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1. Introduction

The Hecke groups H(λ) are the discrete subgroups of PSL(2, R) (the group of the orien-
tation preserving isometries of the upper half plane U) generated by two linear fractional
transformations

R(z) = −1

z
and T (z) = z + λ

where λ ∈ R, λ ≥ 2 or λ = λq = 2cos(π
q
), q ∈ N, q ≥ 3. These values of λ are the only ones

that give discrete groups, by a theorem of Hecke, [2].
The Hecke groups H(λq) have been studied for many aspects in literature (see for instance

[17], [1], [3], [8], [13] or [14]). The most important and studied Hecke group is the modular
group H(λ3) = PSL(2, Z). The next two interesting Hecke groups are obtained for q = 4
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and 6. These two groups are of particular interest since they are the only Hecke groups
H(λq), aside from the modular group, whose elements are completely known. The principal
congruence subgroups of these Hecke groups have been investigated extensively (see [1], [3],
[8], [13] or [14]).

In this paper, we are interested in the case λ ≥ 2. When λ > 2, these Hecke groups are
Fuchsian groups of the second kind. When λ = 2, the element S = RT is parabolic and when
λ > 2, the element S = RT is hyperbolic. It is known that H(λ) is a free product of a cyclic
group of order 2 and of an infinite cyclic group where λ ≥ 2 (see [4] and [12]). In other words

H(λ) ∼= C2 ∗ Z.

Here, we only consider the case λ =
√

5. We determine the quotient groups of the Hecke group
H(
√

5) by its principal congruence subgroups using a classical method, defined by Macbeath
([5]). Then we compute signatures of these normal subgroups using the permutation method
and Riemann-Hurwitz formula (see [18] and [6]). We make use of the notion of the quadratic
reciprocity and the Fibonacci and Lucas numbers. Note that in [10], these results have been
extended to all the Hecke groups H(

√
q) (q ≥ 5 prime number) by using two new number

sequences related to Fibonacci and Lucas numbers.
In the case λ =

√
5, the underlying field is a quadratic extension of Q by

√
5, i.e. Q(

√
5).

A presentation of H(
√

5) is

H(
√

5) =
〈
R,S; R2 = S∞ = (RS)∞ = 1

〉
where S = RT and the signature of H(

√
5) is (0; 2,∞; 1). By identifying the transformation

w = az+b
cz+d

with the matrix

(
a b
c d

)
, H(

√
5) may be regarded as a multiplicative group

of 2 × 2 matrices in which a matrix is identified with its negative. R and S have matrix
representations (

0 −1
1 0

)
and

(
0 −1

1
√

5

)
,

respectively. All elements of H(
√

5) are one of the following two forms:

(i)

(
a b

√
5

c
√

5 d

)
; a, b, c, d ∈ Z, ad− 5bc = 1,

(ii)

(
a
√

5 b

c d
√

5

)
; a, b, c, d ∈ Z, 5ad− bc = 1.

Those of type (i) are called even while those of type (ii) are called odd. But the converse
statement is not true. That is, all elements of type (i) or (ii) need not be in H(

√
5). In [16],

Rosen proved that

(
A B
C D

)
∈ H(λ) if and only if A

C
is a finite λ -fraction (see [16] for more

details).
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The set of all even elements form a subgroup of index 2 called the even subgroup. It is
denoted by He(

√
5). In [11], it was proved that He(

√
5) is isomorphic to the free product of

two infinite cyclic groups generated by the parabolic generators T = RS and U = SR, that
is,

He(
√

5) ∼= Z ∗ Z ∼= F2.

Also the signature of He(
√

5) is (0;∞(2); 1).
The even subgroup He(

√
5) is the most important amongst the normal subgroups of

H(
√

5). It contains infinitely many normal subgroups of H(
√

5).
Being a free product of a cyclic group of order 2 and of an infinite cyclic group, by the

Kurosh subgroup theorem, H(
√

5) has two kinds of subgroups those which are free and those
with torsion (being free product of Z2’s and Z’s).

