Tauvel's Height Formula in Iterated Differential Operator Rings

Thomas Guédénon
152 boulevard du Général Jacques, 1050 Bruxelles, Belgique
e-mail: guedenon@caramail.com

Abstract

Let k be a field of positive characteristic, R an associative algebra over k and let $\Delta_{1, n}=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of k-linear derivations from R to R. Let $A=R_{n}=R\left[\theta_{1}, \delta_{1}\right] \cdots\left[\theta_{n}, \delta_{n}\right]$ be an iterated differential operator k-algebra over R such that $\delta_{j}\left(\theta_{i}\right) \in R_{i-1} \theta_{i}+R_{i-1} ; 1 \leq i<j \leq n$. As central result we show that if R is noetherian affine $\Delta_{1, n}$-hypernormal and if Tauvel's height formula holds for the $\Delta_{1, n}$-prime ideals of R, then Tauvel's height formula holds in A. In particular, let g be a completely solvable finite-dimensional k-Lie algebra acting by derivations on R and let $U(g)$ be the enveloping algebra of g. If R is noetherian affine g-hypernormal and if Tauvel's height formula holds for the g-prime ideals of R, then Tauvel's height formula holds in the crossed product of R by $U(g)$.

0. Introduction

Throughout the paper, k is a field and all rings (except the Lie algebras over k) are associative with identity. Let A be a k-algebra. Suppose that Δ is a set of derivations of A. An ideal I of A is a Δ-ideal (or a Δ-invariant ideal) provided $\delta(I) \subseteq I$ for all $\delta \in \Delta$. A Δ-prime ideal of A is any proper Δ-ideal P such that whenever I and J are Δ-ideals of A satisfying $I J \subseteq P$ then either $I \subseteq P$ or $J \subseteq P$.

Remark 0.1. If A is noetherian and if k has characteristic 0 , then by [1 , Corollary 2.10], the Δ-prime ideals of A are prime. This result breaks down completely in positive characteristic [2, Lemma 1.2 and the remark below it].

Let A be noetherian, and let P be a prime ideal of A. The height of P, denoted $h t(P)$, is the supremum of the lengths of chains of prime ideals with P at the top. If P is not prime, its height is the infimum of the heights of its minimal prime ideals. If P is a Δ-prime ideal of A, the Δ-height of P denoted $\Delta-h t(P)$ is the supremum of the lengths of chains of Δ-prime ideals with P at the top.
We will denote by $d()$ the Gelfand-Kirillov dimension of a k-algebra; for its properties the reader can consult [3] and [4]. Let us recall the following result of P. Tauvel which relates the height of a prime ideal to the corresponding factor algebra:

Theorem 0.2. (Tauvel [5]) Let g be a finite dimensional solvable Lie algebra over an algebraically closed field k of characteristic zero and $A=U(g)$ the enveloping algebra of g. If P is a prime ideal in A, then

$$
\begin{equation*}
d(A)=h t(P)+d(A / P) . \tag{*}
\end{equation*}
$$

We will call (*) Tauvel's height formula.
By a domain we mean a ring without divisors of zero. A k-algebra is called affine if it is finitely generated as a k-algebra.

By Schelter's theorem [6], Tauvel's height formula holds in any noetherian affine prime P.I. algebra over a field. We give below some examples of such rings.

Examples 0.3. (1) Let k be a field of positive characteristic. Let R be a commutative affine k-algebra which is an integral domain and let $\Delta=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of commuting k-linear derivations from R to R. Let $A=R\left[\theta_{1}, \ldots, \theta_{n} ; \delta_{1}, \ldots, \delta_{n}\right]$ be the corresponding ring of differential operators. Then A is a noetherian prime affine P.I. algebra [7, Theorem 4.1].
(2) Let g be a finite dimensional Lie algebra over a field k of characteristic $p>0$ and $U(g)$ its enveloping algebra. By $[8,1.10], U(g)$ is a finite module over its affine center and so is a noetherian affine P.I. algebra. As a consequence of this result, if R is a noetherian affine prime P.I. algebra then so is $R \otimes U(g)$ [4].
Let R be a k-algebra and $A=R\left[\theta_{1}, \delta_{1}\right] \cdots\left[\theta_{n}, \delta_{n}\right]$ an iterated differential operator k-algebra over R. Set $R_{i}=R\left[\theta_{1}, \delta_{1}\right] \cdots\left[\theta_{i}, \delta_{i}\right] ; 0 \leq i \leq n$; so $R_{0}=R$ and $R_{n}=A$. Consider the following three conditions:
(i) each δ_{i} is a derivation of $R ; 1 \leq i \leq n$.
(ii) $\delta_{j}\left(\theta_{i}\right) \in R_{i-1} \theta_{i}+R_{i-1} ; 1 \leq i<j \leq n$.
(iii) $\delta_{j}\left(R_{i}\right) \subseteq R_{i} ; 0 \leq i<j \leq n$.

Note that (i) and (ii) \Rightarrow (iii).
Examples 0.4. (1) Let R be a k-algebra and let $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of commuting k linear derivations from R to R. Then the ring of differential operators $A=R\left[\theta_{1}, \ldots, \theta_{n} ; \delta_{1}, \ldots\right.$, δ_{n}] is an iterated differential operator k-algebra over R and the conditions (i) and (ii) are satisfied (we extend each δ_{j} to A by setting $\delta_{j}\left(\theta_{i}\right)=0 ; 1 \leq i \leq j \leq n$).
(2) Let R be a k-algebra and g a completely solvable k-Lie algebra of finite dimension n acting on R by derivations and A the crossed product of R by $U(g)$. Then A is an iterated differential operator k-algebra over R and the conditions (i) and (ii) are satisfied.

