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Abstract. Let k be a field of positive characteristic, R an associative algebra over
k and let ∆1,n = {δ1, . . . , δn} be a finite set of k-linear derivations from R to R. Let
A = Rn = R[θ1, δ1] · · · [θn, δn] be an iterated differential operator k-algebra over R
such that δj(θi) ∈ Ri−1θi + Ri−1; 1 ≤ i < j ≤ n.
As central result we show that if R is noetherian affine ∆1,n-hypernormal and if
Tauvel’s height formula holds for the ∆1,n-prime ideals of R, then Tauvel’s height
formula holds in A.
In particular, let g be a completely solvable finite-dimensional k-Lie algebra acting
by derivations on R and let U(g) be the enveloping algebra of g. If R is noetherian
affine g-hypernormal and if Tauvel’s height formula holds for the g-prime ideals of
R, then Tauvel’s height formula holds in the crossed product of R by U(g).

0. Introduction

Throughout the paper, k is a field and all rings (except the Lie algebras over k) are associative
with identity. Let A be a k-algebra. Suppose that ∆ is a set of derivations of A. An ideal I
of A is a ∆-ideal (or a ∆-invariant ideal) provided δ(I) ⊆ I for all δ ∈ ∆. A ∆-prime ideal of
A is any proper ∆-ideal P such that whenever I and J are ∆-ideals of A satisfying IJ ⊆ P
then either I ⊆ P or J ⊆ P .

Remark 0.1. If A is noetherian and if k has characteristic 0, then by [1, Corollary 2.10], the
∆-prime ideals of A are prime. This result breaks down completely in positive characteristic
[2, Lemma 1.2 and the remark below it].
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Let A be noetherian, and let P be a prime ideal of A. The height of P , denoted ht(P ), is the
supremum of the lengths of chains of prime ideals with P at the top. If P is not prime, its
height is the infimum of the heights of its minimal prime ideals. If P is a ∆-prime ideal of
A, the ∆-height of P denoted ∆-ht(P ) is the supremum of the lengths of chains of ∆-prime
ideals with P at the top.

We will denote by d() the Gelfand-Kirillov dimension of a k-algebra; for its properties the
reader can consult [3] and [4]. Let us recall the following result of P. Tauvel which relates
the height of a prime ideal to the corresponding factor algebra:

Theorem 0.2. (Tauvel [5]) Let g be a finite dimensional solvable Lie algebra over an alge-
braically closed field k of characteristic zero and A = U(g) the enveloping algebra of g. If P
is a prime ideal in A, then

d(A) = ht(P ) + d(A/P ). (∗)
We will call (∗) Tauvel’s height formula.

By a domain we mean a ring without divisors of zero. A k-algebra is called affine if it is
finitely generated as a k-algebra.

By Schelter’s theorem [6], Tauvel’s height formula holds in any noetherian affine prime
P.I. algebra over a field. We give below some examples of such rings.

Examples 0.3. (1) Let k be a field of positive characteristic. Let R be a commutative affine
k-algebra which is an integral domain and let ∆ = {δ1, . . . , δn} be a finite set of commuting
k-linear derivations from R to R. Let A = R[θ1, . . . , θn; δ1, . . . , δn] be the corresponding ring
of differential operators. Then A is a noetherian prime affine P.I. algebra [7, Theorem 4.1].

(2) Let g be a finite dimensional Lie algebra over a field k of characteristic p > 0 and U(g)
its enveloping algebra. By [8, 1.10], U(g) is a finite module over its affine center and so is
a noetherian affine P.I. algebra. As a consequence of this result, if R is a noetherian affine
prime P.I. algebra then so is R⊗ U(g) [4].

Let R be a k-algebra and A = R[θ1, δ1] · · · [θn, δn] an iterated differential operator k-algebra
over R. Set Ri = R[θ1, δ1] · · · [θi, δi]; 0 ≤ i ≤ n; so R0 = R and Rn = A. Consider the
following three conditions:

(i) each δi is a derivation of R; 1 ≤ i ≤ n.

(ii) δj(θi) ∈ Ri−1θi + Ri−1; 1 ≤ i < j ≤ n.

