of such a set with a small convex body is derived.


MSC 2000: 53C65, 52A22

## 1. Introduction

Locally finite unions of sets with positive reach were considered by Zähle [10] as a class extending the convex ring and still admitting the treatment of curvature measures. Recall that the reach of a set $X \subseteq \mathbb{R}^{d}$ (denoted by reach $X$ ) is the largest number $r$ such that any point $z$ with dist $(z, X)<r$ has a unique closest point $x$ in $X$. We say that $X \subseteq \mathbb{R}^{d}$ is a $\mathcal{U}_{P R}$-set (or we write $X \in \mathcal{U}_{P R}$ ) if we can represent $X$ as a locally finite union $X=\bigcup_{i} X^{i}$ of sets $X^{i}$ such that $\bigcap_{i \in I} X^{i}$ has positive reach for any finite index set $I$ (in particular, reach $X^{i}>0$ for any $i$ ). In [8], the curvature measures $C_{k}(X ; \cdot)$ of $X \in \mathcal{U}_{P R}$ are defined by means of integrating suitable differential forms over the unit normal bundle nor $X:=\operatorname{supp} i_{X}$ with weight factor $i_{X}$, where the index function $i_{X}$ is given by

$$
i_{X}(x, n):=\mathbf{1}_{X}(x)\left(1-\lim _{r \rightarrow 0_{+}} \lim _{s \rightarrow 0_{+}} \chi(X \cap B(x+((r+s) n, r))),\right.
$$

[^0]$x \in \mathbb{R}^{d}, n \in S^{d-1}\left(B(y, t)\right.$ denotes the closed ball of centre $y$ and radius $t, S^{d-1}$ is the unit sphere in $\mathbb{R}^{d}$ and $\chi$ stands for the Euler-Poincaré characteristic).

If reach $X>0$ then $(x, n) \in$ nor $X$ if and only if $x \in \partial X$ and $n$ is a unit outer normal to $X$, i.e., $n \in \operatorname{Nor}(X, x) \cap S^{d-1}$, where

$$
\operatorname{Nor}(X, x):=\{v: v \cdot u \leq 0 \text { for any } u \in \operatorname{Tan}(X, x)\}
$$

and $\operatorname{Tan}(X, x)$ is the tangent cone of $X$ at $x$, i.e., $0 \neq u \in \operatorname{Tan}(X, x)$ iff there exists a sequence $x_{i} \rightarrow x, x_{i} \in X \backslash\{x\}$, such that $\frac{x_{i}-x}{\left|x_{i}-x\right|} \rightarrow \frac{u}{|u|}, i \rightarrow \infty$, cf. [2, §3.1.21]. The interpretation of nor $X$ for a $\mathcal{U}_{P R^{-}}$-set $X$ is, however, much more complicated, particularly if the components $X^{i}$ may osculate. The aim of this note is to show that, nevertheless, at almost all boundary points $x$, we may interpret unit vectors $n$ with $(x, n) \in$ nor $X$ again as outer normals, and these are even unique, up to change of orientation. As consequence, we are able to characterize the curvature measure of order $d-1$ of a $\mathcal{U}_{P R}$-set as the surface area measure in the usual sense; if, in particular, $X$ is compact, then $C_{d-1}(X ; \cdot)$ is the total surface area of $X$ times the distribution of the unit outer normal over the boundary. This property was already used e.g. in [7] but it seems that the argument given there was not sufficient. This work was motivated also by a remark in [4, Subsection 4.1] which can be obtained as a consequence of Theorem 1 .

In the second part of this note, we apply the achieved result together with a Steiner-type formula due to Hug et al. [4] to express the increase of volume of a $\mathcal{U}_{P R}$-set $X$ dilated by an infinitesimal multiple of a convex body (Theorem 3). Such a formula has already been proved in [6, Corollary 4.2] with stronger assumptions and by Hug [3, Theorem 3.3] for polyconvex sets. Its applications in stochastic geometry were considered by Kiderlen and Jensen [5].