In [9] we have shown the following generalization of Theorem 0.2:
Theorem 0.5. Let k be a field of characteristic zero, R a noetherian affine k-algebra and $A=$ $R_{n}=R\left[\theta_{1}, \delta_{1}\right] \cdots\left[\theta_{n}, \delta_{n}\right]$ an iterated differential operator k-algebra over R with conditions (i) and (iii). Let P be a $\Delta_{m+1, n}$-invariant prime ideal of $B=R_{m}=R\left[\theta_{1}, \delta_{1}\right] \cdots\left[\theta_{m}, \delta_{m}\right]$; $0 \leq m \leq n$. Assume that for all $\Delta_{1, n}$-invariant prime ideals of R
(1) Tauvel's height formula holds;
(2) the $\Delta_{1, n}$ height and the height coincide.

Then

$$
d(B)=d(B / P)+h t(P)
$$

The purpose of this paper is to establish Theorem 0.5 when the characteristic of k is $p>0$. In order to do this we need of some restrictions: we will assume that the conditions (i) and (ii) are satisfied in R and that R is a $\Delta_{1, n}$-hypernormal ring.

Remarks 0.6. (1) If our iterated differential operator k-algebra is one of the rings of examples 0.3 , then our result is not new.
(2) In the proof of Theorem 0.5 , we have used the theorem of Goldie which states that every essential right ideal of a semiprime right Goldie ring contains a regular element. In the present context, this theorem of Goldie is not always true (see Remark 0.1). It is for this reason that we have made the $\Delta_{1, n}$-hypernormality assumption on R. This assumption enables us to establish an analog to the theorem of Goldie mentioned above (Corollary 1.3) and ensures that the $\Delta_{1, n}$-height and the height coincide for all $\Delta_{1, n}$-prime ideals of R (Proposition 1.8).

1. Preliminary results

Let A be a k-algebra. Suppose that Δ is a finite set of derivations of A. The ring A is Δ-prime if 0 is a Δ-prime ideal of A. We say that A is Δ-simple provided $A^{2} \neq 0$ and A has no proper Δ-ideals. An easy consequence of the definitions is that Δ-simple implies Δ-prime.

An element x of A is Δ-normal if $x A=A x$ and the ideal $A x$ is a Δ-ideal.
We will say that A is

- Δ-normally separated if for any pair of distinct comparable Δ-prime ideals $P \subset Q$ of A, there exists $x \in Q-P$ such that $x+P$ is a Δ-normal element of A / P.
- Δ-hypernormal if, whenever $I \subset J$ are two Δ-ideals of A, there exists $x \in J-I$ such that $x+I$ is a Δ-normal element of A / I.
- Δ-locally finite if every element of A is contained in a finite dimensional Δ-stable subspace of R.
Clearly, Δ-simple implies Δ-hypernormal and Δ-hypernormal implies Δ-normally separated.
Lemma 1.1. Let k be algebraically closed. Assume that Δ is a finite set of commuting derivations of A. Let A be Δ-locally finite and let I be a nonzero Δ-ideal of A. Then there
is in I a nonzero element u such that $\delta(u)=\lambda u$ for all $\delta \in \Delta$; where $\lambda \in k$. If furthermore, A is commutative, then A is Δ-hypernormal.

Let S be a nonempty subset of A. The left annihilator of S is defined by

$$
\operatorname{lann}_{A}(S)=\{a \in A: a s=0 \quad \text { for all } \quad s \in S\}
$$

We define in a similar way the right annihilator $\operatorname{rann}_{A}(S)$ of S. If S is Δ-ideal of A, then so is $\operatorname{lann}_{A}(S)$.
The following result is the Δ-invariant version of the well known result which asserts that any nonzero normal element in a prime ring is a regular element.

Lemma 1.2. Let A be a Δ-prime ring and let x be a nonzero Δ-normal element of A. Then x is a regular element in A.

Proof. Let v be an element of A such that $v x=0$. If u is an element of A, we have $v(u x)=v(x w)=(v x) w=0$ where $w \in A$ is such that $u x=x w$. Hence $v \in \operatorname{lann}_{A}(A x)$. Since $A x$ is a nonzero Δ-ideal in A, we have $\operatorname{lann}_{A}(A x)=0$, by [10, page 71]. So x is left regular. Let v be an element of A such that $x v=0$. If u is an element of A, we have $(x u) v=(w x) v=w(x v)=0$ where $w \in A$ is such that $x u=w x$. Hence $v \in \operatorname{rann}_{A}(x A)$. Since $x A$ is a nonzero Δ-ideal in A, we have $\operatorname{rann}_{A}(x A)=0$, by [10, page 71]. So x is right regular.

Corollary 1.3. Let A be a Δ-prime ring.
(1) Then every nonzero Δ-ideal of A is an essential right ideal.
(2) If the characteristic of k is $p>0$ and if A is Δ-hypernormal then any nonzero Δ-ideal of A contains a regular element.
(3) If the characteristic of k is $p>0$ and if A is Δ-normally separated, then any nonzero Δ-prime ideal of A contains a regular element.