2. Principal congruence subgroups

An important class of normal subgroups in H(
√

5) are the principal congruence subgroups.
Let p be a rational prime. The principal congruence subgroup Hp(

√
5) of level p is defined

by

Hp(
√

5) =

{
A =

(
a b

√
5

c
√

5 d

)
∈ H(

√
5) : A ≡ ±I (mod p)

}
.

In general, this is equivalent to

Hp(
√

5) =

{(
a b

√
5

c
√

5 d

)
: a ≡ d ≡ 1, b ≡ c ≡ 0 (mod p), ad− 5bc = 1

}
.

Hp(
√

5) is always a normal subgroup of H(
√

5). Note that by the definition

Hp(
√

5) � He(
√

5). (1)

A subgroup of H(
√

5) containing a principal congruence subgroup of level p is called a
congruence subgroup of level p. In general, not all congruence subgroups are normal in
H(
√

5).
Another way of obtaining Hp(

√
5) is to consider the reduction homomorphism which is

induced by reducing entries modulo p.
Let ℘ be an ideal of Z[

√
5] which is an extension of the ring of integers by the algebraic

number
√

5. Then the natural map

Θ℘ : Z[
√

5] → Z[
√

5]/℘

induces a map

H(
√

5) → PSL(2, Z[
√

5]/℘)

whose kernel is called the principal congruence subgroup of level ℘.
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Let now s be an integer such that the polynomial x2 − 5 has solutions in GF (ps). We
know that such an s exists and satisfies 1 ≤ s ≤ 2 = deg(x2−5). Let u be a solution of x2−5
in GF (ps). Let us take ℘ to be the ideal generated by u in Z[

√
5]. As above we can define

Θp,u : H(
√

5) → PSL(2, ps)

as the homomorphism induced by
√

5 → u. Let

Kp,u(
√

5) = Ker(Θp,u).

As the kernel of a homomorphism of H(
√

5), Kp,u(
√

5) is normal in H(
√

5).
Given p, as Kp,u(

√
5) depends on p and u, we have a chance of having a different kernel

for each root u. However sometimes they do coincide. Indeed, it trivially follows from the
Kummer’s theorem that if u, v correspond to the same irreducible factor f of x2 − 5 over
GF (ps), then Kp,u(

√
5) = Kp,v(

√
5). Even when u, v give different factors of x2 − 5, we may

have Kp,u(
√

5) = Kp,v(
√

5). In Lemma 2.4, we show that Kp,u(
√

5) = Kp,−u(
√

5) when 5 is a
quadratic residue mod p.

It is easy to see that Kp,u(
√

5) is a normal congruence subgroup of level p of H(
√

5), i.e.

Hp(
√

5) � Kp,u(
√

5).

Therefore Hp(
√

5) ≤
⋂

all u

Kp,u(
√

5). When the index of Hp(
√

5) in Kp,u(
√

5) is not 1, i.e. when

they are different, we shall use Kp,u(
√

5) to calculate Hp(
√

5). We first try to find the quotient
of H(

√
5) with Kp,u(

√
5). It is then easy to determine H(

√
5)/Hp(

√
5). To determine both

quotients we use some results of Macbeath, [5]. After finding the quotients of H(
√

5) by the
principal congruence subgroups, we find the group theoretical structure of them. For notions
and terminology see [5] and [18]. Also for the notion of quadratic reciprocity see [15].

Before stating our main results we need the following lemmas. Firstly, the following
lemma can be found as an exercise in [15].

Lemma 2.1. Let p be an odd prime. Then we have the following:

i) (5
p
) = 1, that is 5 is a quadratic residue mod p if and only if p ≡ ±1 (mod 10).

ii) (5
p
) = −1, that is 5 is a quadratic nonresidue mod p if and only if p ≡ ±3 (mod 10).

