On the Monotonicity of the Volume of Hyperbolic Convex Polyhedra

Károly Bezdek*
Department of Mathematics and Statistics, University of Calgary
2500 University Drive NW, Calgary, Ab Canada T2N 1N4
e-mail: bezdek@math.ucalgary.ca

Abstract

We give a proof of the monotonicity of the volume of nonobtuse-angled compact convex polyhedra in terms of their dihedral angles. More exactly we prove the following. Let P and Q be nonobtuse-angled compact convex polyhedra of the same simple combinatorial type in hyperbolic 3 -space. If each (inner) dihedral angle of Q is at least as large as the corresponding (inner) dihedral angle of P, then the volume of P is at least as large as the volume of Q. Moreover, we extend this result to nonobtuse-angled hyperbolic simplices of any dimension.

MSC 2000: 52A55, 52C29
Keywords: hyperbolic nonobtuse-angled convex polyhedra, Koebe-Andreev-Thurston theorem, hyperbolic volume

1. Introduction

A compact convex polyhedron in hyperbolic 3 -space \mathbb{H}^{3} is the convex hull of finitely many points with nonempty interior or equivalently is the bounded intersection of finitely many closed halfspaces with nonempty interior. The different dimensional faces of a compact convex polyhedron are called vertices, edges and faces. Any two faces meeting along an edge are called adjacent faces. Finally, a compact convex polyhedron in \mathbb{H}^{3} is called nonobtuse-angled if the inner dihedral angles at all edges do not exceed $\frac{\pi}{2}$. In a sequence of highly influential papers Andreev gave a description of the geometry of nonobtuse-angled compact convex

[^0]0138-4821/93 \$ 2.50 © 2005 Heldermann Verlag
polyhedra in \mathbb{H}^{3}. (For more details on the Koebe-Andreev-Thurston theorem see for example [6].) In [3] he proved that the planes of any two nonadjacent faces of a nonobtuse-angled compact convex polyhedron do not intersect in \mathbb{H}^{3}. It is easy to see that the combinatorial type of any nonobtuse-angled compact convex polyhedron is simple that is at any vertex exactly 3 faces (resp. 3 edges) meet. More importantly it is shown in [1] that if P and Q are nonobtuse-angled compact convex polyhedra of the same simple combinatorial type in \mathbb{H}^{3} such that the corresponding inner dihedral angles of P and Q are equal, then P and Q are congruent. All these results have been extended to higher dimensions by Andreev in [1] and [3]. However, the most striking result of Andreev is a 3-dimensional one. Namely, for a given simple combinatorial type of a polyhedron, not a tetrahedron, Andreev [1] determined necessary and sufficient conditions on the inner dihedral angles under which there exists a compact convex polyhedron with the given dihedral angles not greater than $\frac{\pi}{2}$ and with the given simple combinatorial type. ([2] extends this result to finite-volume convex polyhedra in \mathbb{H}^{3}.)

Based on this, in this note we prove the monotonicity of the volume of 3-dimensional nonobtuse-angled compact convex polyhedra in terms of their inner dihedral angles. More exactly we prove the following:

Theorem 1. Let P and Q be nonobtuse-angled compact convex polyhedra of the same simple combinatorial type in \mathbb{H}^{3}. If each inner dihedral angle of Q is at least as large as the corresponding inner dihedral angle of P, then the volume of P is at least as large as the volume of Q.

The author believes that the conclusion of Theorem 1 fails to hold if one drops the assumption that P and Q are nonobtuse-angled. However, it is highly possible that the following conjecture holds as a natural extension of Theorem 1 to higher dimensions. A proof of that, however, would require fundamentally new ideas as well.

Conjecture 1. Let P and Q be nonobtuse-angled compact convex polytopes of the same simple combinatorial type in $\mathbb{H}^{d}, d \geq 4$. If each inner dihedral angle of Q is at least as large as the corresponding inner dihedral angle of P, then the d-dimensional hyperbolic volume of P is at least as large as that of Q.