(iii) δj(Ri) ⊆ Ri; 0 ≤ i < j ≤ n.

Note that (i) and (ii)⇒(iii).

Examples 0.4. (1) Let R be a k-algebra and let {δ1, . . . , δn} be a finite set of commuting k-
linear derivations from R to R. Then the ring of differential operators A=R[θ1, . . . , θn; δ1, . . . ,
δn] is an iterated differential operator k-algebra over R and the conditions (i) and (ii) are
satisfied (we extend each δj to A by setting δj(θi) = 0; 1 ≤ i ≤ j ≤ n).

(2) Let R be a k-algebra and g a completely solvable k-Lie algebra of finite dimension n
acting on R by derivations and A the crossed product of R by U(g). Then A is an iterated
differential operator k-algebra over R and the conditions (i) and (ii) are satisfied.
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In [9] we have shown the following generalization of Theorem 0.2:

Theorem 0.5. Let k be a field of characteristic zero, R a noetherian affine k-algebra and A =
Rn = R[θ1, δ1] · · · [θn, δn] an iterated differential operator k-algebra over R with conditions
(i) and (iii). Let P be a ∆m+1,n-invariant prime ideal of B = Rm = R[θ1, δ1] · · · [θm, δm];
0 ≤ m ≤ n. Assume that for all ∆1,n-invariant prime ideals of R

(1) Tauvel’s height formula holds;
(2) the ∆1,n height and the height coincide.

Then
d(B) = d(B/P ) + ht(P ).

The purpose of this paper is to establish Theorem 0.5 when the characteristic of k is p > 0.
In order to do this we need of some restrictions: we will assume that the conditions (i) and
(ii) are satisfied in R and that R is a ∆1,n-hypernormal ring.

Remarks 0.6. (1) If our iterated differential operator k-algebra is one of the rings of
examples 0.3, then our result is not new.

(2) In the proof of Theorem 0.5, we have used the theorem of Goldie which states that every
essential right ideal of a semiprime right Goldie ring contains a regular element. In the present
context, this theorem of Goldie is not always true (see Remark 0.1). It is for this reason that
we have made the ∆1,n-hypernormality assumption on R. This assumption enables us to
establish an analog to the theorem of Goldie mentioned above (Corollary 1.3) and ensures
that the ∆1,n-height and the height coincide for all ∆1,n-prime ideals of R (Proposition 1.8).

1. Preliminary results

Let A be a k-algebra. Suppose that ∆ is a finite set of derivations of A. The ring A is
∆-prime if 0 is a ∆-prime ideal of A. We say that A is ∆-simple provided A2 6= 0 and A has
no proper ∆-ideals. An easy consequence of the definitions is that ∆-simple implies ∆-prime.

An element x of A is ∆-normal if xA = Ax and the ideal Ax is a ∆-ideal.

We will say that A is

- ∆-normally separated if for any pair of distinct comparable ∆-prime ideals P ⊂ Q of
A, there exists x ∈ Q− P such that x + P is a ∆-normal element of A/P .

- ∆-hypernormal if, whenever I ⊂ J are two ∆-ideals of A, there exists x ∈ J − I such
that x + I is a ∆-normal element of A/I.

- ∆-locally finite if every element of A is contained in a finite dimensional ∆-stable
subspace of R.

Clearly, ∆-simple implies ∆-hypernormal and ∆-hypernormal implies ∆-normally separated.

Lemma 1.1. Let k be algebraically closed. Assume that ∆ is a finite set of commuting
derivations of A. Let A be ∆-locally finite and let I be a nonzero ∆-ideal of A. Then there
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is in I a nonzero element u such that δ(u) = λu for all δ ∈ ∆; where λ ∈ k. If furthermore,
A is commutative, then A is ∆-hypernormal.

Let S be a nonempty subset of A. The left annihilator of S is defined by

lannA(S) = {a ∈ A : as = 0 for all s ∈ S}.

We define in a similar way the right annihilator rannA(S) of S. If S is ∆-ideal of A, then so
is lannA(S).

The following result is the ∆-invariant version of the well known result which asserts that
any nonzero normal element in a prime ring is a regular element.

Lemma 1.2. Let A be a ∆-prime ring and let x be a nonzero ∆-normal element of A. Then
x is a regular element in A.

