Biharmonic Curves in the Generalized Heisenberg Group

Dorel Fetcu *
Department of Mathematics, Technical University
Iaşi, România
e-mail:dfetcu@math.tuiasi.ro

Abstract

We find the conditions under which a curve in the generalized Heisenberg group is biharmonic and non-harmonic. We give some existence and nonexistence examples of such curves.

MSC 2000: 53C43, 53C42
Keywords: Biharmonic curves, Heisenberg group

1. Introduction

First we should recall some notions and results related to the harmonic and the biharmonic maps between Riemannian manifolds, as they are presented in [2], [9] and in [5].

Let $f: M \rightarrow N$ be a smooth map between two Riemannian manifolds (M, g) and (N, h). Let $f^{-1}(T N)$ be the induced bundle over M of the tangent bundle, $T N$, defined as follows. Denote by $\pi: T N \rightarrow N$ the projection. Then

$$
f^{-1}(T N)=\{(x, u) \in M \times T N, \pi(u)=f(x), x \in M\}=\bigcup_{x \in M} T_{f(x)} N .
$$

The set of all C^{∞}-sections of $f^{-1}(T N)$, denoted by $\Gamma\left(f^{-1}(T N)\right)$, is $\Gamma\left(f^{-1}(T N)\right)=\{V: M \rightarrow$ $T N, C^{\infty}$-map, $\left.V(x) \in T_{f(x)} N, x \in M\right\}$. Denote by ∇^{M}, ∇^{N}, the Levi-Civita connections on (M, g) and (N, h) respectively. For a smooth map f between (M, g) and (N, h), we define the induced connection ∇ on the induced bundle $f^{-1}(T N)$ as follows. For $X \in \chi(M), V \in$ $\Gamma\left(f^{-1}(T N)\right)$, define $\nabla_{X} V \in \Gamma\left(f^{-1}(T N)\right)$ by $\nabla_{X} V=\nabla_{f_{*} X}^{N} V$.

[^0]0138-4821/93 \$ 2.50 © 2005 Heldermann Verlag

The differential of the smooth map f can be viewed as a section of the bundle $\Lambda^{1}\left(f^{-1}(T N)\right)=$ $T^{*} M \otimes f^{-1}(T N)$, and we denote by $|d f|$ its norm at a point $x \in M$.

Suppose that M is a compact manifold. Define the energy density of f by $e(f)=\frac{1}{2}|d f|^{2}$, and the energy of f by $E(f)=\int_{M} e(f) * 1$, where $* 1$ is the volume form on M. The map f is a harmonic map if it is a critical point of the energy, $E(f)$. In [9] it is proved that a $\operatorname{map} f: M \rightarrow N$ is a harmonic map if and only if it satisfies the Euler-Lagrange equation $\tau(f)=0$, where $\tau(f)=$ trace $\nabla d f$ is an element of $\Gamma\left(f^{-1}(T N)\right)$ called the tension field of f. The Laplacian acting on $\Gamma\left(f^{-1}(T N)\right.$), induced by the connection ∇, is given by the Weitzenböck formula

$$
\Delta V=-\operatorname{trace} \nabla^{2} V,
$$

for some $V \in \Gamma\left(f^{-1}(T N)\right)$.
The bienergy of f is defined by $E_{2}(f)=\frac{1}{2} \int_{M}|\tau(f)|^{2} * 1$. We say that f is a biharmonic map if it is a critical point of the bienergy, $E_{2}(f)$. It is proved in [5] that a map $f: M \rightarrow N$ is a biharmonic map if and only if it satisfies the equation $\tau_{2}(f)=0$, where

$$
\begin{equation*}
\tau_{2}(f)=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f(\cdot), \tau(f)) d f(\cdot), \tag{1.1}
\end{equation*}
$$

where R^{N} denotes the curvature tensor field on (N, h).
Note that any harmonic map is a biharmonic map and, moreover, an absolute minimum of the bienergy functional.

