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Abstract. Every indecomposable module over a generalized uniserial ring is uni-
serial and hence a local module. This motivates us to study rings R satisfying
the following condition: (∗) R is a right artinian ring such that every finitely
generated right R-module is local. The rings R satisfying (∗) were first studied
by Tachikawa in 1959, by using duality theory, here they are endeavoured to be
studied without using duality. Structure of a local right R-module and in particular
of an indecomposable summand of RR is determined. Matrix representation of such
rings is discussed.
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Introduction

It is well known that an artinian ring R is generalized uniserial if and only if every inde-
composable right R-module is uniserial. Every uniserial module is local. This motivated
Tachikawa [8] to study rings R satisfying the condition (∗): R is a right artinian ring such
that every finitely generated indecomposable right R-module is local. Consider the dual con-
dition (∗∗): R is a left artinian ring such that every finitely generated indecomposable left
R-module has unique minimal submodule. If a ring R satifies (∗), it admits a finitely gener-
ated injective cogenerator QR. Let a right artinian ring R admit a finitely generated injective
cogenerator QR and B = End(QR) acting on the left. Then BQR gives a duality between
the category mod − R of finitely generated right R-modules and the category B − module
of finitely generated left B-modules. Thus if R satisfies (∗), then B satisfies (∗∗). In [8]
Tachikawa studies (∗) through (∗∗), but that does not give enough information about the

0138-4821/93 $ 2.50 c© 2004 Heldermann Verlag



240 S. Singh, H. Al-Bleehed: Rings with Indecomposable Modules Local

structure of right ideals of R. In the present paper, the condition (∗) is endeavoured to be
studied without using duality. Let R satisfy (∗). Theorems (2.9), (2.10) give the structure
of any local module AR, in particular of the indecomposable summands of RR. Theorem
(2.12) gives the structure of a local ring satisfying (∗). The structure of a right artinian ring
R for which J(R)2 = 0, and which satisfies (∗) is discussed in Theorem (2.13). In Section
3, the results of Section 2 are applied to some specific situations dealing with some matrix
rings. Theorem (3.8) gives a matrix representation of a ring R with J(R)2 = 0, satisfying
(∗).This theorem shows that a sufficiently large class of such rings can be obtained from
certain incidence algebras of some finite partially ordered sets.

1. Preliminaries

All rings considered here are with identity 1 6= 0 and all modules are unital right modules
unless otherwise stated. Let R be a ring and M be an R-module. Z(R) denotes the center
of R, J(M), E(M), and socle(M) denote the radical, the injective hull and the socle of M
respectively, but J(R) will be generally denoted by J. For any module B, A < B denotes
that A is a proper submodule of B. The ring R is called a local ring if R/J is a division ring.
Given two positive integers n, m, R is called an (n,m)−ring, if R is a local ring, J2 = 0, and
for D = R/J , dim DJ = n, dim JD = m. Any (1, 2) (or (2, 1)) ring R is called an exceptional
ring if E(RR) (respectively E(RR)) is of composition length 3 [2, p 446]. A module in which
the lattice of submodules is linearly ordered under inclusion, is called a uniserial module, and
a module that is a direct sum of uniserial modules is called a serial module [3, Chapter V].
If for a ring R, RR is serial, then R is called a left serial ring. A ring R that is artinian on
both sides is called an artinian ring. An artinian ring that is both sided serial is called a
generalized uniserial ring [3, Chapter V]. A ring R that is a direct sum of full matrix rings
over local, artinian, left and right principal ideal rings is called a uniserial ring. If a module
M has finite composition length, then d(M) denotes the composition length of M. Let D be
a division ring, and D

′
be a division subring of D. Then [D : D

′
]r ([D : D

′
]l) denotes the

dimension of DD′ (respectively D′D). In case F is a subfield of D contained in Z(D), then
[D : F ] denotes the dimension of DF .

2. Local modules

Consider the following condition.

(∗): R is a right artinian ring such that any finitely generated, indecomposable right R-
module is local.

Throughout all the lemmas, the ring R satisfies (∗). Then for any module MR, J(M) = MJ.
The main purpose of this section is to determine the structure of local right modules over
such a ring.

Lemma 2.1. Any uniform R-module is uniserial. Any uniform R-module is quasi-injective.

Proof. Consider a uniform R-module M . If M is not uniserial it has two submodules A, B of
finite composition lengths such that A * B and B * A. Then A + B is a finitely generated
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R-module which is indecomposable and is not local. This is a contradiction. Hence M is
uniserial. As E(M) is uniserial, M is invariant under every R-endomorphism of E(M). Hence
M is quasi-injective. �

Proposition 2.2. Let R be any right artinian ring. Then R satisfies (∗) if and only if it
satisfies the following condition:

Let AR, BR be two local, non-simple modules. Let C < A, D < B be simple submodules,
and σ : C → D be an R-isomorphism. There exists an R-homomorphism η : A → B or
η : B → A extending σ or σ−1 respectively.

