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1. Introduction

The notion of angles between two subspaces of the Euclidean space Rd has been studied
by many researchers since the 1950’s or even earlier (see [3]). In statistics, canonical (or
principal) angles are studied as measures of dependency of one set of random variables on
another (see [1]). Some recent works on angles between subspaces and related topics can
be found in, for example, [4, 8, 12, 13, 14]. Particularly, in [13], Risteski and Trenčevski
introduced a more geometrical definition of angles between two subspaces of Rd and explained
its connection with canonical angles. Their definition of the angle, however, is based on a
generalized Cauchy-Schwarz inequality which we found incorrect. The purpose of this note
is to fix their definition and at the same time extend the ambient space to any real inner
product space.

Let (X, 〈·, ·〉) be a real inner product space, which will be our ambient space throughout
this note. Given two nonzero, finite-dimensional, subspaces U and V of X with dim(U) ≤
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dim(V ), we wish to have a definition of the angle between U and V that can be viewed, in
some sense, as a natural generalization of the ‘usual’ definition of the angle (a) between a 1-
dimensional subspace and a q-dimensional subspace of X, and (b) between two p-dimensional
subspaces intersecting on a common (p− 1)-dimensional subspace of X.

To explain precisely what we mean by the word ‘usual’, let us review how the angle is
defined in the above two trivial cases:

(a) If U = span{u} is a 1-dimensional subspace and V = span{v1, . . . , vq} is a q-dimensional
subspace of X, then the angle θ between U and V is defined by

cos2 θ =
〈u, uV 〉2

‖u‖2‖uV ‖2
(1.1)

where uV denotes the (orthogonal) projection of u on V and ‖·‖ = 〈·, ·〉 1
2 denotes the induced

norm on X. (Throughout this note, we shall always take θ to be in the interval [0, π
2
].)

(b) If U = span{u, w2, . . . , wp} and V = span{v, w2, . . . , wp} are p-dimensional subspaces of
X that intersects on (p − 1)-dimensional subspace W = span{w2, . . . , wp} with p ≥ 2, then
the angle θ between U and V may be defined by

cos2 θ =
〈u⊥W , v⊥W 〉2

‖u⊥W‖2‖v⊥W‖2
(1.2)

where u⊥W and v⊥W are the orthogonal complement of u and v, respectively, on W .
One common property among these two cases is the following. In (a), we may write

u = uV + u⊥V where u⊥V is the orthogonal complement of u on V . Then (1.1) amounts to

cos2 θ =
‖uV ‖2

‖u‖2
,

which tells us that the value of cos θ is equal to the ratio between the length of the projection
of u on V and the length of u. Similarly, in (b), we claim that the value of cos θ is equal
to the ratio between the volume of the p-dimensional parallelepiped spanned by the projec-
tion of u, w2, . . . , wp on V and the volume of the p-dimensional parallelepiped spanned by
u, w2, . . . , wp.

Motivated by this fact, we shall define the angle between a p-dimensional subspace
U = span{u1, . . . , up} and a q-dimensional subspace V = span{v1, . . . , vq} (with p ≤ q)
such that the value of its cosine is equal to the ratio between the volume of the p-dimensional
parallelepiped spanned by the projection of u1, . . . , up on V and the p-dimensional paral-
lelepiped spanned by u1, . . . , up. As we shall see later, the ratio is a number in [0, 1] and is
invariant under any change of basis for U and V , so that our definition of the angle makes
sense.

In the following sections, an explicit formula for the cosine in terms of u1, . . . , up and
v1, . . . , vq will be presented. Our formula serves as a correction for Risteski and Trenčevski’s.
As a consequence of our formula, a generalized Cauchy-Schwarz inequality is obtained. An
extension to the case where the subspace V is infinite dimensional, assuming that the ambient
space X is infinite dimensional, will also be discussed.
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2. Main results

Hereafter we shall employ the standard n-inner product 〈·, ·|·, . . . , ·〉 on X, given by

〈x0, x1|x2, . . . , xn〉 :=

∣∣∣∣∣∣∣∣∣
〈x0, x1〉 〈x0, x2〉 . . . 〈x0, xn〉
〈x2, x1〉 〈x2, x2〉 . . . 〈x2, xn〉

...
...

. . .
...