2. Generalized Heisenberg group

Consider $\mathbb{R}^{2 n+1}$ with the elements of the form $X=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, z\right)$. Define the product on $\mathbb{R}^{2 n+1}$ by

$$
X \widetilde{X}=\left(x_{1}+\widetilde{x}_{1}, y_{1}+\widetilde{y}_{1}, \ldots, x_{n}+\widetilde{x}_{n}, y_{n}+\widetilde{y}_{n}, z+\widetilde{z}+\frac{1}{2} \sum_{i=1}^{n}\left(\widetilde{x}_{i} y_{i}-\widetilde{y}_{i} x_{i}\right)\right),
$$

where $X=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right), \widetilde{X}=\left(\widetilde{x}_{1}, \widetilde{y}_{1}, \ldots, \widetilde{x}_{n}, \widetilde{y}_{n}, \widetilde{z}\right)$.
Let $\mathbb{H}_{2 n+1}=\left(\mathbb{R}^{2 n+1}, g\right)$ be the generalized Heisenberg group endowed with the Riemannian metric g which is defined by

$$
\begin{equation*}
g=\sum_{i=1}^{n}\left(d x_{i}^{2}+d y_{i}^{2}\right)+\left[d z+\frac{1}{2} \sum_{i=1}^{n}\left(y_{i} d x_{i}-x_{i} d y_{i}\right)\right]^{2} . \tag{2.1}
\end{equation*}
$$

Note that the metric g is left invariant.
We can define a global orthonormal frame field in $\mathbb{H}_{2 n+1}$ by

$$
E_{2 i-1}=\frac{\partial}{\partial x_{i}}-\frac{y_{i}}{2} \frac{\partial}{\partial z}, \quad E_{2 i}=\frac{\partial}{\partial y_{i}}+\frac{x_{i}}{2} \frac{\partial}{\partial z}, \quad E_{2 n+1}=\frac{\partial}{\partial z},
$$

for $i=1, \ldots, n$. The Levi-Civita connection of the metric g is given by, (see [7] for the

3-dimensional case),

$$
\begin{cases}\nabla_{E_{2 i-1}} E_{2 j-1}=0, & \nabla_{E_{2 i-1}} E_{2 j}=\frac{1}{2} \delta_{i j} E_{2 n+1}, \tag{2.2}\\ \nabla_{E_{2 i}} E_{2 j}=0, & \nabla_{E_{2 i}} E_{2 j-1}=-\frac{1}{2} \delta_{i j} E_{2 n+1}, \\ \nabla_{E_{2 n+1}} E_{2 i-1}=-\frac{1}{2} E_{2 i}, & \nabla_{E_{2 i-1}} E_{2 n+1}=-\frac{1}{2} E_{2 i}, \\ \nabla_{E_{2 n+1}} E_{2 i}=\frac{1}{2} E_{2 i-1}, & \nabla_{E_{2 i}} E_{2 n+1}=\frac{1}{2} E_{2 i-1}, \\ \nabla_{E_{2 n+1}} E_{2 n+1}=0, & \end{cases}
$$

for $i, j=1, \ldots, n$. We have too

$$
\begin{cases}{\left[E_{2 i-1}, E_{2 j-1}\right]=0,} & {\left[E_{2 i}, E_{2 j}\right]=0,} \\ {\left[E_{2 i-1}, E_{2 n+1}\right]=0,} & {\left[E_{2 i}, E_{2 n+1}\right]=0,} \\ {\left[E_{2 i-1}, E_{2 j}\right]=\delta_{i j} E_{2 n+1} .} & \end{cases}
$$

The curvature tensor field of ∇ is

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

and Riemann-Christoffel tensor field is

$$
R(X, Y, Z, W)=g(R(X, Y) W, Z)
$$

where $X, Y, Z, W \in \chi\left(\mathbb{R}^{2 n+1}\right)$. We will use the notations

$$
R_{a b c}=R\left(E_{a}, E_{b}\right) E_{c}, \quad R_{a b c d}=R\left(E_{a}, E_{b}, E_{c}, E_{d}\right),
$$

where $a, b, c, d=1, \ldots, 2 n+1$. Then the non-zero components of the curvature tensor field and of the Riemann-Christoffel tensor field are, respectively