Proof. Let R satisfy (∗). Let AR, BR be two local, non-simple modules. Let C < A, D < B
be simple submodules, and σ : C → D be an R-isomorphism. Set L = {(c,−σ(c)) : c ∈ C},
and M = A × B/L. Then M = A1 ⊕ A2 for some local submodules Ai. Let ηA and ηB be
the natural embeddings in M of A and B respectively, and πi : M → Ai be the projections.
Either π1(ηA(A)) = A1 or π1(ηB(B)) = A1. Suppose π1(ηA(A)) = A1. Then d(A1) ≤ d(A).
If d(A1) = d(A), then ηA(A) ∼= A1 and it is a summand of M , we get an R-epimorphism
λ : M → A such that ληA = 1A. Then η = ληB : B → A extends σ−1. Let d(A1) < d(A).
Then d(A2) ≥ d(B). If π2(ηB(B)) = A2, then d(A2) = d(B), as seen above there exists an
R-homomorphism η : A → B that extends σ. Suppose π2(ηB(B)) 6= A2. Then π2(ηA(A))
= A2. As ηB(B) * MJ, π1(ηB(B)) = A1. Then either d(A) = d(A2) or d(B) = d(A1). This
gives the desired η.

Conversely, let the given condition be satisfied by R. On the contrary suppose that R
does not satisfy (∗). There exists an indecomposable R-module K of smallest composition
length that is not local. Then socle(K) ⊆ KJ. Consider any simple submodule S of K. Then
K/S is a direct sum of local modules, so K = A + B for some submodules A, B with A a
local, and A∩B = S. Then B = ⊕

∑t
i=1 Bi for some local submodules Bi. Now S = xR and

x =
∑

xi, xi ∈ Bi. If for some i, say for i = 1, x1 = 0, then K = (A +
∑t

i=2 Bi)⊕B1. Hence
xi 6= 0 for every i. Suppose t ≥ 2. Now Si = xiR is a simple submodule of Bi. We have an
R-isomorphism σ : S1 → S2 such that σ(x1) = x2. By the hypothesis, σ or σ−1 extends to an
R-homomorphism η : B1 → B2 or η : B2 → B1 respectively. To be definite, let η : B1 → B2

extend σ. Consider C1 = {(b, η(b), 0, . . . , 0) : b ∈ B1} ⊆ B. Then B = C1⊕B2⊕B3⊕· · ·⊕Bt

and S ⊆ C1 ⊕ B3 ⊕ · · · ⊕ Bt. This is a contradiction. Hence t = 1. Thus B is local. So
there exists an R-homomorphism η say from B to A that is identity on S. Then for C =
{b− η(b) : b ∈ B}, K = A⊕ C. This is a contradiction. Hence R satisfies (∗). �

Lemma 2.3. Let AR, BR be two local, non-simple modules such that d(A) = d(B), AJ2 =
BJ2 = 0.

(i) Suppose that for some simple submodule C of A, σ : C → B is an embedding. Then
there exists an R-isomorphism η : A → B extending σ.

(ii) A and B are isomorphic if and only if there exists a simple submodule C of A that
embeds in B.

(iii) If socle(A) = AJ contains more that one homogeneous components, then each homo-
geneous component of socle(A) is simple and the number of homogeneous components
is two.
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Proof. (i) The hypothesis gives that B does not have any local, non-simple proper submodule.
Suppose an R-homomorphism η : A → B extends σ. As ker σ ∩ C = 0 and ker σ ⊆ AJ,
d(η(A)) ≥ 2. Hence η(A) = B and η is an R-isomorphism. If an R-isomorphism λ : B → A
extends σ−1 : σ(C) → C, then η = λ−1 extends σ. After this (2.2) completes the proof of (i).

Now (ii) is an immediate consequence of (i).

(iii) Suppose socle(A) has more than one homogeneous components. Suppose the contrary.
Without loss of generality, we take AJ = C1 ⊕ C2 ⊕ D, where C1 and C2 are isomorphic
simple modules and D is a simple module not isomorphic to C1. Then A1 = A/C1 and A2 =
A/D are not isomorphic but C2 embeds in both of them. This contradicts (ii). Hence each
homogeneous component of socle(A) is simple. Suppose there are more than two homoge-
neous components of socle(A). We can take socle(A) = C1⊕C2⊕C3, where Ci are pairwise
non-isomorphic simple modules. Then modules A1 = A/C1, A2 = A/C2 contradict (ii). This
completes the proof. �

Theorem 2.4. Let R satisfy (∗).
(i) Let e, f be two indecomposable idempotents in R such that eJ 6= 0 6= fJ . Then eR ∼= fR

if and only if eJ/eJ2 and fJ/fJ2 have some isomorphic simple submodules.

(ii) R is a left serial ring.

Proof. (i) Let eJ/eJ2 and fJ/fJ2 have some isomorphic simple submodules. We can find
appropriate images of eR/eJ2 and fR/fJ2 which are of same composition length but are not
simple, and have some isomorphic simple submodules. By (2.3), these homomorphic images
are isomorphic, so eR/eJ ∼= fR/fJ. Hence eR ∼= fR.