〈xn, x1〉 〈xn, x2〉 . . . 〈xn, xn〉

∣∣∣∣∣∣∣∣∣ ,

and the standard n-norm ‖x1, x2, . . . , xn‖ := 〈x1, x1|x2, . . . , xn〉
1
2 (see [6] or [10]). Here

we assume that n ≥ 2. (If n = 1, the standard 1-inner product is understood as the
given inner product, while the standard 1-norm is the induced norm.) Note particularly
that 〈x1, x1|x2, . . . , xn〉 = det[〈xi, xj〉] is nothing but the Gram’s determinant generated by
x1, x2, . . . , xn (see [5] or [11]). Geometrically, being the square root of the Gram’s deter-
minant, ‖x1, . . . , xn‖ represents the volume of the n-dimensional parallelepiped spanned by
x1, . . . , xn.

A few noticeable properties of the standard n-inner product are that it is bilinear and
commutative in the first two variables. Also, 〈x0, x1|x2, . . . , xn〉 = 〈x0, x1|xi2 , . . . , xin〉 for
any permutation {i2, . . . , in} of {2, . . . , n}. Moreover, from properties of Gram’s determi-
nants, we have ‖x1, . . . , xn‖ ≥ 0 and ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly
dependent.

As for inner products, we have the Cauchy-Schwarz inequality for the n-inner product:

〈x0, x1|x2, . . . , xn〉2 ≤ ‖x0, x2, . . . , xn‖2‖x1, x2, . . . , xn‖2

for every x0, x1, . . . , xn. There is also Hadamard’s inequality which states that

‖x1, . . . , xn‖ ≤ ‖x1‖ · · · ‖xn‖
for every x1, . . . , xn.

Next observe that 〈x0, x1+x′1|x2, . . . , xn〉 = 〈x0, x1|x2, . . . , xn〉 for any linear combination
x′1 of x2, . . . , xn. Thus, for instance, for i = 0 and 1, one may write xi = x∗i + x⊥i , where x∗i
is the projection of xi on span{x2, . . . , xn} and x⊥i is its orthogonal complement, to get

〈x0, x1|x2, . . . , xn〉 = 〈x⊥0 , x⊥1 |x2, . . . , xn〉 = 〈x⊥0 , x⊥1 〉‖x2, . . . , xn‖2.

(Here ‖x2, . . . , xn‖ represents the volume of the (n−1)-parallelepiped spanned by x2, . . . , xn.)
Using the standard n-inner product and n-norm, we can, for instance, derive an explicit

formula for the projection of a vector x on the subspace spanned by x1, . . . , xn. Let x∗ =∑n
k=1 αkxk be the projection of x on span{x1, . . . , xn}. Taking the inner products of x∗ and

xl, we get the following system of linear equations:
n∑

k=1

αk〈xk, xl〉 = 〈x∗, xl〉 = 〈x, xl〉, l = 1, . . . , n.

By Cramer’s rule together with properties of inner products and determinants, we obtain

αk =
〈x, xk|xi2(k), . . . , xin(k)〉

‖x1, x2, . . . , xn‖2
,

where {i2(k), . . . , in(k)} = {1, 2, . . . , n} \ {k}, k = 1, 2, . . . , n.
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2.1. The claim and its proof

We claim in the introduction that the cosine of the angle θ between the two p-dimensional
subspaces U = span{u, w2, . . . , wp} and V = span{v, w2, . . . , wp} defined by (1.2) is equal
to the ratio between the volume of the p-dimensional parallelepiped spanned by the projec-
tion of u, w2, . . . , wp on V and the volume of the p-dimensional parallelepiped spanned by
u, w2, . . . , wp. That is,

cos2 θ =
‖uV , w2, . . . , wp‖2

‖u, w2, . . . , wp‖2
,

where uV denotes the projection of u on V .
To verify this, we first observe that θ satisfies

cos2 θ =
〈u, v|w2, . . . , wp〉2

‖u, w2, . . . , wp‖2‖v, w2, . . . , wp‖2
.

Indeed, writing u = uW + u⊥W and v = vW + v⊥W (where uW and vW are the projection of u
and v, respectively, on W = span{w2, . . . , wp}), we obtain

〈u, v|w2, . . . , wp〉2

‖u, w2, . . . , wp‖2‖v, w2, . . . , wp‖2
=

〈u⊥W , v⊥W 〉2‖w2, . . . , wp‖4

‖u⊥W‖2‖v⊥W‖2‖w2, . . . , wp‖4
=

〈u⊥W , v⊥W 〉2

‖u⊥W‖2‖v⊥W‖2
,

as stated.
Suppose now that uV = αv +

∑p
k=2 βkwk. In particular, the scalar α is given by

α =
〈u, v|w2, . . . , wp〉
‖v, w2, . . . , wp‖2

.

Then, we have

‖uV , w2, . . . , wp‖2 = 〈u, uV |w2, . . . , wp〉 = α〈u, v|w2, . . . , wp〉 =
〈u, v|w2, . . . , wp〉2

‖v, w2, . . . , wp‖2
.