Remark 1. Theorem 2 of the proof of Theorem 1 shows that Conjecture 1 holds when P and Q are nonobtuse-angled hyperbolic simplices of any dimension.

Remark 2. It is not hard to see via proper limit procedure (for details see [2]) that Theorem 1 extends to nonobtuse-angled convex polyhedra of finite volume in \mathbb{H}^{3}.

2. Proof of Theorem 1

Case 1. P and Q are simplices.
Let X^{n} be the spherical, Euclidean or hyperbolic space $\mathbb{S}^{n}, \mathbb{E}^{n}$ or \mathbb{H}^{n} of constant curvature $+1,0,-1$, and of dimension $n \geq 2$. By an n-dimensional simplex Δ^{n} in X^{n} we mean a compact subset with nonempty interior which can be expressed as an intersection of $n+1$ closed
halfspaces. (In case of spherical space we require that Δ^{n} lies on an open hemisphere.) Let $F_{0}, F_{1}, \ldots, F_{n}$ be the $(n-1)$-dimensional faces of the simplex Δ^{n}. Each $(n-2)$-dimensional face can be described uniquely as an intersection $F_{i j}=F_{i} \cap F_{j}$. We will identify the collection of all inner dihedral angles of the simplex Δ^{n} with the symmetric matrix $\alpha=\left[\alpha_{i j}\right]$ where $\alpha_{i j}$ is the inner dihedral angle between F_{i} and F_{j} for $i \neq j$, and where the diagonal entries $\alpha_{i i}$ are set equal to π by definition. Then the Gram matrix $G\left(\Delta^{n}\right)=\left[g_{i j}\left(\Delta^{n}\right)\right]$ of the simplex $\Delta^{n} \subset X^{n}$ is the $(n+1) \times(n+1)$ symmetric matrix defined by $g_{i j}\left(\Delta^{n}\right)=-\cos \alpha_{i j}$. Note that all diagonal entries $g_{i i}\left(\Delta^{n}\right)$ are equal to one. Finally, let

$$
\begin{aligned}
G_{+}^{n} & =\left\{G\left(\Delta^{n}\right) \mid \Delta^{n} \text { is an } n \text {-dimensional simplex is } \mathbb{S}^{n}\right\}, \\
G_{0}^{n} & =\left\{G\left(\Delta^{n}\right) \mid \Delta^{n} \text { is an } n \text {-dimensional simplex in } \mathbb{E}^{n}\right\}, \\
G_{-}^{n} & =\left\{G\left(\Delta^{n}\right) \mid \Delta^{n} \text { is an } n \text {-dimensional simplex in } \mathbb{H}^{n}\right\} \quad \text { and } \\
G^{n} & =G_{+}^{n} \cup G_{0}^{n} \cup G_{-}^{n} .
\end{aligned}
$$

The following lemma summarizes some of the major properties of the sets $G_{+}^{n}, G_{0}^{n}, G_{-}^{n}$ and G^{n} that have been studied on several occasions including the papers of Coxeter [4], Milnor [7] and Vinberg [8].
Lemma 1. (1) The determinant of $G\left(\Delta^{n}\right)$ is either positive or zero or negative depending on whether the simplex Δ^{n} is spherical or Euclidean or hyperbolic.
(2) G^{n} is a convex open set in \mathbb{R}^{N} with $N=\frac{n(n+1)}{2}$. (Note that the affine space consisting of all symmetric unidiagonal $(n+1) \times(n+1)$ matrices has dimension $N=\frac{n(n+1)}{2}$.)
(3) G_{0}^{n} is an $(N-1)$-dimensional topological cell that cuts G^{n} into two open subcells G_{+}^{n} and G_{-}^{n}.
(4) G_{+}^{n} (resp., $G_{+}^{n} \cup G_{0}^{n}$) is a convex open (resp. convex closed) set in \mathbb{R}^{N}.