$$
\begin{align*}
& \left\{\begin{array}{l}
R_{(2 i-1)(2 j-1)(2 k)}=-\frac{1}{4} \delta_{j k} E_{2 i}+\frac{1}{4} \delta_{i k} E_{2 j}, \\
R_{(2 i-1)(2 j)(2 k-1)}=\frac{1}{4} \delta_{j k} E_{2 i}+\frac{1}{2} \delta_{i j} E_{2 k}, \\
R_{(2 i-1)(2 j)(2 k)}=-\frac{1}{4} \delta_{i k} E_{2 j-1}-\frac{1}{2} \delta_{i j} E_{2 k-1}, \\
R_{(2 i-1)(2 n+1)(2 j-1)}=-\frac{1}{4} \delta_{i j} E_{2 n+1}, \\
R_{(2 i-1)(2 n+1)(2 n+1)}=\frac{1}{4} \delta_{i j} E_{2 i-1}, \\
R_{(2 i)(2 j)(2 k-1)}=-\frac{1}{4} \delta_{j k} E_{2 i-1}+\frac{1}{4} \delta_{i k} E_{2 j-1}, \\
R_{(2 i)(2 n+1)(2 j)}=-\frac{1}{4} \delta_{i j} E_{2 n+1}, \\
R_{(2 i)(2 n+1)(2 n+1)}=\frac{1}{4} \delta_{i j} E_{2 i},
\end{array}\right. \tag{2.3}\\
& \left\{\begin{array}{l}
R_{(2 i-1)(2 j-1)(2 i)(2 k)}=-\frac{1}{2} \delta_{j k}+\frac{1}{4} \delta_{i k} \delta_{i j}, \\
R_{(2 i-1)(2 j)(2 i)(2 k-1)}=\frac{1}{4} \delta_{j k}+\frac{1}{2} \delta_{i k} \delta_{i j}, \\
R_{(2 i-1)(2 j)(2 k)(2 k-1)}=\frac{1}{2} \delta_{i j}+\frac{1}{4} \delta_{i k} \delta_{j k}, \\
R_{(2 i)(2 j-1)(2 j-1)(2 k)}=\frac{1}{4} \delta_{i k}-\frac{1}{4} \delta_{j k} \delta_{i j}, \\
R_{(2 i-1)(2 n+1)(2 n+1)(2 j-1)}=-\frac{1}{4} \delta_{i j}, \\
R_{(2 i)(2 n+1)(2 n+1)(2 j)}=-\frac{1}{4} \delta_{i j},
\end{array}\right. \tag{2.4}
\end{align*}
$$

for $i, j, k=1, \ldots, n$.

3. Biharmonic curves in $\mathbb{H}_{2 n+1}$

Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be a non-inflexionar curve, parametrized by its arc length. Let $\left\{T, N_{1}, \ldots\right.$, $\left.N_{2 n}\right\}$ be the Frenet frame in $\mathbb{H}_{2 n+1}$ defined along γ, where $T=\gamma^{\prime}$ is the unit tangent vector field of γ, N_{1} is the unit normal vector field of γ, with the same direction as $\nabla_{T} T$ and the vectors $N_{1}, \ldots, N_{2 n}$ are the unit vectors obtained from the following Frenet equations for γ.

$$
\begin{cases}\nabla_{T} T & =\chi_{1} N_{1} \tag{3.1}\\ \nabla_{T} N_{1} & =-\chi_{1} T+\chi_{2} N_{2} \\ \cdots & \cdots \\ \nabla_{T} N_{2 n-1} & =-\chi_{2 n-2} N_{2 n-2}+\chi_{2 n-1} N_{2 n}, \\ \nabla_{T} N_{2 n} & =-\chi_{2 n-1} N_{2 n-1},\end{cases}
$$

where $\chi_{1}=\left\|\nabla_{T} T\right\|=\|\tau(\gamma)\|$, and $\chi_{2}=\chi_{2}(s), \ldots, \chi_{2 n}=\chi_{2 n}(s)$ are real valued functions, where s is the arc length of γ. If $\chi_{k} \in \mathbb{R}, k=1, \ldots, 2 n+1$ we say that γ is a helix.

The biharmonic equation of γ is

$$
\begin{equation*}
\tau_{2}(\gamma)=\nabla_{T}^{3} T-R\left(T, \nabla_{T} T\right) T=0 \tag{3.2}
\end{equation*}
$$

Using the Frenet equations one obtains

$$
\begin{equation*}
\nabla_{T}^{3} T=\left(-3 \chi_{1} \chi_{1}^{\prime}\right) T+\left(\chi_{1}^{\prime \prime}-\chi_{1}^{3}-\chi_{1} \chi_{2}^{2}\right) N_{1}+\left(2 \chi_{1}^{\prime} \chi_{2}+\chi_{1} \chi_{2}^{\prime}\right) N_{2}+\chi_{1} \chi_{2} \chi_{3} N_{3} . \tag{3.3}
\end{equation*}
$$