Proof. Let v be an element of A such that vx = 0. If u is an element of A, we have
v(ux) = v(xw) = (vx)w = 0 where w ∈ A is such that ux = xw. Hence v ∈ lannA(Ax).
Since Ax is a nonzero ∆-ideal in A, we have lannA(Ax) = 0, by [10, page 71]. So x is left
regular. Let v be an element of A such that xv = 0. If u is an element of A, we have
(xu)v = (wx)v = w(xv) = 0 where w ∈ A is such that xu = wx. Hence v ∈ rannA(xA).
Since xA is a nonzero ∆-ideal in A, we have rannA(xA) = 0, by [10, page 71]. So x is right
regular. 2

Corollary 1.3. Let A be a ∆-prime ring.

(1) Then every nonzero ∆-ideal of A is an essential right ideal.

(2) If the characteristic of k is p > 0 and if A is ∆-hypernormal then any nonzero ∆-ideal
of A contains a regular element.

(3) If the characteristic of k is p > 0 and if A is ∆-normally separated, then any nonzero
∆-prime ideal of A contains a regular element.

Proof. (1) Let I be a right ideal of A and let J be a nonzero ∆-ideal of A. Suppose that
I∩J = 0. Then IJ = 0. If I 6= 0, then lannA(J) 6= 0 and is a ∆-ideal. This is a contradiction
since A is a ∆-prime ring. It follows that J is an essential right ideal of A.

(2) and (3) follow from Lemma 1.2. 2

Remark 1.4. Even if A is right noetherian, we are unable to prove (1.3) without the
normality hypothesis. Of course, in the characteristic 0 case, this follows from the Goldie’s
theorem which asserts that every essential right ideal of a semiprime right Goldie ring contains
a regular element.

By [7, Lemma 2.2], if A is right noetherian and if P is a ∆-prime ideal of A, there is exactly
one prime ideal in A minimal over P . So if I is a ∆-prime ideal of A, then ht(I) = ht(P )
where P is the unique prime ideal in A minimal over I.

Given an ideal I of A we denote by I+ the largest ∆-ideal of A contained in I. If J is an
ideal of A and if I is a ∆-ideal of A with I ⊆ J , then (J/I)+ = J+/I.
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By [1, Lemma 2.4], if I is a prime ideal of A, then I+ is a ∆-prime ideal of A and by [1,
Lemma 2.11], if A is noetherian, then a prime ideal P of A is a minimal prime ideal in A if
and only if P+ is a minimal ∆-prime ideal in A.

Lemma 1.5. Let A be noetherian and let Q be a ∆-prime ideal of A. If P is the unique
prime ideal in A minimal over Q, then P+ = Q.

Proof. The ring A/Q is noetherian ∆-prime and P/Q is the unique minimal prime ideal in
A/Q. It follows from [1, Lemma 2.11] that P+/Q is a minimal ∆-prime ideal in A/Q. Since
A/Q is a ∆-prime ring, we must have P+ = Q. 2

Lemma 1.6. Let A be noetherian and let Q be a ∆-prime ideal of A. Then ∆-ht(Q) ≤ ht(Q).

Proof. Set ∆-ht(Q) = d. Then there is a saturated chain of ∆-prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qd−1 ⊂ Qd = Q

in A. Let P be the unique prime ideal in A minimal over Q. Then ht(Q) = ht(P ). Suppose
that P is also the unique minimal prime ideal over Qd−1. Then by Lemma 1.5, P+ = Q =
Qd−1 which is a contradiction. So P/Qd−1 contains strictly a prime ideal Pd−1/Qd−1 (the only
one) in A/Qd−1 minimal over Q/Qd−1. Hence, Pd−1 is the unique prime ideal in A minimal
over Qd−1 and Pd−1 ⊂ P . Continuing this processus, we get in A a chain of prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pd−1 ⊂ Pd = P

where each Pi is the unique minimal prime ideal over Qi. It follows that d ≤ ht(P ). 2

Lemma 1.7. Let A be noetherian ∆-normally separated and let P be a ∆-prime ideal of A.
Then ht(P ) < ∞.