We will need the following property for our proof of Theorem 1 that seems to be a new property of G_{+}^{n} (resp., $G_{+}^{n} \cup G_{0}^{n}$) not yet mentioned in the literature. It is useful to introduce the notations $\mathbb{R}_{<0}^{N}=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) \mid x_{i}<0\right.$ for all $\left.1 \leq i \leq N\right\}$ and $\mathbb{R}_{\leq 0}^{N}=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) \mid\right.$ $x_{i} \leq 0$ for all $\left.1 \leq i \leq N\right\}$.
Lemma 2. $G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ (resp., $\left.\left(G_{+}^{n} \cup G_{0}^{n}\right) \cap \mathbb{R}_{\leq 0}^{N}\right)$ is a convex corner i.e. if $g=\left(g_{1}, g_{2}, \ldots, g_{N}\right) \in$ $G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ (resp., $g \in\left(G_{+}^{n} \cup G_{0}^{n}\right) \cap \mathbb{R}_{\leq 0}^{N}$), then for any $g^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{N}^{\prime}\right)$ with $g_{1} \leq g_{1}^{\prime}<$ $0, \ldots, g_{N} \leq g_{N}^{\prime}<0$ (resp., $g_{1} \leq g_{1}^{\prime} \leq 0, \ldots, g_{N} \leq g_{N}^{\prime} \leq 0$) we have that $g^{\prime} \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ (resp. $g^{\prime} \in\left(G_{+}^{n} \cup G_{0}^{n}\right) \cap \mathbb{R}_{\leq 0}^{N}$).

Proof. Due to Lemma 1 it is sufficient to check the claim of Lemma 2 for the set $G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ only.

Let $g=\left(g_{1}, g_{2}, \ldots, g_{N}\right) \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$. Then it is sufficient to show that for any $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{N}$ with $g_{1} \leq \varepsilon_{1}<0, g_{2} \leq \varepsilon_{2}<0, \ldots, g_{N} \leq \varepsilon_{N}<0$ we have that

$$
\begin{align*}
g^{1} & =\left(\varepsilon_{1}, g_{2}, \ldots, g_{N}\right) \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}, \\
g^{2} & =\left(g_{1}, \varepsilon_{2}, g_{3}, \ldots, g_{N}\right) \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}, \\
& \vdots \tag{5}\\
g^{N} & =\left(g_{1}, \ldots, g_{N-1}, \varepsilon_{N}\right) \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N} .
\end{align*}
$$

(Namely, it is easy to see that (5) and the convexity of $G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ imply that $G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ is indeed a convex corner. Although it is not needed here, for the sake of completeness we note that the origin of \mathbb{R}^{N} is in fact, an interior point of G_{+}^{n}.) Let Δ^{n} be the n-dimensional simplex of \mathbb{S}^{n} whose Gram matrix $G\left(\Delta^{n}\right)=\left[g_{i j}\left(\Delta^{n}\right)\right]$ corresponds to $g=\left(g_{1}, g_{2}, \ldots, g_{N}\right)$ i.e.

$$
\left(g_{1}, g_{2}, \ldots, g_{N}\right)=\left(-\cos \alpha_{01},-\cos \alpha_{02}, \ldots,-\cos \alpha_{0 n},-\cos \alpha_{12}, \ldots,-\cos \alpha_{(n-1) n}\right)
$$