Hence, we obtain

‖uV , w2, . . . , wp‖2

‖u, w2, . . . , wp‖2
=

〈u, v|w2, . . . , wp〉2

‖u, w2, . . . , wp‖2‖v, w2, . . . , wp‖2
= cos2 θ,

as expected.

2.2. An explicit formula for the cosine

Using the standard n-norm (with n = p), we define the angle θ between a p-dimensional
subspace U = span{u1, . . . , up} and a q-dimensional subspace V = span{v1, . . . , vq} of X
(with p ≤ q) by

cos2 θ :=
‖projV u1, . . . , projV up‖2

‖u1, . . . , up‖2
, (2.1)
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where projV ui’s denote the projection of ui’s on V .
The following fact convinces us that our definition makes sense.

Fact. The ratio on the right hand side of (2.1) is a number in [0, 1] and is independent of
the choice of bases for U and V .

Proof. First note that the projection of ui’s on V is independent of the choice of basis for
V . Further, since projections are linear transformations, the ratio is also invariant under any
change of basis for U . Indeed, the ratio is unchanged if we (a) swap ui and uj, (b) replace ui

by ui + αuj, or (c) replace ui by αui with α 6= 0.
Next, assuming particularly that {u1, . . . , up} is orthonormal, we have ‖u1, . . . , up‖ = 1

and ‖projV u1, . . . , projV up‖ ≤ 1 because ‖projV ui‖ ≤ ‖ui‖ = 1 for each i = 1, . . . , p.
Therefore, the ratio is a number in [0, 1], and the proof is complete. �

From (2.1), we can derive an explicit formula for the cosine in terms of u1, . . . , up and
v1, . . . , vq, assuming for the moment that {v1, . . . , vq} is orthonormal. For each i = 1, . . . , p,
the projection of ui on V is given by

projV ui = 〈ui, v1〉v1 + · · ·+ 〈ui, vq〉vq.

So, for i, j = 1, . . . , p, we have

〈projV ui, projV uj〉 =

q∑
k=1

〈ui, vk〉〈uj, vk〉 .

Hence, we obtain

‖projV u1, . . . , projV up‖2 = det
[ q∑

k=1

〈ui, vk〉〈uj, vk〉
]

= det(MMT)

where M := [〈ui, vk〉] is a (p× q) matrix and MT is its transpose. The cosine of the angle θ
between U and V is therefore given by the formula

cos2 θ =
det(MMT)

det[〈ui, uj〉]
, (2.2)

If {u1, . . . , up} happens to be orthonormal, then the formula (2.2) reduces to

cos2 θ = det(MMT).

Further, if p = q, then det(MMT) = det M ·det MT = det2 M . Hence, from the last formula,
we get cos θ = | det M |.
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2.3. On Risteski and Trančevski’s formula

The reader might think that the angle defined by (2.1) is exactly the same as the one formu-
lated by Risteski and Trenčevski ([13], Equation 1.2). But that is not true! They defined the
angle θ between two subspaces U = span{u1, . . . , up} and V = span{v1, . . . , vq} with p ≤ q
by

cos2 θ :=
det(MMT)

det[〈ui, uj〉] · det[〈vk, vl〉]
, (2.3)

by first ‘proving’ the following inequality ([13], Theorem 1.1):

det(MMT) ≤ det[〈ui, uj〉] · det[〈vk, vl〉], (2.4)

where M := [〈ui, vk〉]. However, the argument in their proof which says that the inequality
is invariant under elementary row operations only allows them to assume that {u1, . . . , up}
is orthonormal, but not {v1, . . . , vq}, except when p = q. As a matter of fact, the inequality
(2.4) is only true in the case (a) where p = q (for which the inequality reduces to Kurepa’s
generalization of the Cauchy-Schwarz inequality, see [9]) or (b) where {v1, . . . , vq} is or-
thonormal. Consequently, (2.3) makes sense only in these two cases, for otherwise the value
of the expression on the right hand side of (2.3) may be greater than 1.

To show that the inequality (2.4) is false in general, just take for example X = R3

(equipped with the usual inner product), U = span{u} where u = (1, 0, 0), and V =
span{v1, v2} where v1 = (1

2
, 1

2
, 0) and v2 = (1

2
,−1

2
, 1

2
). Acoording to (2.4), we should have

〈u, v1〉2 + 〈u, v2〉2 ≤ ‖u‖2‖v1, v2‖2.