Proof. (1) Let I be a right ideal of A and let J be a nonzero Δ-ideal of A. Suppose that $I \cap J=0$. Then $I J=0$. If $I \neq 0$, then $\operatorname{lann}_{A}(J) \neq 0$ and is a Δ-ideal. This is a contradiction since A is a Δ-prime ring. It follows that J is an essential right ideal of A.
(2) and (3) follow from Lemma 1.2.

Remark 1.4. Even if A is right noetherian, we are unable to prove (1.3) without the normality hypothesis. Of course, in the characteristic 0 case, this follows from the Goldie's theorem which asserts that every essential right ideal of a semiprime right Goldie ring contains a regular element.
By [7, Lemma 2.2], if A is right noetherian and if P is a Δ-prime ideal of A, there is exactly one prime ideal in A minimal over P. So if I is a Δ-prime ideal of A, then $h t(I)=h t(P)$ where P is the unique prime ideal in A minimal over I.

Given an ideal I of A we denote by I^{+}the largest Δ-ideal of A contained in I. If J is an ideal of A and if I is a Δ-ideal of A with $I \subseteq J$, then $(J / I)^{+}=J^{+} / I$.

By [1, Lemma 2.4], if I is a prime ideal of A, then I^{+}is a Δ-prime ideal of A and by [1 , Lemma 2.11], if A is noetherian, then a prime ideal P of A is a minimal prime ideal in A if and only if P^{+}is a minimal Δ-prime ideal in A.

Lemma 1.5. Let A be noetherian and let Q be a Δ-prime ideal of A. If P is the unique prime ideal in A minimal over Q, then $P^{+}=Q$.

Proof. The ring A / Q is noetherian Δ-prime and P / Q is the unique minimal prime ideal in A / Q. It follows from [1, Lemma 2.11] that P^{+} / Q is a minimal Δ-prime ideal in A / Q. Since A / Q is a Δ-prime ring, we must have $P^{+}=Q$.

Lemma 1.6. Let A be noetherian and let Q be a Δ-prime ideal of A. Then Δ-ht $(Q) \leq h t(Q)$.
Proof. Set Δ-ht $(Q)=d$. Then there is a saturated chain of Δ-prime ideals

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{d-1} \subset Q_{d}=Q
$$

in A. Let P be the unique prime ideal in A minimal over Q. Then $h t(Q)=h t(P)$. Suppose that P is also the unique minimal prime ideal over Q_{d-1}. Then by Lemma $1.5, P^{+}=Q=$ Q_{d-1} which is a contradiction. So P / Q_{d-1} contains strictly a prime ideal P_{d-1} / Q_{d-1} (the only one) in A / Q_{d-1} minimal over Q / Q_{d-1}. Hence, P_{d-1} is the unique prime ideal in A minimal over Q_{d-1} and $P_{d-1} \subset P$. Continuing this processus, we get in A a chain of prime ideals

$$
P_{0} \subset P_{1} \subset \cdots \subset P_{d-1} \subset P_{d}=P
$$

where each P_{i} is the unique minimal prime ideal over Q_{i}. It follows that $d \leq h t(P)$.
Lemma 1.7. Let A be noetherian Δ-normally separated and let P be a Δ-prime ideal of A. Then $h t(P)<\infty$.

Proof. Let I be the unique minimal prime ideal over P and let J be a prime ideal of A strictly contained in I. After factoring out A by J^{+}, we may assume that $J^{+}=0$. So A is a Δ-prime ring and J cannot contain a nonzero Δ-normal element of A. Since A is Δ-normally separated, P contains a nonzero Δ-normal element x. So, for any element $a \in A$, we have $a x-x a_{1}=0 \in J$ for some $a_{1} \in A$. It follows that $x+J \in I / J$ and $x+J$ is a nonzero normal element in A / J. By [11, Theorem 3.5], we have $h t(I)<\infty$. But $h t(P)=h t(I)$, so the result follows.

Proposition 1.8. Let A be noetherian Δ-normally separated and let P be a Δ-prime ideal of A. Then $\Delta-h t(P)=h t(P)<\infty$.

Proof. By Lemma 1.7, $h t(P)<\infty$. Set $h t(P)=d$. If $d=0$, the result is true by Lemma 1.6. Suppose that $d \neq 0$ and let I be the unique minimal prime ideal over P in A. Then we have $d=h t(P)=h t(I)$. Let

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{d}=I
$$

be a saturated chain of prime ideals in A ending at I. We have $\left(Q_{0}\right)^{+} \subseteq I^{+}=P ; h t\left(Q_{0}\right)^{+}=$ $h t\left(Q_{0}\right)=0 ; h t(I)=h t\left(I /\left(Q_{0}\right)^{+}\right)$and $h t(P)=h t\left(P /\left(Q_{0}\right)^{+}\right)$. So, by passing to the ring
$A /\left(Q_{0}\right)^{+}$, we can suppose that $\left(Q_{0}\right)^{+}=0$; i.e. A is a Δ-prime ring. Since P is nonzero, there exists in $P \subseteq I$ a nonzero element x such that x is a Δ-normal element of A. Since x is a Δ-normal element in the Δ-prime ring A, Lemma 1.2 implies that x is regular in A. Set $\bar{A}=A / A x$ and $\bar{I}=I / A x$. By the Principal Ideal Theorem, $h t \bar{I}=d-1$. But \bar{I} is the unique minimal prime ideal over \bar{P}; so $h t(\bar{I})=h t(\bar{P})$. From this, we deduce that $h t(\bar{P})=d-1$. Suppose by an induction hypothesis that the result is true for \bar{P} in \bar{A}. So there exists a saturated chain of Δ-prime ideals in \bar{A} ending at \bar{P} of length $d-1$

$$
\bar{P}_{1} \subset \bar{P}_{2} \subset \cdots \subset \bar{P}_{d-1} \subset \bar{P}_{d}=\bar{P}
$$

By taking the inverse images, we get a chain of Δ-ideals in A

$$
0 \subset A x \subset P_{1} \subset P_{2} \subset \cdots \subset P_{d}=P
$$

where the P_{i} are Δ-prime ideals. Hence, $d \leq \Delta-h t(P)$; and the result follows from Lemma 1.6 .

