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Abstract. Let Y ⊂ Pn be a finite union of lines and H ⊂ Pn a general hyperplane.
Here we study the linearly general position of the finite set Y ∩H.
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1. Introduction

Let S ⊂ PN be a finite set. S is said to be in linearly general position if for any S ′ ⊆ S
the linear span 〈S ′〉 of S spans a linear subspace of dimension min{N, card(S ′) − 1}. It is
well-known that if C ⊂ Pn is an integral non-degenerate curve and the algebraically closed
base field K has characteristic zero, then a general hyperplane section of C is in linearly
general position ([5], Lemma 1.1). Obviously, this result is not true for an arbitrary reducible
curve and the first aim of this paper is to classify exactly when it is true when C is a union
of lines. We will also work over an arbitrary algebraically closed field K. We recall that
in general the corresponding result for irreducible curve is not true in positive characteristic
([5]). In Section 2 we will prove the following result.

Theorem 1. Let X ⊂ Pn be a finite union of lines. Assume that a general hyperplane section
of X is not in linearly general position and let s be the first integer such that 1 ≤ s ≤ n− 2
and for a general hyperplane H the set X∩H contains a set of at least s+2 points spanning a
linear space of dimension s. Let A1, . . . , Ax, x ≥ 1, be the s-dimensional linear subspaces of H
containing at least s+2 points of X∩H. Set Si := Ai∩X. Then there are (s+1)-dimensional
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linear subspaces Mi ⊂ Pn and subcurves Xi ⊂ Mi ∩ X with deg(Xi) = card(Si) ≥ s + 2.
Furthermore, Si = Xi ∩H for a general hyperplane H.

Theorem 1 is a quantitative and precise version of the following immediate corollary of it.

Corollary 1. Let X ⊂ Pn be a finite union of lines. A general hyperplane section of X is
in linearly general position if and only if there is no positive integer m ≤ n− 2 such that at
least m + 2 lines of X are contained in an m-dimensional linear subspace of Pn.

We will say that a reduced curve X ⊂ Pn is a dismantled curve or a configuration of lines if
each irreducible component of X is a line.

Remark 1. Let X ⊂ Pn be a non-degenerate dismantled curve. In general, it is not true
that X ∩H spans H for a general hyperplane H. For instance take n = 3 and X the union
of two disjoint lines. However, by Theorem 1 if X ∩H spans a linear subspace of dimension
s ≤ n− 2 and X contains no subcurve of degree at least s + 2 contained in a linear space of
dimension at most s + 1, then deg(X) = s + 1.

Remark 2. Fix integers n, d with n ≥ 3 and d ≥ n. Set m := [(d − 1)/(n − 1)], ε :=
d − 1 − m(n − 1) and π(n, d) := m(m − 1)(n − 1)/2 + mε. Let X ⊂ Pn be a degree d
non-degenerate reduced curve such that the general hyperplane section of X is in linearly
general position and spans the corresponding hyperplane. By Castelnuovo theory (see e.g.
[4], Ch. 3, or [3], p. 252) we have pa(X) ≤ π(n, d). Fix a hyperplane H not containing any
irreducible component of X. From the exact sequence

0 → IX → IX(1) → IX∩H,H(1) → 0 (1)

we see that X ∩H spans H if X is connected.

Now we consider the postulation of the subsets of a generic hyperplane section of a configu-
ration of lines with respect to the homogeneous forms of degree s ≥ 2.

Theorem 2. Fix integers n ≥ 3, s ≥ 2 and b >
(
2n−2

n

)
s2n−2/(n − 1) and a configuration

Y ⊂ P3 of lines. Assume that for a general hyperplane H the following conditions are
satisfied:

(a) for all integers t with 1 ≤ t < s and all A ⊆ Y ∩ H we have h0(Pn, IA(t)) =
max{0,

(
n+t
n

)
− card(A)};

(b) there is S ⊆ Y ∩H such that card(S) = b and h0(P3, IS(s)) 6= 0.

Then there is a variety F ⊂ Pn such that at least b −
(
2n−2

n

)
s2n−2/(n − 1) lines of Y are

contained in F , F is a union of lines, 2 ≤ dim(F ) ≤ n− 1, and h0(Pn, IF (s)) 6= 0.

The integer
(
2n−2

n

)
/(n− 1) in the statement of Theorem 2 is the degree of the Grassmannian

G(2, n + 1) of all lines of Pn with respect to the Plücker embedding of G(2, n + 2) induced
by the positive generator OG(2,n+1)(1) of Pic(G(2, n + 1)) ([2], Example 14.7.11). Since
dim(G(2, n + 1)) = 2n − 2, the integer

(
2n−2

n

)
s2n−2/(n − 1) is the top self-intersection of

OG(2,n+1)(1). This observation explains the lower bound for b appearing in the statement of
Theorem 2. The thesis of Theorem 2 has two parts:
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(a) several lines of Y are contained in a degree s hypersurface G lifting the hypersurface
of the generic hyperplane H of Pn containing many points of Y ∩H;

(b) G contains infinitely many lines; in particular if n = 3, then G is a ruled surface.

In Section 4 we will consider the linear general position of a general section of a double
structure Z on a configuration of lines Y . We will allow unreduced curves Z which are
reduced at a general point of some of the lines contained in Y (see Theorem 3).