## 2. A boundary property of $\mathcal{U}_{P R^{-}}$-sets

The exoskeleton $\operatorname{exo}(X)$ of a closed set $X \subseteq \mathbb{R}^{d}$ is the set of all $z \in \mathbb{R}^{d} \backslash X$ which do not have a unique nearest point in $X$. The metric projection $\xi_{X}: \mathbb{R}^{d} \backslash \operatorname{exo}(X) \rightarrow X$ is defined so that $\xi_{X}(x) \in X$ is the unique nearest point to $x$ in $X$. The reduced normal bundle of $X$ is (see [4])

$$
N(X):=\left\{\left(\xi_{X}(z), \frac{z-\xi_{X}(z)}{\left|z-\xi_{X}(z)\right|}\right): z \notin X \cup \operatorname{exo}(X)\right\} .
$$

(Note that $N(X)$ is called normal bundle in [4]; we use the adjective 'reduced' in order to avoid confusion with the unit normal bundle nor $X$. Clearly $N(X) \subseteq$ nor $X$ if $X \in \mathcal{U}_{P R}$.) The reach function of $X$,

$$
\delta(X ; x, n):=\inf \{t \geq 0: x+t n \in \operatorname{exo}(X)\}
$$

is defined for all $(x, n) \in N(X)$.
Remark. The local reach of a set $X$ at $x \in X$, reach $(X, x)$, is defined by Federer [1] as the supremum of $r \geq 0$ such that to any point $y$ with $y-x<r$ there exists a unique nearest point in $X$ (equivalently, $y \notin \operatorname{exo}(X)$ ). Note that $\delta(X ; x, n)>0$ does not imply that $\operatorname{reach}(X, x)>0$.

We say that a set $X \subseteq \mathbb{R}^{d}$ is locally at $x \in \partial X$ a Lipschitz subgraph of zero differential if there exist a unit vector $n$ and a Lipschitz function $f$ defined on the hyperplane $n^{\perp}$ with zero differential at the projection of $x$ to $n^{\perp}$ and such that $X$ agrees with the subgraph of $f$ in some neighbourhood of $x$. Moreover, we say that $X$ is locally at $x \in \partial X$ a Lipschitz intergraph of zero differential if there exists a unit vector $n$ and two Lipschitz functions $f \leq g$ defined on $n^{\perp}$ with the same value and zero differentials at the projection of $x$ to $n^{\perp}$ and such that $X$ agrees in a neighbourhood of $x$ with the intergraph of $f$ and $g$, i.e., with the set $\left\{z+s n: z \in n^{\perp}, f(z) \leq s \leq g(z)\right\}$.

In what follows, $\mathcal{H}^{k}$ will denote the $k$-dimensional Hausdorff measure.
Theorem 1. Let $X \in \mathcal{U}_{P R}$. Then for $\mathcal{H}^{d-1}$-almost all $x \in \partial X$ there exists $n \in S^{d-1}$ such that one of the following two situations occurs:

1. $\operatorname{Tan}(X, x)=\{u: u \cdot n \leq 0\}, i_{X}(x, m)=1$ if $m=n$ and 0 otherwise, $\delta(X ; x, n)>0$ and $X$ is locally at $x$ a Lipschitz subgraph of zero differential.
2. $\operatorname{Tan}(X, x)=n^{\perp}, i_{X}(x, m)=1$ if $m= \pm n$ and 0 otherwise, $\delta(X ; x, \pm n)>0$ and $X$ is locally at $x$ a Lipschitz intergraph of zero differential.

The proof will be based on a few auxiliary results. The first of them is an easy consequence of [1, Remark 4.15 (3)].

Lemma 1. If reach $Y>0$ then $\mathcal{H}^{d-1}(\{x \in \partial Y: \operatorname{dim} \operatorname{Nor}(Y, x)>1\})=0$.
Let $X=\bigcup_{i} X^{i}$ be a $\mathcal{U}_{P R}$-representation. Let $\partial^{*} X$ denote the set of all points $x \in \partial X$ such that

$$
\operatorname{dim} \operatorname{Nor}\left(\bigcap_{i \in I} X^{i}, x\right) \leq 1
$$

for all nonempty finite index sets $I$. It follows from Lemma 1 that

$$
\mathcal{H}^{d-1}\left(\partial X \backslash \partial^{*} X\right)=0
$$

Lemma 2. If $x \in \partial^{*} X$ then $\operatorname{dim} \bigcup_{i} \operatorname{Nor}\left(X^{i}, x\right) \leq 1$.
Proof. Assume that $\operatorname{dim} \bigcup_{i} \operatorname{Nor}\left(X^{i}, x\right)>1$. Then there exist two linearly independent unit vectors $m, n$ such that $(x, m) \in \operatorname{nor} X^{i}$ and $(x, n) \in$ nor $X^{j}$ for some $i, j$. But then $\operatorname{dim} \operatorname{Nor}\left(X^{i} \cap X^{j}, x\right) \geq 2$, hence $x \notin \partial^{*} X$.