Proof. Let I be the unique minimal prime ideal over P and let J be a prime ideal of A
strictly contained in I. After factoring out A by J+, we may assume that J+ = 0. So A is a
∆-prime ring and J cannot contain a nonzero ∆-normal element of A. Since A is ∆-normally
separated, P contains a nonzero ∆-normal element x. So, for any element a ∈ A, we have
ax−xa1 = 0 ∈ J for some a1 ∈ A. It follows that x+J ∈ I/J and x+J is a nonzero normal
element in A/J . By [11, Theorem 3.5], we have ht(I) < ∞. But ht(P ) = ht(I), so the result
follows. 2

Proposition 1.8. Let A be noetherian ∆-normally separated and let P be a ∆-prime ideal
of A. Then ∆-ht(P ) = ht(P ) < ∞.

Proof. By Lemma 1.7, ht(P ) < ∞. Set ht(P ) = d. If d = 0, the result is true by Lemma
1.6. Suppose that d 6= 0 and let I be the unique minimal prime ideal over P in A. Then we
have d = ht(P ) = ht(I). Let

Q0 ⊂ Q1 ⊂ · · · ⊂ Qd = I

be a saturated chain of prime ideals in A ending at I. We have (Q0)
+ ⊆ I+ = P ; ht(Q0)

+ =
ht(Q0) = 0; ht(I) = ht(I/(Q0)

+) and ht(P ) = ht(P/(Q0)
+). So, by passing to the ring
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A/(Q0)
+, we can suppose that (Q0)

+ = 0; i.e. A is a ∆-prime ring. Since P is nonzero,
there exists in P ⊆ I a nonzero element x such that x is a ∆-normal element of A. Since x
is a ∆-normal element in the ∆-prime ring A, Lemma 1.2 implies that x is regular in A. Set
Ā = A/Ax and Ī = I/Ax. By the Principal Ideal Theorem, htĪ = d− 1. But Ī is the unique
minimal prime ideal over P̄ ; so ht(Ī) = ht(P̄ ). From this, we deduce that ht(P̄ ) = d − 1.
Suppose by an induction hypothesis that the result is true for P̄ in Ā. So there exists a
saturated chain of ∆-prime ideals in Ā ending at P̄ of length d− 1

P̄1 ⊂ P̄2 ⊂ · · · ⊂ P̄d−1 ⊂ P̄d = P̄ .

By taking the inverse images, we get a chain of ∆-ideals in A

0 ⊂ Ax ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pd = P

where the Pi are ∆-prime ideals. Hence, d ≤ ∆-ht(P ); and the result follows from Lemma
1.6. 2

Lemma 1.9 Let A be noetherian ∆-normally separated and let P be a ∆-prime ideal of A.
Then d(A) ≥ d(A/P )+∆-ht(P ).

Proof. Let
P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pl = P

be a chain of ∆-prime ideals in A. For each i, Pi+1/Pi is a nonzero ∆-prime ideal of the ∆-
prime ∆-normally separated k-algebra A/Pi. By Corollary 1.3, it contains a regular element
of A/Pi. It follows from [3, Proposition 3.15] that d(A/Pi+1) + 1 ≤ d(A/Pi), and induction
yields

d(A/P ) + l ≤ d(A/P0) ≤ d(A)

by [3, Lemma 3.1]. Taking the supremum of l gives the result. 2

Lemma 1.10. Let A be a noetherian ∆-prime affine P.I. algebra. Let P be a ∆-prime ideal
of A. Then we have

d(A) = d(A/P ) + ht(P ).

Proof. Clearly, the result is true if P = 0. Now suppose that P 6= 0. Let I be the unique
minimal prime ideal over P and J the unique minimal prime ideal in A. So J ⊂ I and
ht(P ) = ht(I) = ht(I/J). Since A/J is a noetherian affine prime P.I. algebra, by Schelter’s
theorem we have d(A/J) = d(A/I) + ht(I/J). On the other hand, A is a noetherian P.I.
algebra and J is its only minimal prime ideal. Hence, by [3, Theorem 10.15], d(A) = d(A/J).
Also, A/P is a noetherian P.I. algebra and I/P is its only minimal prime ideal. Hence, by
[3, Theorem 10.15] again, d(A/P ) = d(A/I). 2
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2. The main result

Let R be a k-algebra. Let δ be a k-derivation of R. The left R-module structure of R[θ], with
θ being an indeterminate, can be extended to a k-algebra structure by setting θr = rθ+ δ(r);
r ∈ R. The ring thus obtained is denoted R[θ, δ] and is called a differential operator k-algebra
over R.