But the left hand side of the inequality is equal to

〈u, v1〉2 + 〈u, v2〉2 =
1

4
+

1

4
=

1

2
,

while the right hand side is equal to

‖u‖2
(
‖v1‖2‖v2‖2 − 〈v1, v2〉2

)
=

3

8
.

This example shows that the inequality is false even in the case where {u1, . . . , up} is or-
thonormal and {v1, . . . , vq} is orthogonal (which is close to being orthonormal).

2.4. A general formula for p = 1 and q = 2

Let us consider the case where p = 1 and q = 2 more closely. For a unit vector u and an
orthonormal set {v1, v2} in X, it follows from our definition of the angle θ between U =
span{u} and V = span{v1, v2} that

cos2 θ = 〈u, v1〉2 + 〈u, v2〉2 ≤ 1.
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Hence, for a nonzero vector u and an orthogonal set {v1, v2} in X, we have

cos2 θ =

〈
u

‖u‖
,

v1

‖v1‖

〉2

+

〈
u

‖u‖
,

v2

‖v2‖

〉2

.

Thus, for this case, we have

〈u, v1〉2‖v2‖2 + 〈u, v2〉2‖v1‖2 ≤ ‖u‖2‖v1, v2‖2,

where ‖v1, v2‖2 = ‖v1‖2‖v2‖2 is the area of the parallelogram spanned by v1 and v2.
More generally, suppose that u is a nonzero vector and {v1, v2} is linearly independent,

and we would like to have an explicit formula for the cosine of the angle θ between U =
span{u} and V = span{v1, v2} in terms of u, v1 and v2. Instead of orthogonalizing {v1, v2}
by Gram-Schmidt process, we do the following. Let uV be the projection of u on V . Then
uV may be expressed as

uV =
〈u, v1|v2〉
‖v1, v2‖2

v1 +
〈u, v2|v1〉
‖v1, v2‖2

v2,

where 〈·, ·|·〉 is the standard 2-inner product introduced earlier. Now write u = uV + u⊥V
where u⊥V is the orthogonal complement of u on V . Then

cos2 θ =
‖uV ‖2

‖u‖2
=
〈u, uV 〉
‖u‖2

=
〈u, v1〉〈u, v1|v2〉+ 〈u, v2〉〈u, v2|v1〉

‖u‖2‖v1, v2‖2
. (2.5)

Consequently, for any nonzero vector u and linearly independent set {v1, v2}, we have the
following inequality

〈u, v1〉〈u, v1|v2〉+ 〈u, v2〉〈u, v2|v1〉 ≤ ‖u‖2‖v1, v2‖2. (2.6)

Here (2.5) and (2.6) serve as corrections for (2.3) and (2.4) for p = 1 and q = 2.
The inequality (2.6) may be viewed as a generalized Cauchy-Schwarz inequality. The

difference between our approach and Risteski and Trenčevski’s is that we derive the inequality
as a consequence of the definition of the angle between two subspaces, while Risteski and
Trenčevski use the ‘inequality’ to define the angle between two subspaces. As long as p = q
or, otherwise, {v1, . . . , vq} is orthonormal, their definition makes sense and of course agrees
with ours.

2.5. An explicit formula for arbitrary p and q

An explicit formula for the cosine of the angle θ between a p-dimensional subspace U =
span{u1, . . . , up} and a q-dimensional subspace V = span{v1, . . . , vq} of X for arbitrary
p ≤ q can be obtained as follows.

For each i = 1, . . . , p, the projection of ui on V may be expressed as

projV ui =

q∑
k=1

αikvk ,
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where

αik =
〈ui, vk|vi2(k), . . . , viq(k)〉

‖v1, v2, . . . , vq‖2

with {i2(k), . . . , iq(k)} = {1, 2, . . . , q} \ {k}, k = 1, 2, . . . , q. Next observe that

〈projV ui, projV uj〉 = 〈ui, projV uj〉 =

q∑
k=1

αjk〈ui, vk〉

for i, j = 1, . . . , p. Hence we have

‖projV ui, . . . , projV up‖2 =

∣∣∣∣∣∣∣∣∣∣

q∑
k=1

α1k〈u1, vk〉 . . .
q∑

k=1

αpk〈u1, vk〉
...