(ii) Firstly, suppose that J2 = 0. Let e ∈ R be an indecomposable idempotent such that
Je 6= 0. By (i), to within isomorphism there exists unique indecomposable idempotent f ∈ R
such that fJe 6= 0. Consider any minimal left ideals S and S

′
contained in Je. Then S =

Rfxe and S
′
= Rfye for some fxe, fye ∈ fJe. Set T = fxeR. We have an R-monomorphism

ω : T → fJ such that ω(fxe) = fye. By (2.3), ω extends to an R-automorphim η of fR.
Thus there exists an fcf ∈ fRf such that ω(x) = fcfx for any x ∈ T , so fye = fcfxe ∈ S,
S

′
= S. It follows that R/J2 is left serial. From this it is obvious that R is left serial. �

Lemma 2.5.
(i) There does not exist a local module AR such that A/AJk is uniserial, AJk+1 = 0, AJk

is non-zero but not simple for some k ≥ 2.

(ii) Let BR be a local module such that BJ 6= 0. Then B is uniserial if and only if BJ is
local.

Proof. (i) Suppose the contrary, so an AR satisfying the given hypothesis exists. Without loss
of generality we take AJk = C ⊕D for some simple submodules C, D. Consider B = AJ/D.
Clearly d(A) = k + 2, d(B) = k. Consider the natural isomorphism σ : C → C ⊕ D/D.
Suppose an R-homomorphism η : A → B extends σ. As ker η ∩ C = 0, d(ker η) ≤ 1, so
d(η(A)) > d(B). This is a contradiction. Hence, by (2.2), there exists an R-homomorphism
η : B → A extending σ−1. Then η is an R-monomorphism. This contradicts the fact that A
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does not contain any uniserial submodule of composition length more than one. Finally, (ii)
follows from (i). �

Lemma 2.6. Let A1, A2 be two uniserial R-modules such that d(Ai) ≥ 3. Then M = A1⊕A2

does not contain any local, non-uniserial submodule of composition length 3.

Proof. Suppose the contrary. Let A be a local, non-uniserial submodule of M with d(A) =
3. Then AJ = socle(M). Let πi : M → Ai be the projections. Then A = (a1, a2)R. For
Bi = aiR, d(Bi) = 2, A/AJ ∼= Bi/BiJ , BiJ = socle(Ai) and we have an R-isomorphism
σ : B1/B1J → B2/B2J such that σ(a1) = a2. There exist submodules Ci ⊆ Ai with d(Ci) =
3. By using (2.1), we get an R-isomorphism η : C1/B1J → C2/B2J extending σ. We can find
ci ∈ Ci such that Ci = ciR and η(c1) = c2. Consider B = (c1, c2)R. Now a1 = c1r for some
r ∈ J . Then a2 = c2r + x for some x ∈ B2J. As B1J ⊆ A, there exists an s ∈ J such that
a1s 6= 0 but a2s = 0. Then (c1, c2)rs = (a1s, 0). Hence B1J ⊆ B. Similarly, B2J ⊆ B. Then
(a1, a2) = (c1, c2)r + (0, x) gives A ⊆ BJ. Also BJ2 = socle(M). Now C1/B1J ∼= B/BJ2. So
d(B) = 4 and BJ = A. Hence B is local. This contradicts (2.5)(i). This proves the result.�

Lemma 2.7. Let R satisfy (∗). For any local R-module A the following hold:

(i) AJ is a direct sum of uniserial submodules.

(ii) Any local submodule of AJ is uniserial.

Proof. (i). Suppose the contrary. As AJ is a direct sum of local modules, without loss of
generality, we take AJ = C, a local module that is not uniserial. For some k ≥ 1, C/CJk

is uniserial but CJk is not local. We can find a submodule B of CJk such that CJk/B is a
direct sum of two minimal submodules. Then A/B contradicts (2.5)(i).

(ii) Suppose the result is true for all local modules of composition length less than d(A), but
the result is not true for A. There exists a local submodule B of AJ that is not uniserial.
Let S be a minimal submodule of B. By the induction hypothesis B/S is uniserial. Thus
d(socle(B)) = 2. Let C be a complement of socle(B) in A. As B embeds in A/C, the
induction hypothesis gives C = 0. Thus socle(A) = socle(B) = C1 ⊕ C2 for some simple
submodules Ci. Then A ⊆ E(C1) ⊕ E(C2). Now d(E(Ci)) ≥ 3 and by (2.5)(i), d(B) = 3.
This contradicts (2.6). Hence the result follows. �

Lemma 2.8. Let C1, C2 be two uniserial right R-modules such that for some k ≥ 2,
C1/C1J

k ∼= C2/C2J
k, C1J

k 6= 0 6= C2J
k. Then C1/C1J

k+1 ∼= C2/C2J
k+1.

Proof. We take CiJ
k+1 = 0. Set Bi = CiJ

k. In view of 2.1, it is enough to prove that
Bi are isomorphic. Suppose the contrary. As socle(C1/B1) ∼= socle(C2/B2), there exists
an indecomposable idempotent e ∈ R and a right ideal A ⊆ eJ such that socle(eR/A) ∼=
B1 ⊕B2. Then eR/A is embeddable in C1 ⊕ C2. This contradicts (2.6). �

Theorem 2.9. Let R satisfy (∗) and AR be a local module such that AJ = C1 ⊕C2 ⊕D for
some non-zero uniserial submodules Ci. If for some k ≥ 1, C1/C1J

k ∼= C2/C2J
k, C1J

k 6= 0
6= C2J

k, then Ci/CiJ
k+1 are isomorphic.
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Proof. Without loss of generality, we take AJ = C1 ⊕ C2. To prove the result, we take
socle(Ci) = CiJ

k 6= 0. Consider Di = A/Ci. Then each Di is uniserial with d(Di) = k + 2,
further, (2.1) and the hypothesis give that D1/D1J

k+1 ∼= D2/D2J
k+1. As k + 1 ≥ 2, (2.8)

completes the proof. �

Theorem 2.10. Let R satisfy (∗) and AR be a local module with AJ 6= 0. Then AJ =
C1 ⊕ C2 ⊕ · · · ⊕ Ct for some uniserial submodules Ci and the following hold:

(a) Either all Ci/CiJ are isomorphic or t ≤ 2.