Let n be a positive integer. A k-algebra A = Rn is said to be an iterated differential
operator k-algebra over R if there exists a chain of subalgebras

R = R0 ⊆ R1 ⊆ · · · ⊆ Rn−1 ⊆ Rn = A

such that each Ri is (isomorphic to) a differential operator k-algebra over Ri−1. So for each
1 ≤ i ≤ n there is a derivation δi of Ri−1 such that Ri = Ri−1[θi, δi]. Note that each Rl is

a free left and right R-module with basis θi1
1 θi2

2 · · · θ
il−1

l−1 θil
l and that for all positive integer l

and for all u ∈ Ri−1

θl
iu = uθl

i +
∑

0<j<l

(
l
j

)
δj
i (u)θl−j

i .

We will set ∆i,j = {δi, δi+1, . . . , δj}; 1 ≤ i < j ≤ n.
If R is a prime ring, then it is ∆i,j-prime for all 1 ≤ i < j ≤ n.

From now on we fix a k-algebra R, a positive integer n and an iterated differential operator
k-algebra A = Rn with the following conditions:

(i) each δi is a derivation of R; 1 ≤ i ≤ n

(ii) δj(θi) ∈ Ri−1θi + Ri−1; 1 ≤ i < j ≤ n.

From (i) and (ii) we deduce that

δj(θ
l
i) ∈ Ri−1θ

l
i +

∑
q<l

Ri−1θ
q
i ; 1 ≤ i < j ≤ n

and
δj(Ri) ⊆ Ri; 0 ≤ i < j ≤ n.

In the sequel we shall use the conventions that ∆n+1,n = ∅ and ∆n,n = δn, so the ∆n+1,n-ideals
(resp. the ∆n+1,n-prime ideals) of A = Rn are precisely the ideals (resp. the prime ideals) of
Rn.

Lemma 2.1. For a fixed i; 1 ≤ i ≤ n, if Ri−1 is ∆i,n-hypernormal, then Ri is ∆i+1,n-
hypernormal.

Proof. Since Ri = Ri−1[θi, δi], every element of Ri has a unique expression
∑

j rjθ
j
i (the sum

is finite). We shall set θi = θ and δi = δ. Let I1 ⊂ I2 be two ∆i+1,n-ideals of Ri. Choose an
element f ∈ I2 − I1 of minimal degree m and, set for j = 1; 2

Kj = {c ∈ Ri−1 : cθm +
m−1∑
l=0

clθl ∈ Ij ; where the cl are elements of Ri−1}.

Clearly, K1 and K2 are ideals of Ri−1 and K1 ⊂ K2.
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Let c ∈ K1. Hence, there are elements cq ∈ Ri−1 such that p = cθm +
∑m−1

q=0 cqθ
q is an

element of I1. Clearly, θp − pθ is an element of I1 and the coefficient of θm in θp − pθ is
δ(c). So δ(c) ∈ K1. Let δl ∈ ∆i+1,n. Then δl(p) is an element of I1. If we denote by sl the
coefficient of δl(θ

m), then the coefficient of θm in δl(p) − psl is δl(c) and δl(p) − psl ∈ I1; so
δl(c) ∈ K1. It follows that K1 is a ∆i,n-ideal of Ri−1.