Using (2.3) we get

$$
R\left(T, \nabla_{T} T\right) T=\sum_{i=1}^{n}\left(\xi_{2 i-1} E_{2 i-1}+\xi_{2 i} E_{2 i}\right)+\xi_{2 n+1} E_{2 n+1}
$$

with

$$
\begin{gathered}
\xi_{2 i-1}=\frac{3}{4} T_{2 i} \sum_{j=1}^{n}\left(-T_{2 j-1} N_{1}^{2 j}+T_{2 j} N_{1}^{2 j-1}\right)+\frac{1}{4} T_{2 i-1} T_{2 n+1} N_{1}^{2 n+1}-\frac{1}{4} T_{2 n+1}^{2} N_{1}^{2 i-1}, \\
\xi_{2 i}= \\
=\frac{3}{4} T_{2 i-1} \sum_{j=1}^{n}\left(T_{2 j-1} N_{1}^{2 j}-T_{2 j} N_{1}^{2 j-1}\right)+\frac{1}{4} T_{2 i} T_{2 n+1} N_{1}^{2 n+1}-\frac{1}{4} T_{2 n+1}^{2} N_{1}^{2 i}, \\
\xi_{2 n+1}= \\
=\frac{1}{4} \sum_{j=1}^{n}\left(-T_{2 j-1}^{2} N_{1}^{2 n+1}-T_{2 j}^{2} N_{1}^{2 n+1}+T_{2 j-1} T_{2 n+1} N_{1}^{2 j-1}+T_{2 j} T_{2 n+1} N_{1}^{2 j}\right),
\end{gathered}
$$

where $T=\sum_{a=1}^{2 n+1} T_{a} E_{a}$ and $N_{1}=\sum_{a=1}^{2 n+1} N_{1}^{a} E_{a}$. After a straightforward computation, we have

$$
\begin{equation*}
R\left(T, \nabla_{T} T\right) T=\sum_{k=1}^{2 n} \eta_{k} N_{k} \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta_{1}=\frac{3}{4}\left[\sum_{i=1}^{n}\left(T_{2 i} N_{1}^{2 i-1}-T_{2 i-1} N_{1}^{2 i}\right)\right]^{2}-\frac{1}{4} T_{2 n+1}^{2}-\frac{1}{4}\left(N_{1}^{2 n+1}\right)^{2}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{k}=\frac{3}{4}\left[\sum_{i=1}^{n}\left(T_{2 i} N_{1}^{2 i-1}-T_{2 i-1} N_{1}^{2 i}\right)\right]\left[\sum_{i=1}^{n}\left(T_{2 i} N_{k}^{2 i-1}-T_{2 i-1} N_{k}^{2 i}\right)\right]--\frac{1}{4} N_{1}^{2 n+1} N_{k}^{2 n+1}, \tag{3.6}
\end{equation*}
$$

where $N_{k}=\sum_{a=1}^{2 n+1} N_{k}^{a} E_{a}$.
From (3.2), (3.3) and (3.4) it follows that the biharmonic equation of γ is

$$
\begin{gathered}
\tau_{2}(\gamma)=\nabla_{T}^{3} T-R\left(T, \nabla_{T} T\right) T=\left(-3 \chi_{1} \chi_{1}^{\prime}\right) T+\left(\chi_{1}^{\prime \prime}-\chi_{1}^{3}-\chi_{1} \chi_{2}^{2}-\chi_{1} \eta_{1}\right) N_{1}+ \\
\left(2 \chi_{1}^{\prime} \chi_{2}+\chi_{1} \chi_{2}^{\prime}-\chi_{1} \eta_{2}\right) N_{2}+\left(\chi_{1} \chi_{2} \chi_{3}-\chi_{1} \eta_{3}\right) N_{3}-\chi_{1} \sum_{i=4}^{2 n} \eta_{k} N_{k}
\end{gathered}
$$

where $\eta_{a}, a=1, \ldots, 2 n$ are given by (3.5) and (3.6). Hence
Theorem 3.1. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be a curve, parametrized by its arc length. Then γ is a biharmonic and non-harmonic curve if and only if

$$
\left\{\begin{array}{l}
\chi_{1} \in \mathbb{R} \backslash\{0\} \tag{3.7}\\
\chi_{1}^{2}+\chi_{2}^{2}=-\eta_{1}, \\
\chi_{2}^{\prime}=\eta_{2} \\
\chi_{2} \chi_{3}=\eta_{3}, \\
\eta_{k}=0, \quad k=4, \ldots, 2 n
\end{array}\right.
$$

where $\eta_{k}, k=1, \ldots, 2 n$, are given by (3.5) and (3.6).
Corollary 3.2. If $\chi_{1} \in \mathbb{R} \backslash\{0\}$ and $\chi_{2}=0$ for a curve $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$, parametrized by its arc length, then γ is a biharmonic and non-harmonic curve if and only if $\chi_{1}^{2}=-\eta_{1}$ and $\eta_{k}=0, k=2, \ldots, 2 n$.