Lemma 1.9 Let A be noetherian Δ-normally separated and let P be a Δ-prime ideal of A. Then $d(A) \geq d(A / P)+\Delta-h t(P)$.

Proof. Let

$$
P_{0} \subset P_{1} \subset P_{2} \subset \cdots \subset P_{l}=P
$$

be a chain of Δ-prime ideals in A. For each $i, P_{i+1} / P_{i}$ is a nonzero Δ-prime ideal of the Δ prime Δ-normally separated k-algebra A / P_{i}. By Corollary 1.3, it contains a regular element of A / P_{i}. It follows from [3, Proposition 3.15] that $d\left(A / P_{i+1}\right)+1 \leq d\left(A / P_{i}\right)$, and induction yields

$$
d(A / P)+l \leq d\left(A / P_{0}\right) \leq d(A)
$$

by [3, Lemma 3.1]. Taking the supremum of l gives the result.
Lemma 1.10. Let A be a noetherian Δ-prime affine P.I. algebra. Let P be a Δ-prime ideal of A. Then we have

$$
d(A)=d(A / P)+h t(P) .
$$

Proof. Clearly, the result is true if $P=0$. Now suppose that $P \neq 0$. Let I be the unique minimal prime ideal over P and J the unique minimal prime ideal in A. So $J \subset I$ and $h t(P)=h t(I)=h t(I / J)$. Since A / J is a noetherian affine prime P.I. algebra, by Schelter's theorem we have $d(A / J)=d(A / I)+h t(I / J)$. On the other hand, A is a noetherian P.I. algebra and J is its only minimal prime ideal. Hence, by [3, Theorem 10.15], $d(A)=d(A / J)$. Also, A / P is a noetherian P.I. algebra and I / P is its only minimal prime ideal. Hence, by [3, Theorem 10.15] again, $d(A / P)=d(A / I)$.

2. The main result

Let R be a k-algebra. Let δ be a k-derivation of R. The left R-module structure of $R[\theta]$, with θ being an indeterminate, can be extended to a k-algebra structure by setting $\theta r=r \theta+\delta(r)$; $r \in R$. The ring thus obtained is denoted $R[\theta, \delta]$ and is called a differential operator k-algebra over R.

Let n be a positive integer. A k-algebra $A=R_{n}$ is said to be an iterated differential operator k-algebra over R if there exists a chain of subalgebras

$$
R=R_{0} \subseteq R_{1} \subseteq \cdots \subseteq R_{n-1} \subseteq R_{n}=A
$$

such that each R_{i} is (isomorphic to) a differential operator k-algebra over R_{i-1}. So for each $1 \leq i \leq n$ there is a derivation δ_{i} of R_{i-1} such that $R_{i}=R_{i-1}\left[\theta_{i}, \delta_{i}\right]$. Note that each R_{l} is a free left and right R-module with basis $\theta_{1}^{i_{1}} \theta_{2}^{i_{2}} \cdots \theta_{l-1}^{i_{l-1}} \theta_{l}^{i_{l}}$ and that for all positive integer l and for all $u \in R_{i-1}$

$$
\theta_{i}^{l} u=u \theta_{i}^{l}+\sum_{0<j<l}\binom{l}{j} \delta_{i}^{j}(u) \theta_{i}^{l-j} .
$$

We will set $\Delta_{i, j}=\left\{\delta_{i}, \delta_{i+1}, \ldots, \delta_{j}\right\} ; 1 \leq i<j \leq n$.
If R is a prime ring, then it is $\Delta_{i, j}$-prime for all $1 \leq i<j \leq n$.
From now on we fix a k-algebra R, a positive integer n and an iterated differential operator k-algebra $A=R_{n}$ with the following conditions:
(i) each δ_{i} is a derivation of $R ; 1 \leq i \leq n$
(ii) $\delta_{j}\left(\theta_{i}\right) \in R_{i-1} \theta_{i}+R_{i-1} ; 1 \leq i<j \leq n$.

From (i) and (ii) we deduce that

$$
\delta_{j}\left(\theta_{i}^{l}\right) \in R_{i-1} \theta_{i}^{l}+\sum_{q<l} R_{i-1} \theta_{i}^{q} ; 1 \leq i<j \leq n
$$

and

$$
\delta_{j}\left(R_{i}\right) \subseteq R_{i} ; 0 \leq i<j \leq n
$$

In the sequel we shall use the conventions that $\Delta_{n+1, n}=\emptyset$ and $\Delta_{n, n}=\delta_{n}$, so the $\Delta_{n+1, n}$-ideals (resp. the $\Delta_{n+1, n}$-prime ideals) of $A=R_{n}$ are precisely the ideals (resp. the prime ideals) of R_{n}.