In [9], it was proved that

S2n =

(
−L2n−1 −F2n

√
5

F2n

√
5 L2n+1

)
(2)

and

S2n+1 =

(
−F2n

√
5 −L2n+1

L2n+1 F2n+2

√
5

)
(3)

where Fn and Ln denote the nth Fibonacci number and nth Lucas number. For any odd
prime p, let us consider Sp in mod p. From (3) we have

Sp =

(
−Fp−1

√
5 −Lp

Lp Fp+1

√
5

)
.
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It is known that Fp−1 ≡ 0 (mod p) and Fp ≡ 1 (mod p), when
(

q
p

)
= 1 where

(
q
p

)
is the

Legendre symbol, [19]. Then we find Fp+1 ≡ 1 (mod p) and Lp ≡ 1 (mod p). Therefore we
have

Sp ≡
(

0 −1

1
√

5

)
= S (mod p),

that is, Sp−1 ≡ I (mod p). In this case, we can only say that the order of S (mod p) divides
p− 1.

Let
(

q
p

)
= −1. Then we have Fp ≡ −1 (mod p) , Fp+1 ≡ 0 (mod p) and hence we find

Fp−1 ≡ 1 (mod p). So we get

Sp ≡
(
−
√

5 −1
1 0

)
= −S−1 (mod p),

that is, Sp+1 ≡ −I (mod p). In this case, the order of S (mod p) divides p + 1.
Therefore we get the following lemma:

Lemma 2.2.

(i) Let
(

q
p

)
= 1. Then Sp−1 ≡ I (mod p) and the order of S, say l, divides p− 1.

(ii) Let
(

q
p

)
= −1. Then Sp+1 ≡ −I (mod p) and the order of S divides p + 1.

Now we can give our main theorem.

Theorem 2.3. The quotient groups of the Hecke group H(
√

5) by its congruence subgroups
Kp,u(

√
5) and its principal congruence subgroups Hp(

√
5) are as follows:

H(
√

5)/Kp,u(
√

5) ∼=


PSL(2, p), p ≡ ±1 (mod 10)
PGL(2, p), p ≡ ±3 (mod 10)

C2, p = 5
D3, p = 2

and

H(
√

5)/Hp(
√

5) ∼=


C2 × PSL(2, p), p ≡ ±1 (mod 10)

PGL(2, p), p ≡ ±3 (mod 10)
C10, p = 5
D6, p = 2

.

Proof. Case 1. Let p 6= 2 and p 6= 5, be so that 5 is a square modulo p, that is, 5 is a quadratic
residue mod p . In this case there exists an element u in GF (p) such that u2 = 5. Therefore√

5 can be considered as an element of GF (p). Let us consider the homomorphism of H(
√

5)
reducing all elements of it modulo p. The images of R, S and T under this homomorphism
are denoted by rp, sp and tp respectively. Then clearly rp, sp and tp belong to PSL(2, p). Now
there is a homomorphism

θ : H(
√

5) → PSL(2, p)
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induced by
√

5 → u. Then our problem is to find the subgroup of PSL(2, p) = G, generated
by rp, sp and tp.

Following Macbeath’s terminology let k = GF (p). Then κ, the smallest subfield of
k containing α = tr(rp) = 0, β = tr(sp) =

√
5 and γ = tr(tp) = 2, is also GF (p) as√

5 ∈ GF (p). In this case, for all p, the Γp(
√

5)−triple (rp, sp,tp) is not singular since the

discriminant of the associated quadratic form, which is −u2

4
, is not 0 (where Γp(

√
5) denotes

the image of H(
√

5) modulo p, generated by rp and sp).
On the other hand, the associated N-triple (giving the orders of its elements) is (2, l, p)

where l depends on p. The triple is not exceptional since p ≡ ±1 (mod 10) and l 6= 2
(remember that all exceptional triples are (2, 2, n), n ∈ N, (2, 3, 3), (2, 3, 4), (2, 3, 5) and
(2, 5, 5) ((2, 3, 5) is a homomorphic image of (2, 5, 5)), see [5]).

Then by Theorem 4 in [5], (rp, sp, tp) generates a projective subgroup of G, and by
Theorem 5 in [5], as κ = GF (p) is not a quadratic extension of any other field, this subgroup
is the full group PSL(2, p), i.e.