Corollary 3.3. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be a curve, parametrized by its arc length. If $\eta_{1} \geq 0$ then γ cannot be a biharmonic and non-harmonic curve.

In $[7]$ the following two results for the usual Heisenberg group, \mathbb{H}_{3}, are proved.
Theorem 3.4. Let γ be the helix given by

$$
\gamma(s)=(r \cos (a s), r \sin (a s), c a s),
$$

where $r>0, \frac{1}{a^{2}}=r^{2}\left(1+\frac{1}{4} r^{2}\right)$. Then γ is a biharmonic and non-geodesic curve.
Remark 3.5. In the case above if $r=\sqrt{\frac{1+\sqrt{5}}{2}}$, then γ is a biharmonic and non-harmonic curve with $\chi_{2}=0$.

In the case of the higher dimensions, we find a similar example related to Theorem 3.1. We consider a curve in $\mathbb{R}^{2 n+1}$, given by

$$
\gamma(s)=\left(c_{1} \cos \left(a_{1} s\right), c_{1} \sin \left(a_{1} s\right), \ldots, c_{n} \cos \left(a_{n} s\right), c_{n} \sin \left(a_{n} s\right), c s\right),
$$

where $c_{i}>0, a_{i} \neq 0, c \neq 0, i=1, \ldots, n$. Then one obtains

$$
T(s)=\gamma^{\prime}(s)=\sum_{i=1}^{n}\left[-c_{i} a_{i} \sin \left(a_{i} s\right) E_{2 i-1}+c_{i} a_{i} \cos \left(a_{i} s\right) E_{2 i}\right]+A E_{2 n+1},
$$

where $A=c-\frac{1}{2} \sum_{i=1}^{n} c_{i}^{2} a_{i}$. From $\|T(s)\|=1$ we have $A^{2}+\sum_{i=1}^{n} c_{i}^{2} a_{i}^{2}=1$. After a straightforward computation, using (2.2), one obtains

$$
\nabla_{T} T=\sum_{i=1}^{n}\left[c_{i} a_{i}\left(A-a_{i}\right) \cos \left(a_{i} s\right) E_{2 i-1}+c_{i} a_{i}\left(A-a_{i}\right) \sin \left(a_{i} s\right) E_{2 i}\right] .
$$

From the first equation in (3.1) and from $\left\|N_{1}\right\|=1$, we have

$$
\chi_{1}=\left[\sum_{i=1}^{n} c_{i}^{2} a_{i}^{2}\left(A-a_{i}\right)^{2}\right]^{1 / 2} \in \mathbb{R}
$$

and

$$
N_{1}=\sum_{i=1}^{n} \frac{c_{i} a_{i}\left|A-a_{i}\right|}{\left[\sum_{j=1}^{n} c_{j}^{2} a_{j}^{2}\left(A-a_{j}\right)^{2}\right]^{1 / 2}}\left[\cos \left(a_{i} s\right) E_{2 i-1}+\sin \left(a_{i} s\right) E_{2 i}\right] .
$$

Note that $N_{1}^{2 n+1}=0$. Next, one obtains

$$
\begin{gathered}
\nabla_{T} N_{1}+\chi_{1} T=\frac{1}{2 \chi_{1}} \sum_{i=1}^{n}\left\{c_{i} a_{i}\left[\left|A-a_{i}\right|\left(A-2 a_{i}\right)-2 \chi_{1}^{2}\right]\right\}\left[\sin \left(a_{i} s\right) E_{2 i-1}-\right. \\
\left.\cos \left(a_{i} s\right) E_{2 i}\right]+\frac{1}{2 \chi_{1}}\left[2 \chi_{1}^{2} A-\sum_{j=1}^{n} c_{j}^{2} a_{j}^{2}\left|A-a_{i}\right|\right] E_{2 n+1} .
\end{gathered}
$$