(b) Any local submodule of AJ is uniserial.

(c) If d(C1) ≥ 2, then either t ≤ 2 or any Ci is simple for i ≥ 2.

Proof. That AJ is a direct sum of uniserial modules follows from (2.7), (a) follows from
(2.3)(iii) by considering A/AJ2, and (b) follows from (2.7). Finally, suppose d(C1) ≥ 2,
t ≥ 3, but for some i ≥ 2, Ci is not simple. We can take AJ = C1 ⊕ C2 ⊕ C3 such that
d(C1) = 2, d(C2) = 2 and d(C3) = 1. Set B2 = socle(C2). Consider A2 = A/B2, A3 =
A/C3. Then A2, A3 are non-isomorphic, they have same composition length and neither of
them has a uniserial submodule of composition length three. For S = socle(C1), we have
the natural R-isomorphism σ : S + B2/B2 → S + C3/C3. There exists an R-homomorphism
η : A2 → A3 or η : A3 → A2 extending σ or σ−1 respectively. In any case, by (b), the image
of η is a uniserial module of composition length at least three. This is a contradiction. This
proves (c). �

Corollary 2.11. Let R satisfy (∗). Then for any idempotent e ∈ R, every finitely generated
indecomposable eRe-module is local.

Proof. Let M be a finitely generated indecomposable eRe-module. Then N = M ⊗eRe eR is
a finitely generated R-module. Thus N = ⊕

∑m
i=1 Ai for some local R-submodules Ai. As M

= Ne, M = Aie for some i. But Ai = xfR for some indecomposable idempotent f ∈ R. If
f is isomorphic to an indecomposable idempotent in eRe, trivially, Aie is a local module. If
f is not isomorphic to any indecomposable idempotent in eRe, then AieR = xfReR ⊆ xfJ.
By (2.10)(b), AieR is a direct sum of uniserial R-modules. Consequently, M = AieRe is a
uniserial eRe-module. �

Any (1,2) exceptional ring R satisfies (∗) and has J2 = 0. We now study a ring R with J2 =
0.

Theorem 2.12. Let R be a local ring satisfying (∗). Then either J2 = 0 or R is a uniserial
ring.

Proof. By (2.4), R is left serial. Suppose, R is not right serial and J2 6= 0. By (2.7), JR

= C1 ⊕ C2 ⊕ D with C1, C2 uniserial submodules such that d(C1) ≥ 2, and C2 6= 0. Let
A = C2 ⊕ D. As R/A is a uniserial module of composition length at least three, for E =
E(R/J), d(E) ≥ 3. We have a local module M such that J(M) is a direct sum of two minimal
submodules. Clearly M embeds in E ⊕ E. This contradicts (2.6). Hence R is uniserial. �
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Theorem 2.13. Let R be a right artinian ring such that J2 = 0. If R satisfies (∗), then R
satisfies the following conditions.

(a) Every uniform right R-module is either simple or injective with composition length 2.

(b) R is a left serial ring.

(c) For any indecomposable idempotent e ∈ R either eJ is homogeneous or d(eJ) 6 2.

Conversely, if R satisfies (a), (b), and d(eJ) 6 2 for any indecomposable idempotent e ∈ R,
then R satisfies (∗).

Proof. Let every finitely generated indecomposable right R-module be local. Then (2.1)
gives (a), (2.4) gives (b) and (2.10) gives (c). Conversely, let R satisfy (a), (b) and for any
indecomposable idempotent e ∈ R, let d(eJ) ≤ 2. Let A, B be two local R-modules that are
not simple. Then d(A) ≤ 3, d(B) ≤ 3. Let C be a minimal submodule of A, and σ : C → B
be an embedding. If d(B) = 2, B is uniserial and hence injective by (a), so there exists an R-
homomorphism η : A → B extending σ. If d(A) = 2, similarly we get an extension η : B → A
of σ−1 : σ(C) → C. Thus we take d(A) = 3 = d(B). There exist indecomposable idempotents
e, f ∈ R, such that A ∼= eR, B ∼= fR. We take A = eR, B = fR. Then C = exgR, where
for indecomposable idempotent g ∈ R, exg ∈ eJg. Further, σ(exg) = fyg ∈ fJg. By (b) Jg
is a simple left R-module. So, fyg = fvexg for some fve ∈ fRe. Then η : eR → fR given
by left multiplication by fve extends σ. Hence, by (2.2), R satisfies (∗). �

3. Matrix representations

Lemma 3.1. Let MR be a quasi-injective module and K be a maximal submodule of M . If
K is not indecomposable, then K contains a summand of M different from K.