H(
√

5)/Kp,u(
√

5) ∼= PSL(2, p).

Let us now find the quotient of H(
√

5) by the principal congruence subgroup Hp(
√

5) in this
case. Recall that, by (1), Hp(

√
5) is a subgroup of the even subgroup He(

√
5). Therefore

there are no odd elements in Hp(
√

5).
We now want to find the quotient group Kp,u(

√
5)/Hp(

√
5). To show that it is not the

trivial group, we show that Kp,u(
√

5) contains an odd element.
If A is such an element, then

A =

(
x
√

5 y

z t
√

5

)
; ∆ = 5xt− yz = 1, x, y, z, t ∈ Z

is in Kp,u(
√

5)−Hp(
√

5). Now

A2 =

(
5x2 + yz

√
5(xy + yt)√

5(xz + tz) 5t2 + yz

)
and since xu ≡ tu ≡ 1, y ≡ z ≡ 0 mod p, we have x2u2 = 5x2 ≡ 1 mod p and similarly
t2u2 = 5t2 ≡ 1 mod p. Hence A is of exponent two mod Hp(

√
5). If B is another such

element in Kp,u(
√

5) − Hp(
√

5), then it is easy to see that AB−1 ≡ ±I (mod p) and hence
AHp(

√
5) = BHp(

√
5). Therefore we can write

Kp,u(
√

5) = Hp(
√

5) ∪ AHp(
√

5)

as A /∈ Hp(
√

5).

Now we want to show that any element

(
a b

√
5

c
√

5 d

)
of He(

√
5)/Hp(

√
5) commutes

with A. This is true since(
x
√

5 y

z t
√

5

)(
a b

√
5

c
√

5 d

)
=

( √
5(ax + cy) 5bx + dy

az + 5ct
√

5(bz + dt)

)
,
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a b

√
5

c
√

5 d

)(
x
√

5 y

z t
√

5

)
=

( √
5(ax + bz) ay + 5bt

5xc + dz
√

5(cy + dt)

)
and since y ≡ z ≡ 0 and x ≡ t mod p. Therefore we have the following subgroup lattice (see
Figure 1) and hence

H(
√

5)/Hp(
√

5) ∼= Kp,u(
√

5)/Hp(
√

5)×He(
√

5)/Hp(
√

5) ∼= C2 × PSL(2, p).

�
�

��

@
@

@
@

@
@

@@

,
,

,
,

H(
√

5)

He(
√

5)Kp,u(
√

5)

C2

C2

Hp(
√

5)

PSL(2, p)

PSL(2, p)

Figure 1

Indeed, Kp,u(
√

5) contains an odd element. Let A =

(
x
√

5 y

z t
√

5

)
be as above. We have

∆ = 5xt− yz = 1 and xu ≡ tu ≡ 1, y ≡ z ≡ 0 (mod p) where u ≡
√

5 mod p. Let v ∈ GF (p)
be such that uv ≡ 1 mod p. Then we can choose

A = T−vRT−vRT−vR = (T−vR)3 =

(
v(2− 5v2)

√
5 1− 5v2

5v2 − 1 v
√

5

)
∈ H(

√
5). (4)

That is, it is always possible to find an odd element A of Kp,u(
√

5) which does not belong to
Hp(

√
5).

Case 2. Now let p be so that 5 is not a square modulo p, i.e. 5 is a quadratic nonresidue
mod p. In this case

√
5 can not be considered as an element of GF (p). Therefore there are

no odd elements in the kernel Kp,u(
√

5) and hence Kp,u(
√

5) = Hp(
√

5).
Now we shall extend GF (p) to its quadratic extension GF (p2). Then u =

√
5 can be

considered to be in GF (p2) and there exists a homomorphism θ : H(
√

5) → PSL(2, p2)
induced in a similar way to Case 1.