As $g \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ we have that $0<\alpha_{01}<\frac{\pi}{2}, 0<\alpha_{02}<\frac{\pi}{2}, \ldots, 0<\alpha_{0 n}<\frac{\pi}{2}, 0<$ $\alpha_{12}<\frac{\pi}{2}, \ldots, 0<\alpha_{(n-1) n}<\frac{\pi}{2}$. In order to show that $g^{1}=\left(\varepsilon_{1}, g_{2}, \ldots g_{N}\right) \in G_{+}^{n} \cap \mathbb{R}_{<0}^{N}$ we have to show the existence of an n-dimensional simplex Δ_{1}^{n} of \mathbb{S}^{n} with dihedral angles $\arccos \left(-\varepsilon_{1}\right), \alpha_{02}, \ldots, \alpha_{0 n}, \alpha_{12}, \ldots, \alpha_{(n-1) n}$. (As the task left for the remaining parts of (5) is the same we do not give details of that here.) We will show the existence of Δ_{1}^{n} via polarity. Let ${ }^{*} \Delta^{n}=\left\{x \in \mathbb{S}^{n} \mid x \cdot y \leq 0\right.$ for all $\left.y \in \Delta^{n}\right\}$ be the spherical polar of Δ^{n}, where $x \cdot y$ denotes the inner product of the unit vectors x and y. As it is well-known ${ }^{*} \Delta^{n}$ is an n-dimensional simplex of \mathbb{S}^{n} with edgelength $\pi-\alpha_{01}, \pi-\alpha_{02}, \ldots, \pi-\alpha_{0 n}, \pi-\alpha_{12}, \ldots, \pi-\alpha_{(n-1) n}$ each being larger than $\frac{\pi}{2}$.

Let F be the $(n-2)$-dimensional face of ${ }^{*} \Delta^{n}$ disjoint from the edge of length $\pi-\alpha_{01}$ of ${ }^{*} \Delta^{n}$. Let v_{0} and v_{1} be the endpoints of the edge of length $\pi-\alpha_{01}$ of ${ }^{*} \Delta^{n}$. By assumption $\frac{\pi}{2}<\pi-\arccos \left(-\varepsilon_{1}\right) \leq \pi-\alpha_{01}<\pi$. Now, rotate v_{1} towards v_{0} about the $(n-2)$-dimensional greatsphere \mathbb{S}^{n-2} of F in \mathbb{S}^{n} until the rotated image \bar{v}_{1} of v_{1} becomes a point of the $(n-1)$ dimensional greatsphere \mathbb{S}^{n-1} of the facet of * Δ^{n} disjoint from v_{1}. Obviously, the above rotation about \mathbb{S}^{n-2} decreases the (spherical) distance $v_{0} v_{1}$ in a continuous way. We claim via continuity that there is a rotated image say, v_{01} of v_{1} such that the spherical distance $v_{0} v_{01}$ is equal to $\pi-\arccos \left(-\varepsilon_{1}\right)$. Namely, the $n+1$ points formed by v_{0}, \bar{v}_{1} and the vertices of F all belong to an open hemisphere of \mathbb{S}^{n-1} with the property that all pairwise spherical distances different from $v_{0} \bar{v}_{1}$ are larger than $\frac{\pi}{2}$. (Here we assume that v_{0} and \bar{v}_{1} are distinct since if they coincide, then the existence of v_{01} is trivial.) But, then a theorem of Davenport and Hajós [5] implies that $v_{0} \bar{v}_{1} \leq \frac{\pi}{2}$ and so, the existence of v_{01} follows. Thus, the spherical polar of the n-dimensional simplex of \mathbb{S}^{n} spanned by v_{0}, v_{01} and F gives us Δ_{1}^{n}. This completes the proof of Lemma 2.

Now, we are in a position to show that $G_{-}^{n} \cap \mathbb{R}_{\leq 0}^{N}$ is monotone-path connected.
Lemma 3. $G_{-}^{n} \cap \mathbb{R}_{\leq 0}^{N}$ is monotone-path connected in the following strong sense: if $g=$ $\left(g_{1}, \ldots, g_{N}\right) \in G_{-}^{n} \cap \overline{\mathbb{R}}_{\leq 0}^{N}$ and $g^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{N}^{\prime}\right) \in G_{-}^{n} \cap \mathbb{R}_{\leq 0}^{N}$ with $g_{1}^{\prime} \leq g_{1}, \ldots, g_{N}^{\prime} \leq g_{N}$, then $\left[\lambda g^{\prime}+(1-\lambda) g\right] \in G_{-}^{n} \cap \mathbb{R}_{\leq 0}^{N}$ for all $0 \leq \lambda \leq 1$.