From (3.1), using $\left\|N_{2}\right\|=1$ we have $\left|\chi_{2}\right|^{2}=\left\|\chi_{2} N_{2}\right\|^{2}$.
In order to find a curve which satisfies conditions of Corollary 3.2 we assume that $\chi_{2}=0$ and $\chi_{1}^{2}=-\eta_{1}$. From this conditions, after a straightforward computation we get

Proposition 3.6. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be the curve defined by

$$
\gamma(s)=\left(c_{1} \cos \left(a_{1} s\right), c_{1} \sin \left(a_{1} s\right), \ldots, c_{n} \cos \left(a_{n} s\right), c_{n} \sin \left(a_{n} s\right), c s\right),
$$

where $c_{i}>0, a_{i} \neq 0, c \neq 0$. If $a_{i}=a=A-\frac{1}{2 A}, \sum_{i=1}^{n} c_{i}^{2}=\frac{4 A^{2}\left(1-A^{2}\right)}{\left(2 A^{2}-1\right)^{2}}$ and $c=\frac{A^{3}}{2 A^{2}-1}$, where

$$
A= \pm\left[\frac{3 n^{2}-1+\left(9 n^{4}+6 n^{2}+5\right)^{1 / 2}}{6 n^{2}+2}\right]^{1 / 2}
$$

then γ is a biharmonic and non-harmonic curve in $\mathbb{H}_{2 n+1}$.
Note that, for such a curve and for $k \neq 1$, one obtains
$\sum_{i=1}^{n}\left(T_{2 i} N_{k}^{2 i-1}-T_{2 i-1} N_{k}^{2 i}\right)=\frac{\chi_{1}}{|A-a|} \sum_{i=1}^{n}\left(N_{1}^{2 i-1} N_{k}^{2 i-1}+N_{1}^{2 i} N_{k}^{2 i}\right)=-\frac{\chi_{1}}{|A-a|} N_{1}^{2 n+1} N_{k}^{2 n+1}=0$.
That is $\eta_{k}=0$, for any $k=2, \ldots, 2 n$.
Also, note that the Proposition 3.6 is a generalization of the result in the Remark 3.5.
Next, one obtains

Proposition 3.7. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be the curve defined by

$$
\gamma(s)=(r \cos (a s), r \sin (a s), \ldots, r \cos (a s), r \sin (a s), c s),
$$

where $r>0, a_{i} \neq 0, c \neq 0$. If $\chi_{2}=0, \chi_{1} \neq 0$ and γ is biharmonic then $n=1$.
In the following we obtain a class of biharmonic and non-harmonic curves for which the second curvature does not necessarily vanish, (see[1] for the similar result in 3-dimensional case).

Proposition 3.8. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}, \gamma(s)=\left(x_{1}(s), y_{1}(s), \ldots, x_{n}(s), y_{n}(s), z(s)\right)$, be the curve with the parametric equations

$$
\left\{\begin{align*}
x_{i}(s) & =\frac{1}{\beta} \frac{\sin \alpha}{\sqrt{n}} \sin \left(\beta s+a_{i}\right)+b_{i}, \tag{3.8}\\
y_{i}(s) & =-\frac{1}{\beta} \frac{\sin \alpha}{\sqrt{n}} \cos \left(\beta s+a_{i}\right)+c_{i}, \\
z(s) & =\left(\cos \alpha+\frac{(\sin \alpha)^{2}}{2 \beta}\right) s-\sum_{i=1}^{n} \frac{b_{i}}{2 \beta \sqrt{n}} \sin \alpha \cos \left(\beta s+a_{i}\right) \\
& -\sum_{i=1}^{n} \frac{c_{i}}{2 \beta \sqrt{n}} \sin \alpha \cos \left(\beta s+a_{i}\right)+d,
\end{align*}\right.
$$

with $i=1, \ldots, n$, where $\beta=\frac{\cos \alpha \pm \sqrt{5(\cos \alpha)^{2}-4}}{2}, \alpha \in\left(0, \arccos \frac{2 \sqrt{5}}{5}\right] \cup\left[\arccos \left(-\frac{2 \sqrt{5}}{5}\right), \pi\right)$ and $a_{i}, b_{i}, c_{i}, d \in \mathbb{R}$. Then γ is a biharmonic and non-harmonic curve.