Let k = GF (p2). Then κ, the smallest subfield of k containing traces α, β, γ of rp, sp and
tp, is also GF (p2). Then as in Case 1, (rp, sp, tp) is not a singular triple. Let p > 3. Then
the G0-triple (rp, sp, tp) is not an exceptional triple and generates PGL(2, p) since κ is the
quadratic extension of κ0 = GF (p) and γ = 2 lies in κ0 while α = 0 and β =

√
5 is the square

root in κ of 5 which is a non-square in κ0, that is, H(
√

5)/Kp,u(
√

5) ∼= PGL(2, p) (see [5],
p.28).

If p = 3, (rp, sp, tp) is an exceptional triple since the associated N-triple is (2, 4, 3) which
generates a group isomorphic to the symmetric group S4 and we get

H(
√

5)/K3,u(
√

5) ∼= S4
∼= PGL(2, 3).

Consequently, H(
√

5)/Hp(
√

5) ∼= PGL(2, p).
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Case 3. Let p = 5. As
√

5 can be thought as the zero element of GF (5) = {0, 1, 2, 3, 4},
t5 ≡ I mod 5. As r2

5 = 1 as well, we have H(
√

5)/K5,0(
√

5) ∼= C2.

It is easy to show that S2n ≡
(

(−1)n (−1)nn
√

5

(−1)n+1n
√

5 (−1)n

)
(mod 5). Then, we have

S10 ≡
(
−1 −5

√
5

5
√

5 −1

)
(mod 5) ≡

(
−1 0
0 −1

)
= −I(mod 5).

Thus, in the quotient H(
√

5)/H5(
√

5) we have the relations r2
5 = s10

5 = t55 = I and s5 = r5t5
as (

√
5)2 = 5 ≡ 0 (mod 5). Hence we have H(

√
5)/H5(

√
5) ∼= C10.

Case 4. Let p = 2. Then (r2, s2, t2) gives the exceptional N-triple (2, 3, 2) and hence generates
a group isomorphic to the dihedral group D3 of order 6.

Let us now consider the quotient group H(
√

5)/H2(
√

5). In this case we have the relations
r2
2 = s6

2 = t22 = I. Therefore H(
√

5)/H2(
√

5) is isomorphic to the dihedral group D6 of
order 12.

Then by Lemma 2.1, the proof is completed. �

Lemma 2.4. If p ≡ ±1 (mod 10), then we have Kp,u(
√

5) = Kp,−u(
√

5).

Proof. If p ≡ ±1 (mod 10), then x2 − 5 ≡ (x − u)(x + u) mod p for some u ∈ GF (p).
In Kp,u(

√
5), let us consider the element A = (T−vR)3 obtained in (4). Now we have

R(T−vR)3R = (T vR)3. Since Kp,u(
√

5) is a normal subgroup, then the equality holds, as
required. �

Notice that generators of one of the two principal congruence subgroups corresponding to
values u and −u are just the inverses of the generators of the other.

Hence we have found all quotient groups of H(
√

5) with Kp,u(
√

5) and with the principal
congruence subgroups Hp(

√
5), for all prime p. By means of them we can give the index

formula for these two congruence subgroups.

Corollary 2.5. The indices of the congruence subgroups Kp,u(
√

5) and Hp(
√

5) in H(
√

5)
are

∣∣∣H(
√

5)/Kp,u(
√

5)
∣∣∣ =


p(p−1)(p+1)

2
if p ≡ ±1 (mod 10)

p(p− 1)(p + 1) if p ≡ ±3 (mod 10)
2 if p = 5
6 if p = 2

and

|H(
√

q)/Hp(
√

q)| =


p(p− 1)(p + 1) if p 6= 5 and p 6= 2

10 if p = 5
12 if p = 2

.
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We are now able to determine the group theoretical structure of the subgroups Kp,u(
√

5)
and Hp(

√
5). Recall that Hp(

√
5) / Kp,u(

√
5) and also by the definition of Hp(

√
5), Hp(

√
5) /

He(
√

5). Then we have four cases:

Case 1. Let p = 5. We know that H(
√

5)/K5,0(
√

5) ∼= C2. Since R and S are both mapped
to the generator of C2, we find K5,0(

√
5) = He(

√
5).