2. Proof of Theorem 1

Proof of Theorem 1. For every P ∈ Si let LP ⊂ X be the line such that {P} = LP ∩H. Set
Xi := ∪P∈Si

LP and Vi := 〈Xi〉, 1 ≤ i ≤ x. Since the set of all hyperplanes of Pn is irreducible,
while X has only finitely many irreducible components, the integer x and the subcurves Xi,
1 ≤ i ≤ x, of X do not depend upon the choice of the sufficiently general hyperplane H.
Hence the linear spaces Mi, 1 ≤ i ≤ x, do not depend upon the choice of the sufficiently
general hyperplane H. Notice that Xi is the maximal subcurve of X such that Xi ∩ H is
contained in Mi. By the minimality of s for every S ′ ⊂ Si with card(S ′) = s + 1 we have
Ai = 〈S ′〉, i.e. each Si is in linearly general position in its linear span. To prove Theorem 1
it is sufficient to show that dim(Vi) = s + 1 for every i. We assume that Theorem 1 fails for
some dismantled curve and we take n minimal with this property. If n > s + 2 a general
projection of Y into Ps+2 gives a counterexample to Theorem 1. Hence by the minimality
of n and s we obtain n = s + 2 and dim(Mi) = s + 2 for some index i, say for i = 1. The
dismantled curve X1 gives a counterexample to Theorem 1. Hence, we reduced to the case
X = X1, n = s + 2. Let Y be a degree s + 1 subcurve of X1. By the minimality of s either
dim(〈Y 〉) = s + 1 or dim(〈Y 〉) = s + 2. We saw that Y ∩H spans A1. For every line T ⊂ Y
choose a general P ∈ T and call B the union of these s + 1 points. Since dim(〈Y 〉) ≥ s + 1
and the points of B are sufficiently general, we have dim(〈B〉) = s. By the generality of B
a general hyperplane H of Ps+2 containing B may be considered as a general hyperplane.
Fix any general hyperplane H containing B and any line D of X1 with D not in Y . By the
definition of A1 and X1 and the generality of H we have H ∩D ∈ 〈B〉. Now move H among
all hyperplanes containing B. We obtain D ⊆ 〈B〉. Thus X1\Y ⊂ 〈B〉. Moving each point
of B in the corresponding line of Y we easily obtain a contradiction. �

3. Proof of Theorem 2

Proof of Theorem 2. Let G(2, n+1) be the Grassmannian of all lines of Pn andOG(2,n+1)(1) the
positive generator of Pic(G(2, n + 2)), i.e. the line bundle inducing the Plücker embedding
of G(2, n + 1). For any hyperplane M ⊂ Pn and any degree s hypersurface T of M , set
G(T, M) := {D ∈ G(2, n + 1) : T ∩D 6= ∅}. G(T,M) is the zero-locus of a non-zero section
of OG(2,n+1)(s). G(2, n + 1) has degree

(
2n−2

n

)
/(n− 1) with respect to the Plücker embedding

and dim(G(2, n+1)) = 2n−2. Thus Bezout’s theorem implies that the intersection of at least
2n − 2 hypersurfaces G(Ti, Mi) either is infinite or it contains at most

(
2n−2

n

)
s2n−2/(n − 1)

points. Taking as Mi all general hyperplanes of Pn and as Ti the corresponding degree s
hypersurface containing at least b points of Y , we obtain the existence of an irreducible
variety N ⊂ Pn with dim(N) ≥ 2, N union of lines, such that for a general hyperplane
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H we have h0(H, IN∩H,H(s)) 6= 0 and N ∩ H contained in a degree s hypersurface of H
containing Y ∩H. If card(N ∩ Y ∩H) ≤ b −

(
2n−2

n

)
s2n−2/(n − 1) − 1, then we may iterate

this construction. Since the intersection of all G(T,M) has only finitely many irreducible
components, after finitely many steps we find the ruled variety F with all the properties
claimed by Theorem 2. �

4. Double structures

In this section we consider the linearly general position of general hyperplane sections of
double structures on configurations of lines. The definition of linearly general position makes
sense even for zero-dimensional subschemes of projective spaces ([1]).

Theorem 3. Let Z ⊂ Pn be a non-degenerate purely one-dimensional locally Cohen-Macau-
lay scheme such that Y := Zred is a configuration of lines and for each line T ⊆ Y the
multiplicity of Z at a general point of T is one or two. Assume that a general hyperplane
section of Y is in linearly general position in its linear span. Then the general hyperplane
section of Z is in linearly general position in its linear span.

Proof. Fix a general hyperplane H and assume that the result is not true. Let s be the
minimal integer such that 1 ≤ s < dim(〈Z∩H〉) and there is an s-dimensional linear subspace
V of H with length(Z ∩ V ) ≥ s + 2. By the minimality of s V is spanned by V ∩ Z. Let
Y ′ ⊆ Y be the union of all lines of Y intersecting V and Z ′ ⊆ Z the maximal locally Cohen-
Macaulay subscheme of Z such that Z ′

red = Y ′. Since the general hyperplane section of Y is
in linearly general position, we have Z ′∩V 6= Y ′∩V . By the generality of H, H is transversal
to Y . Fix P ∈ Y ′ ∩ V such that Z ′ is not reduced at P , i.e. it is unreduced at a general
point of the line T containing P , and the connected component of Z ∩ H supported by P
is contained in V . Let A be the union of the connected components of the zero-dimensional
scheme Z ∩ V supported by Y ∩ V \{P}. Hence length(W ) = length(Z ∩ W ) − 2. Thus
length(W ∪ {P}) = length(Z ∩ V )− 1. By the minimality of s we have dim(〈W ∪ {P}〉 ≥ s
and hence 〈W ∪{P}〉 = V . Now we move H among all hyperplanes containing M and call H ′

a general such hyperplane. Since H is general, the length two subscheme of H ′∩Z supported
by P must be contained in V . Hence, varying H ′ we see that V contains T . Since V ⊂ H
and Z ∩H is a zero-dimensional scheme, we have obtained a contradiction. �
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