Lemma 2.1. For a fixed $i ; 1 \leq i \leq n$, if R_{i-1} is $\Delta_{i, n}$-hypernormal, then R_{i} is $\Delta_{i+1, n}$ hypernormal.

Proof. Since $R_{i}=R_{i-1}\left[\theta_{i}, \delta_{i}\right]$, every element of R_{i} has a unique expression $\sum_{j} r_{j} \theta_{i}^{j}$ (the sum is finite). We shall set $\theta_{i}=\theta$ and $\delta_{i}=\delta$. Let $I_{1} \subset I_{2}$ be two $\Delta_{i+1, n}$-ideals of R_{i}. Choose an element $f \in I_{2}-I_{1}$ of minimal degree m and, set for $j=1 ; 2$

$$
K_{j}=\left\{c \in R_{i-1}: c \theta^{m}+\sum_{l=0}^{m-1} c^{l} \theta^{l} \in I_{j} ; \text { where the } c_{l} \text { are elements of } R_{i-1}\right\} .
$$

Clearly, K_{1} and K_{2} are ideals of R_{i-1} and $K_{1} \subset K_{2}$.

Let $c \in K_{1}$. Hence, there are elements $c_{q} \in R_{i-1}$ such that $p=c \theta^{m}+\sum_{q=0}^{m-1} c_{q} \theta^{q}$ is an element of I_{1}. Clearly, $\theta p-p \theta$ is an element of I_{1} and the coefficient of θ^{m} in $\theta p-p \theta$ is $\delta(c)$. So $\delta(c) \in K_{1}$. Let $\delta_{l} \in \Delta_{i+1, n}$. Then $\delta_{l}(p)$ is an element of I_{1}. If we denote by s_{l} the coefficient of $\delta_{l}\left(\theta^{m}\right)$, then the coefficient of θ^{m} in $\delta_{l}(p)-p s_{l}$ is $\delta_{l}(c)$ and $\delta_{l}(p)-p s_{l} \in I_{1}$; so $\delta_{l}(c) \in K_{1}$. It follows that K_{1} is a $\Delta_{i, n}$-ideal of R_{i-1}.

In a similar way, we show that K_{2} is a $\Delta_{i, n}$-ideal of R_{i-1}. Suppose that R_{i-1} is $\Delta_{i, n^{-}}$ hypernormal. Hence there exists $b \in K_{2}-K_{1}$ such that $u b-b v \in K_{1}$ and $\delta_{j}(b)-r_{j} b \in K_{1}$ for all $u \in R_{i-1}$ and for each $\delta_{j} \in \Delta_{i, n}$, where v and r_{j} are some elements of R_{i-1}. Let $t=b \theta^{m}+q \in I_{2}-I_{1}$ with $\operatorname{deg}(q)<m$. The coefficient of θ^{m} in $u t-t v$ is $u b-b v \in K_{1}$. The minimality of m enables us to conclude that $u t-t v \in I_{1}$ for all $u \in R_{i-1}$ (where v is some element of $\left.R_{i-1}\right)$. Let $\delta_{l} \in \Delta_{i+1, n} \subseteq \Delta_{i, n}$. If we denote by s_{l} the coefficient of $\delta_{l}\left(\theta^{m}\right)$, then the coefficient of θ^{m} in $\delta_{l}(t)-r_{l} t-t s_{l}$ is $\delta_{l}(b)-r_{l} b \in K_{1}$. By the minimality of m, we have $\delta_{l}(t)-r_{l} t-t s_{l} \in I_{1}$. So $\delta_{l}(t)-r_{l} t-s_{l}^{\prime} t \in I_{1}$ where $s_{l}^{\prime} \in R_{i-1}$ is such that $t s_{l}-s_{l}^{\prime} t \in I_{1}$. On the other hand, the coefficient of θ^{m} in $\theta t-t \theta-r_{i} t$ is $\delta_{i}(b)-r_{i} b \in K_{1}$. So the minimality of m implies that $\theta t-t \theta-r_{i} t \in I_{1}$; i.e. $\theta t-t\left(\theta+r_{i}^{\prime}\right) \in I_{1}$, where $r_{i}^{\prime} \in R_{i-1}$ is such that $r_{i} t-t r_{i}^{\prime} \in I_{1}$. We deduce easily from all this that $t+I_{1}$ is a $\Delta_{i+1, n}$-normal element in A / I_{1}. .

Proposition 2.2. If R is $\Delta_{1, n}$-hypernormal, then each R_{i} is $\Delta_{i+1, n}$-hypernormal; in particular, $A=R_{n}$ is hypernormal.

Lemma 2.3. Fix two integers i and j such that $0 \leq i<j \leq n$.
(1) If I is a $\Delta_{j+1, n}$-ideal of R_{j}, then $I \cap R_{i}$ is a $\Delta_{i+1, n}$-ideal of R_{i} and $\left(I \cap R_{i}\right) R_{j} \subseteq I$.
(2) If I is a $\Delta_{i+1, n}$-ideal of R_{i}, then $I R_{j}$ is a $\Delta_{j+1, n}$-ideal of R_{j}. Moreover, $\left(I R_{j}\right) \cap R_{i}=I$ and $R_{j} /\left(I R_{j}\right) \simeq\left(R_{i} / I\right)\left[\theta_{i+1}, \delta_{i+1}\right] \cdots\left[\theta_{j}, \delta_{j}\right]$.
(3) An ideal Q of R_{i} is $\Delta_{i+1, n}$-prime if and only if $Q=P \cap R_{i}$ for a $\Delta_{j+1, n}$-prime ideal P of R_{j}.
(4) An ideal Q of R_{i} is $\Delta_{i+1, n}$-prime if and only if $Q R_{j}$ is a $\Delta_{j+1, n}$-prime ideal of R_{j}.