Proof. Lemma 1 implies that $\left[\lambda g^{\prime}+(1-\lambda) g\right] \in G^{n}$ for all $0 \leq \lambda \leq 1$ and so it is sufficient to prove that $\left[\lambda g^{\prime}+(1-\lambda) g\right] \notin G_{+}^{n} \cup G_{0}^{n}$ for all $0 \leq \lambda \leq 1$. As $g \notin G_{+}^{n} \cup G_{0}^{n}$ and $G_{+}^{n} \cup G_{0}^{n}$ is convex moreover, $\left(G_{+}^{n} \cup G_{0}^{n}\right) \cap \mathbb{R}_{\leq 0}^{N}$ is a convex corner (Lemma 2) therefore there exists a supporting hyperplane H in \mathbb{R}^{N} that touches $G_{+}^{n} \cup G_{0}^{n}$ at some point $h \in G_{0}^{n} \cap \mathbb{R}_{\leq 0}^{N}$ and is disjoint from g and separates g from $G_{+}^{n} \cup G_{0}^{n}$. In fact, using again the convex corner property of $\left(G_{+}^{n} \cup G_{0}^{n}\right) \cap \mathbb{R}_{\leq 0}^{N}$ we get that H separates $h+\mathbb{R}_{\leq 0}^{N}$ from $G_{+}^{n} \cup G_{0}^{n}$ and therefore H separates $g+\mathbb{R}_{\leq 0}^{N}$ from $\bar{G}_{+}^{n} \cup G_{0}^{n}$ as well. Finally, notice that $g^{\prime} \in g+\mathbb{R}_{\leq 0}^{N}$ and $g+\mathbb{R}_{\leq 0}^{N}$ is disjoint from H and therefore $g+\mathbb{R}_{\leq 0}^{N}$ is disjoint from $G_{+}^{n} \cup G_{0}^{n}$. This finishes the proof of Lemma 3.

Now, we are ready to give a proof of the following volume monotonicity property of hyperbolic simplices.

Theorem 2. Let P and Q be nonobtuse-angled n-dimensional hyperbolic simplices. If each inner dihedral angle of Q is at least as large as the corresponding inner dihedral angle of P, then the n-dimensional hyperbolic volume of P is at least as large as that of Q.

Proof. By moving to the space of Gram matrices of n-dimensional hyperbolic simplices and then applying Lemma 3 we get that there exists a smooth one-parameter family $P(t)$, $0 \leq t \leq 1$ of nonobtuse-angled n-dimensional hyperbolic simplices with the property that $P(0)=P$ and $P(1)=Q$ moreover, if $\alpha_{01}(t), \alpha_{02}(t), \ldots, \alpha_{0 n}(t), \alpha_{12}(t), \ldots, \alpha_{(n-1) n}(t)$ denote the inner dihedral angles of $P(t)$, then $\alpha_{i j}(t)$ is a monotone increasing function of t for all $0 \leq i<j \leq n$. Now, Schläfli's classical differential formula [7] yields that

$$
\begin{equation*}
\frac{d}{d t} \operatorname{Vol}_{n}(P(t))=\frac{-1}{n-1} \sum_{0 \leq i<j \leq n} \operatorname{Vol}_{n-2}\left(F_{i j}(t)\right) \cdot \frac{d}{d t} \alpha_{i j}(t), \tag{6}
\end{equation*}
$$

where $F_{i j}(t)$ denotes the $(n-2)$-dimensional face of $P(t)$ on which the dihedral angle $\alpha_{i j}(t)$ sits and $\operatorname{Vol}_{n}(\cdot), \operatorname{Vol}_{n-2}(\cdot)$ refer to the corresponding dimensional volume measures. Thus, as $\frac{d}{d t} \alpha_{i j}(t) \geq 0$ (6) implies that $\frac{d}{d t} \operatorname{Vol}_{n}(P(t)) \leq 0$ and so indeed $P(0) \geq P(1)$, finishing the proof of Theorem 2.