Proposition 1. Let $X, Y$ be subsets of $\mathbb{R}^{d}$ such that all the sets $X, Y$ and $X \cap Y$ have positive reach. Let $x \in X \cap Y$ and $n \in S^{d-1}$ be such that

$$
\begin{aligned}
\operatorname{Nor}(X, x) & =\{t n: t \geq 0\}, \\
\operatorname{Nor}(Y, x) & =\{-t n: t \geq 0\}, \\
\operatorname{Nor}(X \cap Y, x) & =\{t n: t \in \mathbb{R}\} .
\end{aligned}
$$

Then $x \in \operatorname{int}(X \cup Y)$.

Proof. Using Proposition 3 from [9] and its proof we can see that there exists an $\varepsilon>0$ and Lipschitz functions $f, g$ on $n^{\perp}$ such that

$$
\begin{gather*}
X \cap U_{\varepsilon}(x)=\operatorname{subgr} f \cap U_{\varepsilon}(x),  \tag{1}\\
Y \cap U_{\varepsilon}(x)=\operatorname{supgr} g \cap U_{\varepsilon}(x) \tag{2}
\end{gather*}
$$

( $U_{\varepsilon}(x)$ denotes the $\varepsilon$-neighbourhood of $x$ and subgr, supgr stands for the subgraph, supgraph, respectively). By the closeness of nor $(X \cap Y)$, there exists $\delta>0$ such that for any $y \in U_{\delta}(x)$,

$$
\begin{equation*}
(y, m) \in \operatorname{nor}(X \cap Y) \Longrightarrow|m \cdot n| \geq \frac{1}{2} \tag{3}
\end{equation*}
$$

Assume without loss of generality that $\delta<\min \left\{\frac{1}{2}, \frac{\varepsilon}{2}, \frac{1}{2} \operatorname{reach}(X \cap Y)\right\}$. From [1, Theorem 4.8 (7)] we have

$$
\begin{equation*}
y \in X \cap Y \Longrightarrow|(y-x) \cdot n| \leq \frac{|y-x|^{2}}{2 \operatorname{reach}(X \cap Y)} \tag{4}
\end{equation*}
$$

We shall show that $f \geq g$ on $n^{\perp} \cap U_{\delta / 2}(x)$, hence $U_{\delta / 2}(x) \subseteq X \cup Y$ and, consequently, $x \in \operatorname{int}(X \cup Y)$.

Assume, for the contrary, that there is a point $t \in n^{\perp},|t|<\delta / 2$, with $f(t)<g(t)$. Then the segment $S:=(t+\operatorname{lin} n) \cap \overline{U_{\delta}(x)}$ does not hit $X \cap Y$, but any point of $S$ has its unique nearest point in $X \cap Y$. Let $y \in S$ and $z \in X \cap Y$ be such that

$$
|y-z|=\min \left\{\left|y^{\prime}-z^{\prime}\right|: y^{\prime} \in S, z^{\prime} \in X \cap Y\right\} .
$$

Assume first that $y$ is an end point of $S$, hence, $|y-x|=\delta$ and, say, $(y-x) \cdot n=+\sqrt{\delta^{2}-|t|^{2}}$. Then $(z-y) \cdot n \geq 0$ (otherwise, $y$ would not be the closest point of $S$ from $z$ ), and we have

$$
\begin{aligned}
(z-x) \cdot n & =(z-y) \cdot n+(y-x) \cdot n \geq \sqrt{\delta^{2}-|t|^{2}} \geq \frac{\sqrt{3}}{2} \delta \\
& =\frac{2 \sqrt{3} \delta^{2}}{4 \delta}>\frac{\left(\frac{3}{2} \delta\right)^{2}}{4 \delta} \geq \frac{(|y-x|+|t|)^{2}}{4 \delta} \\
& \geq \frac{|z-x|^{2}}{2 \operatorname{reach}(X \cap Y)},
\end{aligned}
$$

which contradicts (4). Hence, $y$ must be an inner point of $S$. But then clearly $z-y \perp S \| n$ and $\left(z, \frac{y-z}{|y-z|}\right) \in \operatorname{nor}(X \cap Y)$, which is a contradiction to (3).