Proof. (1) and (2) straightforward.
(3) Adapt the proof of [1, Lemma 4.3].
(4) We know that every element of R_{i+1} has a unique expression $\sum_{l} r_{l} \theta_{i}^{l}$ with $r_{l} \in R_{i}$ (the sum is finite). If I is an ideal of R_{i+1} we denote by $\tau(I)$ the set of leading coefficients of elements of I. If I is $\Delta_{i+2, n}$-invariant then $\tau(I)$ is a $\Delta_{i+1, n}$-ideal of R_{i} (see the proof of Lemma 2.1). Now assume that R_{i} is $\Delta_{i+1, n}$-prime and let I and J be $\Delta_{i+2, n}$-ideals of R_{i+1} such that $I J=0$. One shows easily that $\tau(I) \tau(J)=o$. Since R_{i} is $\Delta_{i+1, n}$-prime we have $\tau(I)=0$ or $\tau(J)=0$, and this clearly implies that $I=0$ or $J=0$; i.e. R_{i+1} is $\Delta_{i+2, n}$-prime. So if R_{i} is $\Delta_{i+1, n}$-prime then R_{j} is $\Delta_{j+1, n}$-prime.

From now on we assume that k is a field of positive characteristic. Suppose that R is noetherian $\Delta_{1, n}$-hypernormal. Let P be a $\Delta_{m+1, n}$-prime ideal of $B=R_{m} ; 0 \leq m \leq n$. Set $Q=P \cap R$. By Lemma 1.7 and Proposition 1.8, $\Delta_{1, n}-h t(Q)=h t(Q)<\infty$. Thus there exists a saturated chain of $\Delta_{1, n}$-prime ideals of R with Q at the top

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{l}=Q
$$

where $l=\Delta_{1, n}-h t(Q)$. Set $P_{i}=Q_{i} B ; 0 \leq i \leq l$ and $P_{l+i}=\left(P \cap R_{i}\right) B ; 0 \leq i \leq m$. So $P_{l}=Q_{l} B=Q B$ and $P_{l+m}=P$. By Lemma 2.3, all the P_{i} are $\Delta_{m+1, n}$-prime ideals of B. Consider the chain of $\Delta_{m+1, n}$-prime ideals of B ending at P

$$
P_{0} \subset P_{1} \subset \cdots \subset P_{l} \subseteq P_{l+1} \subseteq \cdots \subseteq P_{l+m}=P
$$

Proposition 2.4. Let R be noetherian, affine and $\Delta_{1, n}$-hypernormal with finite GelfandKirillov dimension and let P be a $\Delta_{m+1, n}$-prime ideal of $B=R_{m} ; 0 \leq m \leq n$. Assume that Tauvel's height formula is valid for all $\Delta_{1, n}$-prime ideals of R. Then the length of the chain (α) is $d(B)-d(B / P)$.

Proof. The proof is similar to that of [9, Proposition 3.1]. We proceed by induction on m. If $m=0$, the result is true by the hypotheses. Assume the result true in $R_{i}, 0 \leq i<m$. Set $B^{\prime}=R_{m-1}$ and $P^{\prime}=P \cap B^{\prime}$; so $P \cap R_{i}=P^{\prime} \cap R_{i}$ for $0 \leq i \leq m-1$. Set $P_{i}^{\prime}=Q_{i} B^{\prime} ; 0 \leq i \leq l$ and $P_{l+i}^{\prime}=\left(P^{\prime} \cap R_{i}\right) B^{\prime} ; 0 \leq i \leq m-1$; thus $P^{\prime}=P_{l+m-1}^{\prime}$. By the induction hypothesis, the chain

$$
P_{0}^{\prime} \subset P_{1}^{\prime} \subset \cdots \subset P_{l}^{\prime}=Q B^{\prime} \subseteq P_{l+1}^{\prime} \subseteq \cdots \subseteq P_{l+m-1}^{\prime}=P^{\prime}
$$

has length $d\left(B^{\prime}\right)-d\left(B^{\prime} / P^{\prime}\right)$. By [12], its length is $d(B)-d\left(B / P^{\prime} B\right)$. Clearly $P_{i}=P_{i}^{\prime} B$ for $0 \leq i \leq l ; P_{l+i}=P_{l+i}^{\prime} B$ and $P_{l+i} \cap B^{\prime}=P_{l+i}^{\prime}$ for $0 \leq i \leq m-1$. From this we deduce that $P_{i}=P_{i+1}$ if and only if $P_{i}^{\prime}=P_{i+1}^{\prime}, 0 \leq i \leq l$ and $P_{l+i+1}^{\prime}=P_{l+i}^{\prime}$ if and only if $P_{l+i+1}=P_{l+i}$. It follows that the chain of $\Delta_{m+1, n}$-prime ideals of B

$$
P_{0} \subset P_{1} \subset \cdots \subset P_{l} \subseteq P_{l+1} \subseteq \cdots \subseteq P_{l+m-1}=P^{\prime} B
$$