In a similar way, we show that K2 is a ∆i,n-ideal of Ri−1. Suppose that Ri−1 is ∆i,n-
hypernormal. Hence there exists b ∈ K2 −K1 such that ub − bv ∈ K1 and δj(b) − rjb ∈ K1

for all u ∈ Ri−1 and for each δj ∈ ∆i,n, where v and rj are some elements of Ri−1. Let
t = bθm + q ∈ I2 − I1 with deg(q) < m. The coefficient of θm in ut− tv is ub− bv ∈ K1. The
minimality of m enables us to conclude that ut − tv ∈ I1 for all u ∈ Ri−1 (where v is some
element of Ri−1). Let δl ∈ ∆i+1,n ⊆ ∆i,n. If we denote by sl the coefficient of δl(θ

m), then
the coefficient of θm in δl(t)− rlt− tsl is δl(b)− rlb ∈ K1. By the minimality of m, we have
δl(t)− rlt− tsl ∈ I1. So δl(t)− rlt− s′lt ∈ I1 where s′l ∈ Ri−1 is such that tsl − s′lt ∈ I1. On
the other hand, the coefficient of θm in θt − tθ − rit is δi(b) − rib ∈ K1. So the minimality
of m implies that θt − tθ − rit ∈ I1; i.e. θt − t(θ + r′i) ∈ I1, where r′i ∈ Ri−1 is such that
rit− tr′i ∈ I1. We deduce easily from all this that t+ I1 is a ∆i+1,n-normal element in A/I1.2

Proposition 2.2. If R is ∆1,n-hypernormal, then each Ri is ∆i+1,n-hypernormal; in partic-
ular, A = Rn is hypernormal.

Lemma 2.3. Fix two integers i and j such that 0 ≤ i < j ≤ n.

(1) If I is a ∆j+1,n-ideal of Rj, then I ∩Ri is a ∆i+1,n-ideal of Ri and (I ∩Ri)Rj ⊆ I.

(2) If I is a ∆i+1,n-ideal of Ri, then IRj is a ∆j+1,n-ideal of Rj. Moreover, (IRj)∩Ri = I
and Rj/(IRj) ' (Ri/I)[θi+1, δi+1] · · · [θj, δj].

(3) An ideal Q of Ri is ∆i+1,n-prime if and only if Q = P ∩Ri for a ∆j+1,n-prime ideal P
of Rj.

(4) An ideal Q of Ri is ∆i+1,n-prime if and only if QRj is a ∆j+1,n-prime ideal of Rj.

Proof. (1) and (2) straightforward.

(3) Adapt the proof of [1, Lemma 4.3].

(4) We know that every element of Ri+1 has a unique expression
∑

l rlθ
l
i with rl ∈ Ri (the

sum is finite). If I is an ideal of Ri+1 we denote by τ(I) the set of leading coefficients of
elements of I. If I is ∆i+2,n-invariant then τ(I) is a ∆i+1,n-ideal of Ri (see the proof of
Lemma 2.1). Now assume that Ri is ∆i+1,n-prime and let I and J be ∆i+2,n-ideals of Ri+1

such that IJ = 0. One shows easily that τ(I)τ(J) = o. Since Ri is ∆i+1,n-prime we have
τ(I) = 0 or τ(J) = 0, and this clearly implies that I = 0 or J = 0; i.e. Ri+1 is ∆i+2,n-prime.
So if Ri is ∆i+1,n-prime then Rj is ∆j+1,n-prime. 2

From now on we assume that k is a field of positive characteristic. Suppose that R is
noetherian ∆1,n-hypernormal. Let P be a ∆m+1,n-prime ideal of B = Rm; 0 ≤ m ≤ n. Set
Q = P ∩R. By Lemma 1.7 and Proposition 1.8, ∆1,n-ht(Q) = ht(Q) < ∞. Thus there exists
a saturated chain of ∆1,n-prime ideals of R with Q at the top

Q0 ⊂ Q1 ⊂ · · · ⊂ Ql = Q
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where l=∆1,n-ht(Q). Set Pi = QiB; 0 ≤ i ≤ l and Pl+i = (P ∩ Ri)B; 0 ≤ i ≤ m. So
Pl = QlB = QB and Pl+m = P . By Lemma 2.3, all the Pi are ∆m+1,n-prime ideals of B.
Consider the chain of ∆m+1,n-prime ideals of B ending at P

P0 ⊂ P1 ⊂ · · · ⊂ Pl ⊆ Pl+1 ⊆ · · · ⊆ Pl+m = P. (α)

Proposition 2.4. Let R be noetherian, affine and ∆1,n-hypernormal with finite Gelfand-
Kirillov dimension and let P be a ∆m+1,n-prime ideal of B = Rm; 0 ≤ m ≤ n. Assume that
Tauvel’s height formula is valid for all ∆1,n-prime ideals of R. Then the length of the chain
(α) is d(B)− d(B/P ).