Proof. Let K = A⊕B with A 6= 0, B 6= 0. As M is quasi-injective, by using the fact that M
is invariant under the endomorphism ring of its injective hull, M = C ⊕D⊕E with A ⊂′

C,
B ⊂′

D [3, Proposition 19.2 ]. As K is maximal, if E 6= 0, we get K = C⊕D, so K contains
a summand of M different from K. If E = 0, once again the maximality of K gives A = C
or B = D. Hence K contains a summand of M different from K. �

Let AR be a local module of finite composition length, D = End(A/J(A)) and T = End(AR).
T is a local ring and the division ring D

′
= T/J(T ) has natural embedding into D. The pair

of division ring (D, D
′
) is called a dual division ring pair associate (in short a ddpa) of A.

This concept is dual of the concept of a division ring pair associate of a uniform module of
a finite composition length as given in [6, p 296].

Proposition 3.2. Let R satisfy (∗) and e ∈ R be an indecomposable idempotent such that
eJ 6= 0. Let X < eJ be such that A = eR/X is uniserial. If (D, D

′
) is the ddpa of A, then

[D : D
′
]r ≤ 2.

Proof. Suppose the contrary. There exist ω1, ω2, ω3 right linearly independent over D
′
.

Consider M = {(a1, a2, a3) ∈ A(3) : ω1a1+ω2a2+ω3a3 = 0}. Then M is a maximal submodule
of A(3). Suppose M is not indecomposable. By (2.1), A is quasi-injective, so A(3) is also
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quasi-injective. By using (3.1) and the Krull-Schmidt Theorem, we get a summand B of M
isomorphic to A. Then for some ηi ∈ End(A), i = 1, 2, 3, with at least one of them an
automorphism, B = {(η1(a), η2(a), η3(a)) : a ∈ A}. Then (ω1η1 + ω2η2 + ω3η3)(a) = 0, for
every a ∈ A. Thus ω1, ω2, ω3 are right linearly dependent over D

′
. This is a contradiction.

Hence M is indecomposable. However d(M/A(3)J) = 2, gives that M is not local. This is a
contradiction. This proves the result. �

Proposition 3.3. Let D be a division ring with center F , and D
′
be a division subring of D

with center F
′
such that [D : D

′
]r < ∞. Then [D : F ] is finite if and only if [D

′
: F

′
] < ∞.

Proof. Let S = D
′
F and K = F

′
F . Clearly K ⊆ Z(S). Let [D : F ] be finite. Then S

is a division subring, K is a subfield and S is finite dimensional over K. Now D
′ ⊗F ′ K

is central simple K-algebra [5, Proposition b, p 226] isomorphic to S, [D
′
: F

′
] = [S : K],

so [D
′

: F
′
] < ∞. Conversely, let [D

′
: F

′
] < ∞. This gives that S is a division ring

finite dimensional over the field K and [D : K]r = n < ∞. This gives an embedding
φ : D → Mn(K) such that for any x ∈ F , φ(x) is the scalar matrix xI. This induces an
embedding µ : D ⊗F K → Mn(K), so [D ⊗F K : K] < ∞ and hence [D : F ] < ∞. �

Proposition 3.4. Let D and D
′
be two division rings, V a (D, D

′
)-bivector space such that

dimDV = 1 and dimVD′ = n > 1. Let V = Dv, R =

[
D V
0 D

′

]
. Let L be any proper

D
′
-subspace of V and AL =

[
0 L
0 0

]
. For e1 = e11, set M = e1R/AL.

(I) There exists an embedding σ : D
′ → D such that va = σ(a)v for any a ∈ D

′
; this

embedding makes D a right D
′
-vector space such that d.c

′
= dσ(c

′
) for any d ∈ D,

c
′ ∈ D

′
, and [D : σ(D)]r.= n.

(II) M is a faithful right R-module.

(III) DL = {c ∈ D: cL ⊆ L} is a division subring of D, FL = {a ∈ D : av ∈ L} is a
(DL, D

′
)-subspace of D such that dim (FL)D′ = dim LD′ . Further, L ↔ FL is a lattice

isomorphism between D
′
-subspaces of V and D

′
-subspaces of D.

(IV) Let L be a maximal D
′
-subspace of V .

(i) M is quasi-injective if and only if for any a ∈ D\FL, D = aσ(D
′
)⊕FL = DLa⊕FL.

(ii) M is injective if and only if M is quasi-injective, and for any maximal D
′
-subspace

L
′
of V , there exists an a ∈ D such that aL = L

′
.

(V) Let dim VD′ = 2 and L be a maximal D
′
-subspace of V . Then M is injective if and

only if [D : σ(D
′
)]l = 2.

(VI) Let dim VD′ = 2. Then every finitely generated indecomposable right R-module is local
if and only if [D : σ(D

′
)]l = 2.