Corollary 1. If $x \in \partial^{*} X$ then there exists an $n \in S^{d-1}$ such that $n \in \operatorname{Nor}\left(X^{i}, x\right)$ whenever $x \in X^{i}$.

Proof. Let $x \in \partial^{*} X$ be a point for which the assertion is not true. Then there must be two sets $X^{i}, X^{j}$ which satisfy the assumptions of Proposition 1 . But then $x$ were not a boundary point of $X$, a contradiction.

Proof of Theorem 1. Let $x \in \partial^{*} X$ and let $n$ be the unit vector from Corollary 1. Assume (without loss of generality) that $x \in X^{i}$ if and only if $i \leq N(N \in \mathbb{N})$. We shall distinguish two cases.
(a) $-n \notin \operatorname{Nor}\left(X^{i}, x\right)$ for some $i \leq N$. Then case 1 . of Theorem 1 occurs; it remains to show that $X$ is locally the subgraph of a Lipschitz function with zero differential. Using the method of proof of Proposition 1, each set $X^{i}$ for $i \leq N$ can be locally represented at $x$ as either a Lipschitz subgraph or a Lipschitz intergraph with zero differential at $x$. Let $X^{i}$ be locally the subgraph of $f$ and $X^{j}$ the intergraph of $g \leq h$. We can apply Proposition 1 to the sets $X^{i}$ and $X^{j} \oplus\{\alpha n: \alpha>0\}$ and we get that $f \geq g$ on a neighbourhood of $x$, hence, $X^{i} \cup X^{j}$ is locally a Lipschitz subgraph again. By induction, we infer that $X^{1} \cup \cdots \cup X^{N}$, and, consequently, also $X$, is locally at $x$ a Lipschitz subgraph with zero differential at $x$.
(b) $-n \in \operatorname{Nor}\left(X^{i}, x\right)$ for all $i \leq N$. Then case 2 . occurs: each $X^{i}$ is locally at $x$ a Lipschitz intergraph of functions $f^{i} \leq g^{i}$ with zero differentials at $x$. Applying Proposition 1 to the sets $X^{i} \oplus\{ \pm \alpha n: \alpha>0\}$ and $X^{j} \oplus\{ \pm \alpha n: \alpha<0\}$, we get that $f^{i} \leq g^{j}$ and $f^{j} \leq g^{i}$ on a neighbourhood of $x$. Consequently, $X^{i} \cup X^{j}$ is again locally at $x$ an intergraph of Lipschitz functions with zero differentials at $x$ and, by induction, the same property holds for $X^{1} \cup \cdots \cup X^{N}$ and, consequently, also for $X$.

As a corollary, we obtain the following result which has already been used in [7]. See also [4, Proposition 4.1].
Corollary 2. If $X \in \mathcal{U}_{P R}$ then for any Borel subset $A \subseteq \mathbb{R}^{d}$ and a Borel subset $B$ of $S^{d-1}$ without antipodal points we have

$$
C_{d-1}(A \times B)=\mathcal{H}^{d-1}(\{x \in A \cap \partial X: \exists n \in B \cap \operatorname{Nor}(X, x)\}) .
$$

Remark. If $B$ contains antipodal points a similar formula holds but the points $x \in \partial X$ where both $n$ and $-n$ are outer normal to $X$ have to be weighted by factor 2 .

Theorem 1 motivates the question whether the reach of a $\mathcal{U}_{P R}$-set is positive at almost all boundary points. The answer is, however, negative, as illustrates the following example.

Example. There exists a set $X \in \mathcal{U}_{P R}$ in $\mathbb{R}^{2}$ such that

$$
\begin{equation*}
\mathcal{H}^{1}(\{x \in \partial X: \operatorname{reach}(X, x)=0\})>0 \tag{5}
\end{equation*}
$$