Proof. The proof is similar to that of [9, Proposition 3.1]. We proceed by induction on m.
If m = 0, the result is true by the hypotheses. Assume the result true in Ri, 0 ≤ i < m. Set
B′ = Rm−1 and P ′ = P ∩B′; so P ∩Ri = P ′∩Ri for 0 ≤ i ≤ m−1. Set P ′

i = QiB
′; 0 ≤ i ≤ l

and P ′
l+i = (P ′ ∩ Ri)B

′; 0 ≤ i ≤ m− 1; thus P ′ = P ′
l+m−1. By the induction hypothesis, the

chain
P ′

0 ⊂ P ′
1 ⊂ · · · ⊂ P ′

l = QB′ ⊆ P ′
l+1 ⊆ · · · ⊆ P ′

l+m−1 = P ′ (β)

has length d(B′)− d(B′/P ′). By [12], its length is d(B)− d(B/P ′B). Clearly Pi = P ′
iB for

0 ≤ i ≤ l; Pl+i = P ′
l+iB and Pl+i ∩ B′ = P ′

l+i for 0 ≤ i ≤ m − 1. From this we deduce that
Pi = Pi+1 if and only if P ′

i = P ′
i+1, 0 ≤ i ≤ l and P ′

l+i+1 = P ′
l+i if and only if Pl+i+1 = Pl+i.

It follows that the chain of ∆m+1,n-prime ideals of B

P0 ⊂ P1 ⊂ · · · ⊂ Pl ⊆ Pl+1 ⊆ · · · ⊆ Pl+m−1 = P ′B

has the same length as (β). So its length is d(B) − d(B/P ′B). If P = P ′B, the result is
true. If P ′B ⊂ P , the chain (α) has length d(B)− d(B/P ′B) + 1, by [12]. Let us prove that
d(B/P ) = d(B/P ′B)− 1. As B′/P ′ is a subalgebra of B/P , we have d(B′/P ′) ≤ d(B/P ); so
d(B/P ′B)− 1 ≤ d(B/P ). On the other hand, P/P ′B is a nonzero ∆m+1,n-prime ideal of the
∆m+1,n-prime ∆m+1,n-hypernormal ring B/P ′B. By Corollary 1.3, P/P ′B contains a regular
element. By [3, Proposition 3.15], d(B/P ) ≤ d(B/P ′B)− 1. This proves the proposition. 2

The main result of the paper can be formulated as the following

Theorem 2.5. Let R be noetherian, affine and ∆1,n-hypernormal with finite Gelfand-Kirillov
dimension and let P be a ∆m+1,n-prime ideal of B = Rm; 0 ≤ m ≤ n. Assume that Tauvel’s
height formula is valid for all ∆1,n-prime ideals of R. Then

d(B) = d(B/P ) + ht(P ).

Proof. By Lemma 1.9 and Proposition 2.4, we have ∆m+1,n-ht(P ) ≤ d(B)−d(B/P ) ≤∆m+1,n-
ht(P ). By Proposition 1.8, we have ∆m+1,n-ht(P ) = ht(P ). 2

Remark 2.6. Because of Remark 1.4, we are unable to establish Proposition 2.4 and Theo-
rem 2.5 in a more general setting as in the characteristic 0 case.

We shall deduce from Theorem 2.5 some corollaries.
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Corollary 2.7. Let R be a noetherian, affine, ∆1,n-prime, ∆1,n-hypernormal P.I. algebra
and let P be a ∆m+1,n-prime ideal of B = Rm; 0 ≤ m ≤ n. Then

d(B) = d(B/P ) + ht(P ).

Corollary 2.8. Let R be noetherian, affine and ∆1,n-simple with finite Gelfand-Kirillov
dimension and let P be a ∆m+1,n-prime ideal of B = Rm; 0 ≤ m ≤ n. Then

d(B) = d(B/P ) + ht(P ).

3. Application of the main result

Let g be a k-Lie algebra of finite dimension n and U(g) the enveloping algebra of g. We
suppose that g acts by derivations on R and we denote by A = R ? g the crossed product of
R by U(g) (see [4, 13]).