Proof. The covariant derivative of the unit tangent vector field, T, of γ, is

$$
\nabla_{T} T=\sum_{i=1}^{n}\left[\left(T_{2 i-1}^{\prime}+T_{2 i} T_{2 n+1}\right) E_{2 i-1}+\left(T_{2 i}^{\prime}-T_{2 i-1} T_{2 n+1}\right) E_{2 i}\right]+T_{2 n+1}^{\prime} E_{2 n+1},
$$

and T is given by

$$
T(s)=\gamma^{\prime}(s)=\frac{\sin \alpha}{\sqrt{n}} \sum_{i=1}^{n}\left[\cos \left(\beta s+a_{i}\right) E_{2 i-1}+\sin \left(\beta s+a_{i}\right) E_{2 i}\right]+\cos \alpha E_{2 n+1} .
$$

Taking into account the first Frenet equation one obtains

$$
\chi_{1}=|\sin \alpha(\cos \alpha-\beta)|
$$

and, since we can assume, without loss of generality, that $\sin \alpha(\cos \alpha-\beta)>0$, we have

$$
N_{1}=\sum_{i=1}^{n}\left(\frac{\sin \left(\beta s+a_{i}\right)}{\sqrt{n}} E_{2 i-1}-\frac{\cos \left(\beta s+a_{i}\right)}{\sqrt{n}} E_{2 i}\right) .
$$

After a straightforward computation one obtains that $\eta_{1}=(\sin \alpha)^{2}-\frac{1}{4}$ and $\eta_{k}=0$, for any $k=2, \ldots, 2 n$.

In order to find χ_{2} we obtain, using the equations (2.2),

$$
\nabla_{T} N_{1}+\chi_{1} T=\sum_{i=1}^{n}\left\{\frac{\cos \left(\beta s+a_{i}\right)}{\sqrt{n}}\left[\beta-\frac{1}{2} \cos \alpha+(\cos \alpha-\beta)(\sin \alpha)^{2}\right] E_{2 i-1}\right.
$$

$$
\left.+\frac{\sin \left(\beta s+a_{i}\right)}{\sqrt{n}}\left[\beta-\frac{1}{2} \cos \alpha+(\cos \alpha-\beta)(\sin \alpha)^{2}\right] E_{2 i}\right\}-\sin \alpha\left[\frac{1}{2}-(\cos \alpha-\beta) \cos \alpha\right] E_{2 n+1}
$$

Then, using Frenet equations, we have

$$
\chi_{2}^{2}=\left\|\nabla_{T} N_{1}+\chi_{1} T\right\|^{2}=\beta^{2}-\beta \cos \alpha+\frac{1}{4}-(\sin \alpha)^{2}(\cos \alpha-\beta)^{2} .
$$

Hence χ_{2} is a constant and, from hypothesis, one obtains

$$
\chi_{1}^{2}+\chi_{2}^{2}=\frac{1}{4}-(\sin \alpha)^{2}=-\eta_{1} .
$$

Since $\chi_{2} N_{2}=\nabla_{T} N_{1}+\chi_{1} T$ and $\chi_{3}^{2}=\left\|\nabla_{T} N_{2}+\chi_{2} N_{1}\right\|^{2}$, we obtain, after a straightforward computation, that $\chi_{3}=0$.

Hence, all conditions from Theorem 3.1 are verified by γ and then γ is a biharmonic and non-harmonic curve.

Remark 3.9. In the same way as above it is easy to see that all biharmonic and nonharmonic curves in $\mathbb{H}_{2 n+1}$ with constant second curvature and with the unit tangent vector field, T, of the form

$$
T(s)=\frac{\sin \alpha}{\sqrt{n}} \sum_{i=1}^{n}\left[\cos \left(f_{i}(s)\right) E_{2 i-1}+\sin \left(f_{i}(s)\right) E_{2 i}\right]+\cos \alpha E_{2 n+1},
$$

where f_{i} are some smooth functions of the arc length, such that $f_{i}^{\prime}=f_{j}^{\prime}$, for any $i, j=1, \ldots, n$, and $\alpha \in \mathbb{R}$, are given by Proposition 3.8.