Indeed, let $f$ be a real $C^{2}$ function on $[0,1]$ such that its values and one-sided first and second derivatives at the boundary points 0 and 1 vanish, and such that 0 is a cumulation point of points where $f$ vanishes but $f^{\prime}$ is nonzero. (e.g., we can take $f(x)=x^{5}\left(1-x^{5}\right) \sin \frac{1}{x}$ ). Let further $C=[0,1] \backslash \bigcup_{i} I_{i}$ be a nowhere dense compact set with positive Lebesgue measure obtained by removing countably many pairwise disjoint open intervals $I_{1}, I_{2}, \ldots$ from $[0,1]$. Define a function $g$ on $[0,1]$ as zero on $C$ and on each $I_{i}, g$ is a homothetic copy of $f$ (i.e., $g(x)=\left(b_{i}-a_{i}\right) f\left(\frac{x-a_{i}}{b_{i}-a_{i}}\right)$ if $\left.I_{i}=\left(a_{i}, b_{i}\right)\right)$. Let $X^{1}$ be the subgraph of $g\left(\right.$ in $\left.\mathbb{R}^{2}\right)$ and $X^{2}$ be the lower halfplane in $\mathbb{R}^{2}$. Then $X=X^{1} \cup X^{2}$ is a $\mathcal{U}_{P R}$-set fulfilling (5).

Remark. It is not difficult to see that a modification of the above example would yield even two convex bodies in $\mathbb{R}^{2}$ whose union $X$ satisfies (5).

## 3. Increase of volume by dilation

In the sequel, we shall recall a Steiner-type formula for $\mathcal{U}_{P R}$-sets derived in [4] and derive a consequence strengthening the results from [6]. Let $\omega_{k}$ denote the volume of the unit ball in $\mathbb{R}^{k}$.

Theorem 2. ([4, Theorem 2.1, Sect. 3]) If $X \in \mathcal{U}_{P R}$ and $f$ is a measurable bounded function on $\mathbb{R}^{d}$ with compact support, then

$$
\int_{\mathbb{R}^{d} \backslash X} f d \mathcal{H}^{d}=\sum_{i=0}^{d-1} \omega_{d-1} \int_{0}^{\infty} \int_{N(X)} t^{d-1-i} \mathbf{1}_{\{t<\delta(X ; x, n)\}} f(x+t n) C_{i}(X ; d(x, n)) d t
$$

Given a convex body $K$, denote $\check{K}=\{-x: x \in K\}$ and let $h(K, \cdot)$ be the support function of $K$.

The following result strengthens [6, Corollary 4.2], removing some unnecessary assumptions.

Theorem 3. Let $X$ be a compact $\mathcal{U}_{P R}$-set and $K$ a convex body in $\mathbb{R}^{d}$. Then

$$
\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{H}^{d}((X \oplus \varepsilon \check{K}) \backslash X)}{\varepsilon}=2 \int_{\text {nor } X} h_{K}(-n) C_{d-1}(X ; d(x, n)) .
$$

Remark. If, in particular, $K$ is the unit ball, we obtain the formula

$$
\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{H}^{d}\left(\left(X_{\varepsilon}\right) \backslash X\right)}{\varepsilon}=2 C_{d-1}\left(X, \mathbb{R}^{d} \times S^{d-1}\right)
$$

where $X_{\varepsilon}=\{y: \operatorname{dist}(y, X) \leq \varepsilon\}$ is the $\varepsilon$-parallel set to $X$. The right hand side equals $\mathcal{H}^{d-1}(\partial X)$ if $X$ is full-dimensional and $2 \mathcal{H}^{d-1}(\partial X)$ if $X$ is $(d-1)$-dimensional.

Proof. We can assume without loss of generality that $K$ is contained in the unit ball of $\mathbb{R}^{d}$. We shall apply Theorem 2 to the functions

$$
f_{\varepsilon}(z)=\mathbf{1}_{\{(z+\varepsilon K) \cap X \neq \emptyset\}}, \quad \varepsilon>0 .
$$

Since $f_{\varepsilon}$ is bounded and the curvature measures $C_{i}(X ; \cdot)$ are Radon measures, we get

$$
\frac{\mathcal{H}^{d}((X \oplus \varepsilon \check{K}) \backslash X)}{\varepsilon}=2 \int_{N(X)} \int_{0}^{\infty} g_{\varepsilon}(t, x, n) d t C_{d-1}(X ; d(x, n))+o(\varepsilon)
$$

where

$$
g_{\varepsilon}(t, x, n)=\mathbf{1}_{\{\delta(X ; x, n)>t\}} \varepsilon^{-1} f_{\varepsilon}(x+t n) .
$$

It follows from Theorem 1 that $C_{d-1}(X ; \cdot)=C_{d-1}(X ; \cdot \cap N(X))$ and, hence, we can integrate in the last expression over the whole support of $C_{d-1}(X ; \cdot)$. We shall show that

$$
G_{\varepsilon}(x, n):=\int_{0}^{\infty} g_{\varepsilon}(t, x, n) d t \rightarrow h(K,-n), \quad \varepsilon \rightarrow 0
$$

for $C_{d-1}(X ; \cdot)$-almost all $(x, n)$ and apply the Lebesgue dominated theorem to achieve the assertion.