Proof. (I), (II) and (III) are obvious. Let L be a maximal D
′
-subspace of V . Then d(M) =

2 and M is uniserial. Consider any a ∈ D\FL. Then w = av /∈ L, for we12 = we12 + AL,
socle(M) = e1J/A = we12R and End(socle(M)) ∼= D

′
. Consider 0 6= c ∈ D

′
. This gives

λc ∈ End(socle(M)) such that λc(we12) = wce12. Suppose M is quasi-injective. Then λc
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extends to an endomorphism of M , this when lifted to an endomorphism of e1R gives an
element d ∈ DL such that dwe12r = λc(we12r) for any r ∈ R, so dw−wc ∈ L. As d

′
L = L for

any non-zero d
′ ∈ DL, it is immediate that d is uniquely determined by c. Conversely, given a

d ∈ DL, the left multiplication by d inducedsan endomorphism of socle(M), so there exists a
c ∈ D

′
such that dw−wc ∈ L. Thus dav−avc ∈ L, da−aσ(c) ∈ FL, d ∈ aσ(D

′
)a−1 +FLa−1,

DL + FLa−1 ⊆ aσ(D
′
)a−1 + FLa−1. Similarly aσ(D

′
)a−1 + FLa−1 ⊆ DL + FLa−1. Hence

DL + FLa−1 = aσ(D
′
)a−1 + FL. But aσ(D

′
) ∩ FL = 0 = DLa ∩FL and FL is a maximal

D
′
-subspace of D, so D = aσ(D

′
)⊕ FL as D

′
-vector spaces. This also gives DLa⊕ FL = D

as left DL-vector spaces. Conversely, if D = DLa⊕ FL = aσ(D
′
)⊕ FL, c ∈ D

′
there exists a

d ∈ DL such that da − aσ(c) ∈ FL, so the endomorphism of socle(M) induced by c can be
realized by left multplication by d, hence M is quasi-injective. This proves (IV)(i).

(IV)(ii) Let E be the injective hull of M . Then E/socle(M) is homogeneous. Given any other
maximal D

′
- subspace L

′
of V , we get corresponding right ideal AL′ and uniserial module M

′

= e1R/AL′ . Now socle(M
′
) ∼= socle(M). So M

′
embeds in E. If M is injective, M ∼= M

′
;

this isomorphism is induced by a c ∈ D such that cL = L
′
. Conversely, if for each L

′
such a

c exists, then M ∼= M
′
. If in addition M is quasi-injective, it gives that M is injective.

Let dim VD
′ = 2. Now L = bvD

′
for some 0 6= b ∈ D. Given any other maximal D

′
-

subspace L
′

= b
′
vD

′
, clearly L

′
= cL for c = b

′
b−1. So to prove that M is injective it is

enough to prove that M is quasi-injective. Let M be quasi-injective. Now [D : σ(D
′
)]r = 2,

FL = bσ(D
′
) and DL = bσ(D

′
)b−1, thus for an a ∈ D\FL, D = DLa⊕FL gives [D : DL]l = 2,

[D : bσ(D
′
)b−1]l = 2, hence [D : σ(D

′
)]l = 2. Conversely, let [D : σ(D

′
)]l = 2. As L = bvD

′
,

for some b ∈ D, FL = bσ(D
′
), DL = bσ(D

′
)b−1, so [D : DL]l = 2. But for any a ∈ D\FL,

aσ(D
′
)∩FL = 0 = DLa∩FL. We have D = aσ(D

′
)⊕FL = DLa⊕FL. By (IV) M is injective.

The other indecomposable injective right R-module is e1R/e1J , which is simple. The ring is
left serial. By (2.13), R satisfies (∗). �

Corollary 3.5. Let R be as in the above theorem, such that D or D
′
is finite dimensional

over its center. Then R satisfies (∗) if and only if dim VD′ = 2.

Proof. By (3.3) both D and D
′
are finite dimensional over their respective centers. Suppose

R satisfies (∗). Let L be a maximal D
′
-subspace of V . Consider M = e1R/AL as in (3.4). By

(2.13), M is injective. Now ddpa of M is (D, DL). By (3.2), [D : DL]r = 2, thus by (IV)(i)
in (3.4), [FL : DL]l = 1, FL = DLb for some b ∈ D, bσ(D

′
)b−1 ⊆ DL. . By [5, Proposition 3,

p 158], [D : σ(D
′
]l = [D : σ(D

′
)]r = n. Consequently, n = 2[DL : bσ(D

′
)b−1]r. At the same

time, n − 1 = [FL : σ(D
′
)]r = [DL : bσ(D

′
)b−1]r. Hence n = 2(n − 1), n = 2. The converse

follows from part (VI) of (3.4). �

Proposition 3.6. Let D be a division ring and R =

 D D D
0 D 0
0 0 D

. Then e11R contains

only two minimal right ideals, X = e12D and Y = e13D. The modules e11R/X and e11R/Y
are injective and non-isomorphic and R satisfies (∗).

Proof. Now e11J = X ⊕ Y , X ∼= e22R and Y ∼= e33R. So X, Y are the only minimal right
ideals contained in e11R and they are non-isomophic. Now ann(e11R/X) = e12D + e22D =
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A, and R/A ∼=
[

D D
0 D

]
a generalized uniserial ring. So M = e11R/X is quasi-injective.

Consider any non-zero R-homomorphism λ : e11J → M , then ker λ = X, so λ induces a
mapping λ from socle(M) to M . This extends to an endomorphism µ of M . Then µ gives
µ : e1R → M extending λ. Thus M is e11R-injective. M is trivially e22R and e33R injective.
Hence M is injective. Similarly e11R/Y is injective. Any non-simple uniform right R-module
contains a copy of X or Y , so it is going to be isomorphic to M or N. Clearly R is left serial.
The last part now follows from (2.13). �

Proposition 3.7. Let S be a local uniserial ring of composition length 2, D = S/J(S), V a

(D, D)-bivector space one dimensional on each side, and R =

[
S V
0 D

]
.