has the same length as (β). So its length is $d(B)-d\left(B / P^{\prime} B\right)$. If $P=P^{\prime} B$, the result is true. If $P^{\prime} B \subset P$, the chain (α) has length $d(B)-d\left(B / P^{\prime} B\right)+1$, by [12]. Let us prove that $d(B / P)=d\left(B / P^{\prime} B\right)-1$. As B^{\prime} / P^{\prime} is a subalgebra of B / P, we have $d\left(B^{\prime} / P^{\prime}\right) \leq d(B / P)$; so $d\left(B / P^{\prime} B\right)-1 \leq d(B / P)$. On the other hand, $P / P^{\prime} B$ is a nonzero $\Delta_{m+1, n}$-prime ideal of the $\Delta_{m+1, n}$-prime $\Delta_{m+1, n}$-hypernormal ring $B / P^{\prime} B$. By Corollary 1.3, $P / P^{\prime} B$ contains a regular element. By [3, Proposition 3.15], $d(B / P) \leq d\left(B / P^{\prime} B\right)-1$. This proves the proposition.
The main result of the paper can be formulated as the following
Theorem 2.5. Let R be noetherian, affine and $\Delta_{1, n}$-hypernormal with finite Gelfand-Kirillov dimension and let P be a $\Delta_{m+1, n}$-prime ideal of $B=R_{m} ; 0 \leq m \leq n$. Assume that Tauvel's height formula is valid for all $\Delta_{1, n}$-prime ideals of R. Then

$$
d(B)=d(B / P)+h t(P)
$$

Proof. By Lemma 1.9 and Proposition 2.4, we have $\Delta_{m+1, n^{-}} h t(P) \leq d(B)-d(B / P) \leq \Delta_{m+1, n^{-}}$ $h t(P)$. By Proposition 1.8, we have $\Delta_{m+1, n}-h t(P)=h t(P)$.

Remark 2.6. Because of Remark 1.4, we are unable to establish Proposition 2.4 and Theorem 2.5 in a more general setting as in the characteristic 0 case.

We shall deduce from Theorem 2.5 some corollaries.

Corollary 2.7. Let R be a noetherian, affine, $\Delta_{1, n}$-prime, $\Delta_{1, n}$-hypernormal P.I. algebra and let P be a $\Delta_{m+1, n}$-prime ideal of $B=R_{m} ; 0 \leq m \leq n$. Then

$$
d(B)=d(B / P)+h t(P) .
$$

Corollary 2.8. Let R be noetherian, affine and $\Delta_{1, n}$-simple with finite Gelfand-Kirillov dimension and let P be a $\Delta_{m+1, n}$-prime ideal of $B=R_{m} ; 0 \leq m \leq n$. Then

$$
d(B)=d(B / P)+h t(P)
$$

3. Application of the main result

Let g be a k-Lie algebra of finite dimension n and $U(g)$ the enveloping algebra of g. We suppose that g acts by derivations on R and we denote by $A=R \star g$ the crossed product of R by $U(g)$ (see $[4,13]$).

For each $X \in g$, we denote by \bar{X} the canonical image of X in $R \star g$ and we set $\delta(X)=\delta_{X}$. We recall that there exists a linear map δ from g to the k-Lie algebra of k-derivations of R and a bilinear map $t: g \times g \rightarrow R$ such that $[\bar{X}, \bar{Y}]-\overline{[X, Y]}=t(X, Y)$. Let h be an ideal of g. We extend the action of g on $R \star h$ by setting $\delta_{X}(Y)=[\bar{X}, \bar{Y}]$ for all $X \in g$ and $Y \in h$. It is well known that $R \star g=(R \star h) \star g / h$.

The notions of g-invariant ideal, g-prime ideal, g-normal element and g-hypernormal ring are well known in the literature [1], [13], [14] and [15].

If g is completely solvable, we fix a composition series of g; i.e. a chain

$$
0=g_{0} \subset g_{1} \subset \cdots \subset g_{n}=g
$$

of ideals of g such that g_{i+1} / g_{i} has dimension one. We shall set $R_{i}=R \star g_{i} ; 0 \leq i \leq n$; so $R_{0}=R$ and $R \star g_{n}=R \star g$. Choose X_{i} in $g_{i}-g_{i-1}$ such that $X_{i}+g_{i-1}$ is a basis of g_{i} / g_{i-1}. So $R_{i} \simeq R_{i-1}\left[\theta_{i}, \delta_{i}\right]$ the Ore extension of R_{i-1} by δ_{i}; where \bar{X}_{i} is sent to θ_{i} and $\delta_{i}(r)=\delta_{X_{i}}(r)$ for any $r \in R_{i-1}$. Note that $\Delta_{1, n}=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\}$ is a set of derivations of $R_{i} ; 0 \leq i \leq n$. Each $X_{i}+g_{i-1}$ is a g-eigenvector of g_{i} / g_{i-1}; so $\left[X, X_{i}\right]-\lambda_{i}(X) \bar{X}_{i} \in R_{i-1}$ for any $X \in g$; where $\lambda_{i}(X) \in k$ is the g-eigenvalue of $X_{i}+g_{i-1}$. Hence $\delta_{X}\left(\bar{X}_{i}\right)-\lambda_{i}(X) \bar{X}_{i} \in R_{i-1}$.