We also proved that H(
√

5)/H5(
√

5) ∼= C10. The group C10 has a presentation〈
α, β, γ; α2 = β5 = γ10 = I

〉
.

Then we have R → α, S → β and therefore RS → αβ, i.e.

R → (1 2)(3 4)(5 6)(7 8)(9 10)

S → (1 3 5 7 9)(2 4 6 8 10)

T → (1 4 5 8 9 2 3 6 7 10).

By the permutation method and Riemann-Hurwitz formula we find the signature of H5(
√

5)
as (2;∞; 2).

Case 2. Let p = 2. We know that H(
√

5)/K2,u(
√

5) ∼= D3 and H(
√

5)/H2(
√

5) ∼= D6. In the
former one, the quotient group is D3

∼= (2, 3, 2) and hence by the permutation method it is
easy to see that K2,u(

√
5) has the signature (0;∞(3); 2) and therefore K2,u(

√
5) ∼= F4, where

F4 denotes a free group of rank four.
Secondly let us consider H(

√
5)/H2(

√
5) ∼= D6

∼= (2, 6, 2). In a similar way we obtain
the signature of H2(

√
5) as (0;∞(6); 2) and therefore it is a free group of rank seven, i.e.

H2(
√

q) ∼= F7.

Case 3. Let p ≡ ±1 (mod 10). Then the quotient groups are PSL(2, p) and C2×PSL(2, p) as
we have proved. Let now rp, sp be the images of R, S in PSL(2, p) and r

′
p, s

′
p be the images

of R, S in C2×PSL(2, p), respectively. Then the relations r2
p = sl

p = I and (r
′
p)

2 = (s
′
p)

m = I
are satisfied. Here, l is related to p. As odd powers of S are odd and even powers of S are
even, we have m = 2l when l is odd and we have m = l when l is even. From Lemma 2.2,
we know that l is a divisor of p − 1. So l can be p−1

k
for some positive integer k. In this

case both Kp,u(
√

5) and Hp(
√

5) are free groups. The orders of the parabolic elements rpsp

and r
′
ps

′
p are p. Then T goes to an element of order p in both quotient groups. Let µ be

the index of the congruence subgroup Kp,u(
√

5) in H(
√

5). By the permutation method and
Riemann-Hurwitz formula, we find the signature of this subgroup as(

1 +
p + 1

8
((p− 2)(p− 1)− 2kp) ;∞(

(p−1)(p+1)
2

);
kp(p + 1)

2

)
.

Again, if µ
′
is the index of the principal congruence subgroup Hp(

√
5) in H(

√
5), we find the

signature of this subgroup as(
1 +

µ
′

4pm
(pm− 2p− 2m); ∞

(
µ
′

p )

;
µ
′

m

)
.
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Example 2.6. Let q = 5, p = 11. Then we have l = 5 and m = 10. These two quotient
groups are PSL(2, 11) and C2×PSL(2, 11), respectively. Therefore we find the signature of
K11,7(

√
5) as (70;∞(60); 132) and the signature of H11(

√
5) as (205;∞(120); 132).

Case 4. Let p ≡ ±3 mod p. We proved that both quotient groups are isomorphic to PGL(2, p).
From Lemma 2.2, we know that the associated N−triple is (2, p+1

k
, p) for some positive integer

k. As in Case 3, we have the signature of Kp,u(
√

5) = Hp(
√

5) as(
1 +

p− 1

4
((p + 1)(p− 2)− 2kp) ;∞((p−1)(p+1)); kp(p− 1)

)
.

Example 2.7. Let p = 3. Then we have H(
√

5)/K3,u(
√

5) ∼= H(
√

5)/H3(
√

5)∼=PGL(2, 3) ∼=
S4 and therefore K3,u(

√
5) = H3(

√
5) ∼= (0;∞(8); 6).
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