(i) e11R contains only two minimal right ideals, X = e11J(S) and Y = e12V and they are
non-isomorphic.

(ii) e11R/X and e11R/Y are non-isomorphic injective modules.

(iii) R satisfies (∗).

Proof. That X and Y are the only minimal right ideals contained in e11R is straight forward

to prove. Now ann(e1R/X) = e11J(S) = A and R/A ∼=
[

D D
0 D

]
a generalized uniserial

ring, so M = e11R/X is quasi-injective. Follow the arguments in (3.6) to conclude that M
is injective. Now e11J = X ⊕ Y . Again, ann(e11R/Y ) = e12V + e22D = B, and R/B ∼= S, a
uniserial ring. This gives N = e11R/Y is quasi-injective, and as for M , N is injective. Once
again any non-simple uniform right R-module is isomorphic to M or N . Also R is left serial.
After this, (2.13) completes the proof. �

We now give a matrix representation of R, without of loss of generality, we assume that R is
a basic ring.

Theorem 3.8. Let R be an indecomposable basic right artinian ring with J2 = 0 such that
every finitely generated indecomposable right R-module is local. Let S = {ei : 1 6 i 6 n} be
a complete orthogonal set of indecomposable idempotents. Then either R is a local (1, n) ring
for some positive integer n, or the following hold:

(I) For any f ∈ S there does not exist more than one e ∈ S such that eJf 6= 0.

(II) For any two e, f in S, eJfJ = 0.

(III) For any e ∈ S, there do not exist more than two f ∈ S such that eJf 6= 0.

(IV) For any e ∈ S, one of the following holds:

(i) eRe is a division ring,

(ii) eRe is a uniserial ring with composition length 2.

(V) For any e, f ∈ S with eJf 6= 0, eJf is a simple left eRe-module and either eJf is a
simple right fRf -module or there does not exist any g ∈ S different from f such that
eJg 6= 0.
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(VI) Consider any e ∈ S, and let f1, f2 be the only members of S such that eJf1 6= 0,
eJf2 6= 0. Let D = eRe/eJe, Di = fiRfi/fiJfi. Then the following hold:

(i) eJfi is a (D, Di)-bivector space.

(ii) There exists an embedding σi : Di → D such that, if f1 6= f2, then σi is an
isomorphism, and if f1 = f2, then [D : σi(D1)]r equals the composition length of
the right f1Rf1-module eJf1.

(iii) If f1 = f2, then for V = eJf1, [D : σ1(D1)]l = 2 whenever dim VD1 = 2.

Conversely, if R satisfies conditions (I) through (VI) and in addition dim (eRf1)D1 6 2
whenever f1 = f2, then every finitely generated indecomposable right R-module is local.

Proof. If R is a local ring, as R is left serial, it is a (1, n) ring for some positive integer n.
Suppose R is not a local ring. By (2.13), R is left serial. This gives (I). As J2 = 0 (II) holds.
Consider any e ∈ S such that eJ 6= 0. By (2.3) either eJ is homogeneous, or eJ has only two
homogeneous components and each of them is a simple module. So there exist at most two
members f1, f2 of S satisfying eJfj 6= 0. Then eJ = eJf1 + eJf2. As R is left serial, each
eJfi is a simple left eRe-module. Suppose e = f1= f2. Consider any g ∈ S\{e}. Then eRg =
0. As eJe 6= 0, by (I) gRe = 0. this gives that eR is a summand of R as an ideal. However,
R is indecomposable, so R is a local ring. This is a contradiction. Hence e = f1 = f2 is not
possible. Let f1 6= f2, then eJ = eJf1⊕ eJf2 with each eJfi a simple right fiRfi-module. If
e 6= f1, f2, then eJe = 0, so eRe is a division ring. If e = f1, then eJ = eJe⊕ eJf2 with eJe
a simple right eRe-module. So eRe is a uniserial ring with composition length 2. Let f1 = f2.
Then eJ is homogeneous and eJg = 0 for any g ∈ S\{f1}. This proves (III), (IV) and (V).
Set D = eRe/eJe and Di = fiRfi/fiJfi. Now Jfi = eJfi = Dv for some v ∈ eJfi. This
gives an embedding σi : Di → D such that va = σi(a)v for any a ∈ Di. In case f1 6= f2, eJfi

being a simple right fiRfi-module, gives that σi is an isomorphism. Now D can be made
into a right Di-vector space, by defining xa = xσi(a) for any x ∈ D and a ∈ Di. Then eJfi
∼= D as (D, Di)-bivector spaces, so [D : σi(Di)] = d(eJfi)Di

. This gives parts (i) and (ii) of
(VI). We shall prove (VI)(iii) within the proof of partial converse.