Fix first any $(x, n) \in N(X)$ and denote for brevity $\delta:=\delta(X ; x, n)$ (note that $\delta>0$ since $(x, n) \in N(X)$, see [4]). It follows from the definition of $\delta$ that $X$ has no points inside the ball of centre $x+\delta n$ and radius $\delta$. From the definition of the support function, and since $K$ lies in the unit ball, we get that if $t>\varepsilon h(K,-n)+\left(\delta-\sqrt{\delta^{2}-\varepsilon^{2}}\right)$ then $g_{\varepsilon}(t, x, n)=0$. Consequently,

$$
\begin{equation*}
G_{\varepsilon}(x, n) \leq h(K,-n)+\frac{\delta-\sqrt{\delta^{2}-\varepsilon^{2}}}{\varepsilon} \rightarrow h(K,-n), \quad \varepsilon \rightarrow 0 . \tag{6}
\end{equation*}
$$

To obtain a lower bound for $G_{\varepsilon}$, we can assume due to Theorem 1 that there exists a Lipschitz function, say $F$, defined on $n^{\perp}$, with zero differential at $\bar{x}:=p_{n} \perp x, x=\bar{x}+F(\bar{x}) n$, and such that $X$ is locally at $x$ either the subgraph of $F$ or an intergraph with another Lipschitz function on $n^{\perp}$ smaller or equal to $F$. Let $y \in \partial K$ be such that $y \cdot(-n)=h(K,-n)$ (clearly, $|y| \leq 1$ ), and denote $\bar{y}=p_{n} \perp y$. If $t>0$ is such that $x+t n+\varepsilon K$ does not hit $X$ then

$$
F(\bar{x}+\varepsilon \bar{y})-F(\bar{x})<t-\varepsilon h(K,-n) .
$$

Since $d F(\bar{x})=0$, the left hand side is $o(\varepsilon)$ and we have

$$
G_{\varepsilon}(x, n) \geq h(K,-n)-o(\varepsilon) .
$$

Together with (6) we get that $\lim _{\varepsilon \rightarrow 0} G_{\varepsilon}(x, n)=h(K,-n)$ for $C_{d-1}(X ; \cdot)$-almost all $(x, n)$. Note that (6) implies that $0 \leq G_{\varepsilon}(x, n) \leq h(K,-n)+1 \leq 2$ and, consequently, the Lebesgue dominated theorem may be applied to conclude the proof.

Acknowledgement. The author thanks the referee for his/her careful reading of the manuscript.

## References

[1] Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93 (1959), 418-491.
[2] Federer, H.: Geometric Measure Theory. Springer, Heidelberg 1969. Zbl 0176.00801
[3] Hug, D.: Contact distribution of Boolean models. Rend. Circ. Mat. Palermo II (Suppl.) 65 (2000), 137-181.

Zbl 0978.60015
[4] Hug, D.; Last, G.; Weil, W.: A local Steiner-type formula for general closed sets and applications. Math. Z. 246 (2004), 237-272.

Zbl pre02078051
[5] Kiderlen, M.; Vedel-Jensen, E. B.: Estimation of the directional measure of planar random sets by digitization. Adv. Appl. Probab. 35 (2003), 583-602. Zbl 1040.60008
[6] Rataj, J.: Determination of spherical area measures by means of dilation volumes. Math. Nachr. 235 (2002), 143-162.
[7] Rataj, J.: On set covariance and three-point test sets. Czech. Math. J. 54(1) (2004), 205-214.

Zbl 1049.52004
[8] Rataj, J.; Zähle, M.: Curvatures and currents for unions of sets with positive reach, II. Ann. Global Anal. Geom. 20 (2001), 1-21.

Zbl 0997.53062
[9] Rataj, J.; Zähle, M.: Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differ. Geom. Appl. 19 (2003), 113-126.

Zbl 1042.53053
[10] Zähle, M.: Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 23 (1987), 155-171.

Zbl 0627.53053

Received July 1, 2004


[^0]:    *Supported by the Grant Agency of Czech Republic, Project No. 201/03/0946, and by MSM 113200007