Finally, we have
Proposition 3.10. Let $\gamma: I \rightarrow \mathbb{H}_{2 n+1}$ be the curve defined by

$$
\gamma(s)=\left(c_{1} s, c_{2} s, \ldots, c_{2 n+1} s\right)
$$

with $\sum_{j=1}^{2 n+1} c_{j}^{2}=1$. Then γ is biharmonic if and only if is harmonic.
Proof. We have

$$
T(s)=\gamma^{\prime}(s)=\sum_{j=1}^{2 n+1} c_{j} E_{j},\|T\|=1, \nabla_{T} T=c_{2 n+1} \sum_{i=1}^{n}\left(c_{2 i} E_{2 i-1}-c_{2 i-1} E_{2 i}\right) .
$$

It follows that $\chi_{1}=c_{2 n+1} \sqrt{\sum_{i=1}^{n}\left(c_{2 i-1}^{2}+c_{2 i}^{2}\right)}$, and

$$
N_{1}=\sum_{i=1}^{n}\left[\frac{c_{2 i}}{\sqrt{\sum_{j=1}^{n}\left(c_{2 j-1}^{2}+c_{2 j}^{2}\right)}} E_{2 i-1}-\frac{c_{2 i-1}}{\sqrt{\sum_{j=1}^{n}\left(c_{2 j-1}^{2}+c_{2 j}^{2}\right)}} E_{2 i}\right] .
$$

One obtains

$$
\nabla_{T} N_{1}+\chi_{1} T=\frac{\sum_{k=1}^{n}\left(c_{2 k-1}^{2}+c_{2 k}^{2}\right)-c_{2 n+1}^{2}}{2} \cdot\left[\sum _ { i = 1 } ^ { n } \left(\frac{c_{2 i-1} c_{2 n+1}}{\sqrt{\sum_{j=1}^{n}\left(c_{2 j-1}^{2}+c_{2 j}^{2}\right)}} E_{2 i-1}+\right.\right.
$$

$$
\left.\left.\frac{c_{2 i} c_{2 n+1}}{\sqrt{\sum_{j=1}^{n}\left(c_{2 j-1}^{2}+c_{2 j}^{2}\right)}} E_{2 i}\right)-\sqrt{\sum_{j=1}^{n}\left(c_{2 j-1}^{2}+c_{2 j}^{2}\right)} E_{2 n+1}\right] .
$$

That means

$$
\chi_{2}=\frac{\sum_{k=1}^{n}\left(c_{2 k-1}^{2}+c_{2 k}^{2}\right)-c_{2 n+1}^{2}}{2}
$$

Thus $\chi_{1}^{2}+\chi_{2}^{2}=\frac{1}{4}$. But, one obtains that $\eta_{1}=\frac{3}{4}-c_{2 n+1}^{2}$, and from (3.7) we have that if γ is biharmonic then $\chi_{1}^{2}+\chi_{2}^{2}=-\eta_{1}=-\frac{3}{4}+c_{2 n+1}^{2}$. Thus if γ is biharmonic then $\chi_{1}=0$, and then γ is a harmonic curve.

References

[1] Caddeo, R.; Oniciuc, C.; Piu, P.: Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. E-version, arXiv:math.DG $0311221 \mathrm{v} 1,2003,16 \mathrm{pp}$.
[2] Eells, J.; Lemaire, L.; Selected topics in harmonic maps. Reg. Conf. Ser.Math. 50 (1983), 85 p.

Zbl 0515.58011
[3] Figueroa, C. B.; Mercuri, F.; Pedrosa, R. H. L.: Invariant surfaces of the Heisenberg Groups. Ann. Mat. Pura Appl. IV. Ser., 177 (1999), 173-194. Zbl 0965.53042
[4] Gheorghiev, Gh.; Oproiu, V.: Varietăţi diferenţiabile finit şi infinit dimensionale. (Roumanian), vol.II, Ed. Academiei Române (1979), 294 pp.

Zbl 0484.53001
[5] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A, 7 (1986), 389-402.

Zbl 0628.58008
[6] Martin, M.: Introducere in teoria curbelor şi suprafeţelor in spaţiul euclidian n-dimensional. (Roumanian), Universitatea Bucureşti 1979.
[7] Oniciuc, C.: Tangency and harmonicity properties. (Roumanian), Geometry Balkan Press, E-version, 2003, 87 pp.
[8] Oproiu, V.; Papaghiuc, N.: Some results on harmonic sections of cotangent bundles. Ann. Stiint. Univ. Al.I.Cuza Iasi, 45 (1999), 275-290.

Zbl 1011.53018
[9] Urakawa, H.: Calculus of Variation and Harmonic Maps. Am. Math. Soc., Providence, Rhode Island, Translations of Mathematical Monographs, 1993, xiii, 251 p.

Zbl 0799.58001

Received March 23, 2004

[^0]: *The author wants to thank Professor Vasile Oproiu for his many valuable advices