For each X ∈ g, we denote by X̄ the canonical image of X in R?g and we set δ(X) = δX .
We recall that there exists a linear map δ from g to the k-Lie algebra of k-derivations of R
and a bilinear map t : g × g → R such that [X̄, Ȳ ]− [X, Y ] = t(X, Y ). Let h be an ideal of
g. We extend the action of g on R ? h by setting δX(Y ) = [X̄, Ȳ ] for all X ∈ g and Y ∈ h.
It is well known that R ? g = (R ? h) ? g/h.

The notions of g-invariant ideal, g-prime ideal, g-normal element and g-hypernormal ring
are well known in the literature [1], [13], [14] and [15].

If g is completely solvable, we fix a composition series of g; i.e. a chain

0 = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

of ideals of g such that gi+1/gi has dimension one. We shall set Ri = R ? gi; 0 ≤ i ≤ n; so
R0 = R and R ? gn = R ? g. Choose Xi in gi − gi−1 such that Xi + gi−1 is a basis of gi/gi−1.
So Ri ' Ri−1[θi, δi] the Ore extension of Ri−1 by δi; where X̄i is sent to θi and δi(r) = δXi

(r)
for any r ∈ Ri−1. Note that ∆1,n = {δ1, δ2, . . . , δn} is a set of derivations of Ri; 0 ≤ i ≤ n.
Each Xi + gi−1 is a g-eigenvector of gi/gi−1; so [X, Xi] − λi(X)X̄i ∈ Ri−1 for any X ∈ g;
where λi(X) ∈ k is the g-eigenvalue of Xi + gi−1. Hence δX(X̄i)− λi(X)X̄i ∈ Ri−1.

It thereby follows that a crossed product of a k-algebra R by the enveloping algebra
of a completely solvable finite-dimensional k-Lie algebra is an iterated differential operator
k-algebra over R satisfying the conditions (i) and (ii).

Now we assume that g is completely solvable and we keep the above notations. Then our
main result may be applied to the ring Rm = R ? gm; 0 ≤ m ≤ n and the following remark
enables us to improve the result.

Remark 3.1. For each 0 ≤ i ≤ n,

(1) an ideal of Ri is

- g/gi-invariant if and only if it is g-invariant.

- ∆i+1,n-invariant if and only if it is g-invariant.
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- ∆i+1,n-prime if and only if it is g-prime.

(2) Ri is ∆i+1,n-hypernormal if and only if Ri is g-hypernormal.

(3) Ri is ∆i+1,n-simple if and only if Ri is g-simple.

The main result of this section is

Theorem 3.2. Let k be a field of positive characteristic, g completely solvable and R noethe-
rian, affine and g-hypernormal with finite Gelfand-Kirillov dimension. Let P be a g-prime
ideal of B = Rm = R ? gm; 0 ≤ m ≤ n. Assume that Tauvel’s height formula holds for the
g-prime ideals of R. Then

d(B) = d(B/P ) + ht(P ).

Corollary 3.3. Let k be a field of positive characteristic, g completely solvable and h an
ideal of g. Let P be a prime ideal of A = U(h) ? g. Then

d(A) = d(A/P ) + ht(P ).

Corollary 3.4. Let k be a field of positive characteristic, g completely solvable and R noethe-
rian, affine and g-simple with finite Gelfand-Kirillov dimension. Let P be a g-prime ideal of
B = Rm = R ? gm; 0 ≤ m ≤ n. Then

d(B) = d(B/P ) + ht(P ).

Remark 3.4. By the proof of Theorem 2.5, we have assumed that R is affine to ensure that
d(Ri+1)/IRi+1 = d(Ri/I) + 1 for all g-invariant ideals I of Ri = R ? gi. But if R is g-locally
finite, Ri and Ri/I are g-locally finite [15, Corollary 1.4]; so it is gi+1/gi-locally finite. By [15,
Corollary 1.5], d(Ri+1)/IRi+1 = d(Ri/I)+1. We deduce from this remark that all the results
of this section are also true if we replace the assumption that R is affine by R is g-locally
finite.
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