It thereby follows that a crossed product of a k-algebra R by the enveloping algebra of a completely solvable finite-dimensional k-Lie algebra is an iterated differential operator k-algebra over R satisfying the conditions (i) and (ii).
Now we assume that g is completely solvable and we keep the above notations. Then our main result may be applied to the ring $R_{m}=R \star g_{m} ; 0 \leq m \leq n$ and the following remark enables us to improve the result.

Remark 3.1. For each $0 \leq i \leq n$,
(1) an ideal of R_{i} is

- g / g_{i}-invariant if and only if it is g-invariant.
- $\Delta_{i+1, n}$-invariant if and only if it is g-invariant.
- $\Delta_{i+1, n}$-prime if and only if it is g-prime.
(2) R_{i} is $\Delta_{i+1, n}$-hypernormal if and only if R_{i} is g-hypernormal.
(3) R_{i} is $\Delta_{i+1, n}$-simple if and only if R_{i} is g-simple.

The main result of this section is
Theorem 3.2. Let k be a field of positive characteristic, g completely solvable and R noetherian, affine and g-hypernormal with finite Gelfand-Kirillov dimension. Let P be a g-prime ideal of $B=R_{m}=R \star g_{m} ; 0 \leq m \leq n$. Assume that Tauvel's height formula holds for the g-prime ideals of R. Then

$$
d(B)=d(B / P)+h t(P) .
$$

Corollary 3.3. Let k be a field of positive characteristic, g completely solvable and h an ideal of g. Let P be a prime ideal of $A=U(h) \star g$. Then

$$
d(A)=d(A / P)+h t(P) .
$$

Corollary 3.4. Let k be a field of positive characteristic, g completely solvable and R noetherian, affine and g-simple with finite Gelfand-Kirillov dimension. Let P be a g-prime ideal of $B=R_{m}=R \star g_{m} ; 0 \leq m \leq n$. Then

$$
d(B)=d(B / P)+h t(P) .
$$

Remark 3.4. By the proof of Theorem 2.5, we have assumed that R is affine to ensure that $d\left(R_{i+1}\right) / I R_{i+1}=d\left(R_{i} / I\right)+1$ for all g-invariant ideals I of $R_{i}=R \star g_{i}$. But if R is g-locally finite, R_{i} and R_{i} / I are g-locally finite [15, Corollary 1.4]; so it is g_{i+1} / g_{i}-locally finite. By [15, Corollary 1.5], $d\left(R_{i+1}\right) / I R_{i+1}=d\left(R_{i} / I\right)+1$. We deduce from this remark that all the results of this section are also true if we replace the assumption that R is affine by R is g-locally finite.

References

[1] Bell, A.D.: Localization and ideal theory in iterated differential operator rings. Journal of Algebra 106 (1987), 376-402.

Zbl 0608.16033
[2] Bergen, J.; Montgomery, S.; Passman, D. S.: Radicals of crossed products of enveloping algebras. Israel Journal Math. 59(2) (1987), 167-184.

Zbl 0637.17006
[3] Krause, G.; Lenagan, T. H.: Growth of Algebra and Gelfand-Kirillov dimension. Research Notes in Math. $n^{\circ} 116$, Pitman, London 1985.

Zbl 0564.16001
[4] McConnell, J.C.; Robson, J.: Noncommutative Noetherian Rings. Wiley, Chichester New York 1987. Zbl 0644.16008
[5] Tauvel, P.: Sur les quotients premiers de l'algèbre enveloppante d'une algèbre de Lie résoluble. Bull. Soc. Math. France 106 (1978), 177-205.

Zbl 0399.17003
[6] Schelter, W.: Non-commutative affine P.I. rings are catenary. Journal of Algebra 51(1) (1978), 12-18.

Zbl 0375.16015
[7] Brown, K. A.; Goodearl, K. R.; Lenagan, T. H.: Prime ideals in differential operator rings - Catenarity. Trans. Amer. Math. Soc. 317(2) (1990), 749-772. Zbl 0692.16002
[8] Brown, K. A.; Goodearl, K. R.: Homological aspects of noetherian P.I. Hopf algebras and irreducible modules of maximal dimension. Journal of Algebra 198 (1997), 240-265.

Zbl 0892.16022
[9] Guédénon, T.: La formule des hauteurs de Tauvel dans les anneaux d'opérateurs différentiels. Communications in Algebra 21(6) (1993), 2077-2100. Zbl 0796.16018
[10] Fisher, J. R.; Goldie, A.: Theorem for differentiably prime ring. Pacific Journal of Mathematics 58(1) (1975), 71-77. Zbl 0311.16036
[11] Jategaonkar, A. V.: Relative Krull dimension and prime ideals in right noetherian rings. Communications in Algebra 2 (1974), 429-468.

Zbl 0295.16013
[12] Lorenz, M.: On the Gelfand-Kirillov dimension of skew polynomial rings. Journal of Algebra 77 (1982), 186-188. Zbl 0491.16004
[13] Chin, W.: Prime ideals in differential operator rings and crossed products of infinite groups. Journal of Algebra 106 (1987), 78-104.

Zbl 0611.16023
[14] Guédénon, T.: Localisation, caténarité et dimensions dans les anneaux munis d'une action d'algèbre de Lie. Journal of Algebra 178 (1995), 21-47. Zbl 0837.17004
[15] Guédénon, T.: Gelfand-Kirillov dimension in some crossed products. Beiträge Algebra Geom. 43(2) (2002), 351-363. Zbl 1014.16022

Received September 1, 2001