Case 2. The combinatorial type of P and Q is different from that of a tetrahedron.
First, recall the following classical theorem of Andreev [1].
Andreev Theorem. A nonobtuse-angled compact convex polyhedron of a given simple combinatorial type, different from that of a tetrahedron and having given inner dihedral angles exists in \mathbb{H}^{3} if and only if the following conditions are satisfied:
(1) if 3 faces meet at a vertex, then the sum of the inner dihedral angles between them is larger than π;
(2) if 3 faces are pairwise adjacent but, not concurrent, then the sum of the inner dihedral angles between them is smaller than π;
(3) if 4 faces are cyclically adjacent, then at least one of the dihedral angles between them is different from $\frac{\pi}{2}$;
(4) (for triangular prism only) one of the angles formed by the lateral faces with the bases must be different from $\frac{\pi}{2}$.

Second, observe that Andreev theorem implies that the space of the inner dihedral angles of nonobtuse-angled compact convex polyhedra of a given combinatorial type different from that of a tetrahedron in \mathbb{H}^{3} is an open convex set. As a result we get that if P and Q are given as in Theorem 1 and are different from a tetrahedron, then there exists a smooth one-parameter family $P(t), 0 \leq t \leq 1$ of nonobtuse-angled compact convex polyhedra of the same simple combinatorial type as of P and Q with the property that $P(0)=P$ and $P(1)=Q$ moreover, if $\alpha_{E}(t)$ denotes the inner dihedral angle of $P(t)$ which sits over the edge corresponding to
the edge E of P, then $\alpha_{E}(t)$ is a monotone increasing function of t for all edges E of P. Applying Schläfli's differential formula [7] to the smooth one-parameter family $P(t)$ we get that

$$
\begin{equation*}
\frac{d}{d t} \operatorname{Vol}(P(t))=-\frac{1}{2} \sum_{E_{t}} \operatorname{length}\left(E_{t}\right) \cdot \frac{d}{d t} \alpha_{E}(t) \tag{7}
\end{equation*}
$$

where E_{t} denotes the edge of $P(t)$ corresponding to the edge E of P and E (resp., E_{t}) runs over all edges of P (resp., $P(t)$). Hence, as $\frac{d}{d t} \alpha_{E}(t) \geq 0(7)$ implies that $\frac{d}{d t} \operatorname{Vol}(P(t)) \leq 0$ and so indeed $P(0) \geq P(1)$, completing the proof of Theorem 1.

References

[1] Andreev, E. M.: On convex polyhedra in Lobachevskii spaces. Math. USSR-Sb. 10 (1970), 413-440.
[2] Andreev, E. M.: Convex polyhedra of finite volume in Lobachevskii space. Math. USSR-Sb. 12 (1970), 255-259.

Zbl 0252.52005
[3] Andreev, E. M.: The intersection of the plane boundaries of a polytope with acute angles. Mat. Zametki 8 (1970), 761-764.

Zbl 0209.26506
[4] Coxeter, H. S. M.: The polytopes with regular-prismatic vertex figures, II. Proc. Lond. Math. Soc. 34 (1932), 126-189. JFM 58.1212.02 and Zbl 0005.07602
[5] Davenport, H.; Hajós, G.: Problem 35. Mat. Lapok III/1 (1952), 94-95.
[6] Marden, A.; Rodin, B.: On Thurston's formulation and proof of Andreev's theorem. Lect. Notes Math. 1435, Springer-Verlag 1989, 103-115.

Zbl 0717.52014
[7] Milnor, J.: The Schläfli differential equality. In: Collected papers, Vol. 1, Houston: Publish or Perish 1994.

Zbl 0857.01015
[8] Vinberg, E. B.: Discrete groups generated by reflections in Lobacevskii spaces. Math. USSR-Sb. 1 (1967), 429-444. cf. Mat. Sb., N. Ser. 72(114), 471-488, 73(115), 303 (1967).

Zbl 0166.16303

[^0]: *The author was partially supported by the Hung. Nat. Sci. Found (OTKA), grant no. T043556 and by a Natural Sciences and Engineering Research Council of Canada Discovery Grant