. . .
...

q∑
k=1

α1k〈up, vk〉 . . .
q∑

k=1

αpk〈up, vk〉

∣∣∣∣∣∣∣∣∣∣
=

det(MM̃T)

‖v1, . . . , vq‖2p
,

where

M := [〈ui, vk〉] and M̃ := [〈ui, vk|vi2(k), . . . , viq(k)] (2.7)

with i2(k), . . . , iq(k) as above. (Note that both M and M̃ are (p×q) matrices, so that MM̃T

is a (p× p) matrix.) Dividing by ‖u1, . . . , up‖2, we get the following formula for the cosine:

cos2 θ =
det(MM̃T)

det[〈ui, uj〉] · detp[〈vk, vl〉]
, (2.8)

which serves as a correction for Risteski and Trenčevski’s formula (2.3). Note that if {v1,
. . . , vq} is orthonormal, we get the formula (2.2) obtained earlier.

As a consequence of our formula, we have the following generalization of the Cauchy-
Schwarz inequality, which can be considered as a correction for (2.4).

Theorem. For two linearly independent sets {u1, . . . , up} and {v1, . . . , vq} in X with p ≤ q,
we have the following inequality

det(MM̃T) ≤ det[〈ui, uj〉] · detp[〈vk, vl〉],

where M and M̃ are (p× q) matrices given by (2.7). Moreover, the equality holds if and only
if the subspace spanned by {u1, . . . , up} is contained in the subspace spanned by {v1, . . . , vq}.

Proof. The inequality follows directly from the definition of the angle between U = span{u1,
. . . , up} and V = span{v1, . . . , vq} as formulated in (2.8). Next, if U is contained in V , then
the projection of ui’s on V are the ui’s themselves. Hence the equality holds since the cosine
is equal to 1. If at least one of ui’s, say ui0 , is not in V , then, assuming that {u1, . . . , up} and
{v1, . . . , vq} are orthonormal, the length of the projection of ui0 on V will be strictly less than
1. In this case the cosine will be less than 1, and accordingly we have a strict inequality. �
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3. Concluding remarks

As the reader might have realized, the formula (2.1) may also be used to define the angle
between a finite p-dimensional subspace U and an infinite dimensional subspace V of X,
assuming that the ambient space X is infinite dimensional and complete (that is, X is an
infinite dimensional Hilbert space).

In certain cases, an explicit formula for the cosine can be obtained directly from (2.1).
For example, take X = `2, the space of square summable sequences of real numbers, equipped
with the inner product

〈x, y〉 :=
∞∑

m=1

x(m)y(m), x = (x(m)), y = (y(m)).

Let U = span{u1, u2} where u1 = (u1(m)) and u2 = (u2(m)) are two linearly independent
sequences in `2, and V := {(x(m)) ∈ `2 : x(1) = x(2) = x(3) = 0}, which is an infinite
dimensional subspace of `2. Then, for i = 1, 2, the projection of ui on V is

projV ui = (0, 0, 0, ui(4), ui(5), ui(6), . . . ) .

The square of the volume of the parallelogram spanned by projV u1 and projV u2 is

‖projV u1, projV u2‖2 = det[〈projV ui, projV uj〉]

=
∞∑

m=4

u1(m)2 ·
∞∑

m=4

u2(m)2 −
( ∞∑

m=4

u1(m)u2(m)
)2

.

Meanwhile, the square of the volume of the parallelogram spanned by u1 and u2 is

‖u1, u2‖2 = det[〈ui, uj〉] =
∞∑

m=1

u1(m)2 ·
∞∑

m=1

u2(m)2 −
( ∞∑

m=1

u1(m)u2(m)
)2

.

Hence, the cosine of the angle θ between U and V is given by

cos2 θ =

∑∞
m=4 u1(m)2 ·

∑∞
m=4 u2(m)2 −

(∑∞
m=4 u1(m)u2(m)

)2∑∞
m=1 u1(m)2 ·

∑∞
m=1 u2(m)2 −

(∑∞
m=1 u1(m)u2(m)

)2 .

In general, however, in order to obtain an explicit formula for the cosine in terms of the
basis vectors for U and V , we need to have an orthonormal basis for V in hand. (Here an
orthonormal basis means a maximal orthonormal system; see, for instance, [2].) In such a
case, the computations of the projection of the basis vectors for U on V (and then the square
of the volume of the p-dimensional parallelepiped spanned by them) can be carried out, and
an explicit formula for the cosine in terms of the basis vectors for U and V can be obtained.

As the above example indicated, the formula will involve the determinant of a (p × p)
matrix whose entries are infinite sums of products of two inner products. If desired, this
determinant can be expressed as an infinite sum of squares of determinants of (p×p) matrices,
each of which represents the square of the volume of the projected parallelepiped on p-
dimensional subspaces of V . See [7] for these ideas.
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[11] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M.: Classical and New Inequalities in Analysis.

Kluwer Academic Publishers, Dordrecht 1993, 595–603. Zbl 0771.26009−−−−−−−−−−−−
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