Let R be not local and let it satisfy the conditions (I) through (V) and parts (i) and (ii)
of (VI). Condition (II) shows that J2 = 0. Conditions (I) and (V) show that R is left serial.
For any e ∈ S, set eRe = eRe/eJe. Consider any e ∈ S such that eR is not simple. There
exist at most two members f , g ∈ S such that eJf 6= 0 6= eJg. Set C =

∑
h hR + fJ + gJ

where h ∈ S\{e, f, g}. Consider the case when e 6= f and e 6= g, then eRe is a division ring.
For any e

′ ∈ S\{e, f, g}, eRe
′
= 0, eRfJ = eJfJ = 0. This gives C ⊆ r.ann(eR). Let x

= er1 + fr2 + gr3 ∈ r.ann(eR). Then ex = 0 gives er1 = 0, x = fr2 + gr3. Let f 6= g,
then eRfR ∩ eRgR = 0. For any r ∈ R, erx = 0 gives eRfr1= 0, eRgr2 = 0, fr1 ∈ fJ
and gr2 ∈ gJ . In case f = g, x = fr

′
and once again fr

′ ∈ fJ. Hence, in any case C =

r.ann(eR). Once again suppose that f 6= g. Then R/C ∼=

 eRe eJf eJg

0 fRf 0
0 0 gRg

; for D =

eRe, condition (V) and (VI)(ii) give that R/C ∼= T =

 D D D
0 D 0
0 0 D

. By (3.6) e11T has
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only two homomorphic images that are uniserial but not simple, and they are injective. So
X = eR/eJf and Y = eR/eJg are quasi-injective modules, indeed both are eR-injective.
By (I), for any h ∈ S different from e, hJg = 0 = hJf , so HomR(hJ,X) = 0 = HomR(hJ,
Y ) and hence X, Y are hR-injective. Consequently X, Y are injective. In case f = g, R/C

∼=
[

D V
0 D

′

]
where V = eRf and D

′
= fRf/fJf . In case dim VD

′ = 2, by using part

(VI) of (3.4) we get eR/L is an injective R-module for every maximal submodule L of eJ
if and only if [D : σ(D)]l = 2. This gives (VI)(iii). In addition, let R also satisfy (VI)(iii)
and that dim VD′ 6 2. In case dim VD′ = 1, R/C is a generalized uniserial ring, and eR
itself is uniserial and injective. We now consider the case when e equals one of f and g,
say e = f , then e 6= g. Then r.ann(eR) = C =

∑
h hR + gJ , h ∈ S\{e, g}. Then R/C

∼= eR⊕ (gR/gJ). As eJg 6= 0, gJg = 0 by (I), so D
′
= gRg is a division ring. Consequently,

R/T ∼=
[

S V
0 D

′

]
, where S = eRe is a local, uniserial ring of composition length 2 by (IV),

V = eRg is a (S/J(S), D
′
)-bivector space with dimension one on each side. By using (3.7),

as before, we get that any uniserial homomorphic image of eR is either simple or injective.
Any non-simple uniform R-module M contains a non-simple homomorphic image of some eR,
e ∈ S, as the latter is injective and uniserial, we get that M itself is injective and uniserial.
By (2.13) R satisfies (∗). �

We give an example of a ring R satisfying (∗), which is not right serial and in which J2 6= 0.

Example. Let D be any division ring, and let R =


D D D D
0 D D 0
0 0 D 0
0 0 0 D

. Here J2 = e13D.

That R/J2 satisfies (∗) can be proved on lines similar to those in (3.6). Set ei = eii. Now e1J
= X⊕Y, with X = e12D+e13D ∼= e2R, Y = e14D ∼= e4R, Any R-endomorphism of e13D, X or
Y is given by multiplication by an element of D, so it can be extended to an R-endomorphism
of e1R. This observation gives that F = e1R/X, G = e1R/Y are quasi-injective and e1R is
e2R-injective. Follow the arguments in (3.6) to show that F ,G are indeed injective. These
are the only non-simple uniserial homomorphic images of e1R. We now apply (2.2) to prove
that R satisfies (∗). Let AR and BR be two local modules, C a minimal submodule of A, and
σ : C → B an embedding. The only minimal right ideals contained in e1R are e13D, Y and
they are non-isomorphic; their R-endomorphisms being given by multiplication by elements
of D, can be extended to R-endomorphisms of e1R. Thus if d(A) = d(B) = 4, then σ extends
to an R-homomorphism η : A → B. If one of A, B has composition length 3, then that being
isomorphic to G, is injective, so a desired extension of σ or σ−1 exists. Observe that any
uniserial R-module of composition length 2 is either isomorphic to e2R or to F. Suppose d(A)
= 4, d(B) = 2. As socle(F ) 6∼= socle(A), B ∼= e2R, so A is B-injective and we finish. If AJ2

= 0 = BJ2, then we finish by using the fact that R/J2 satisfies (∗).

Remark. Consider R and S as in the above theorem. For any e, f ∈ S define a directed
edge e → f whenever eJf 6= 0. This gives the quiver [5, Chapter 8] of R with the following
properties. For any e ∈ S there do not exist more than two egdes with source e, and there
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does not exist more than one edge with same sink. Consider a finite partially ordered set X
such that no element x of X has more than two covers and no element is a cover of more
than one element [7, Definition 1.1.5]. For a division ring D consider the incidence algebra T
= I(X, D). Given α 6 β in X, set eαβ ∈ T such that eαβ(γ, δ) = 0 for any (γ, δ) 6= (α, β) in
X×X and eαβ(α, β) = 1. Consider the ideal A of T generated by all eαβeβγ with α < β < γ.
It follows from the above theorem that R = T/A satisfies (∗).
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