Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi$

Florence Gouli-Andreou Niki Tsolakidou
Aristotle University of Thessaloniki, Department of Mathematics
Thessaloniki-540 06, Greece
e-mail: fgouli@mailhost.ccf.auth.gr

Abstract

We study conformally flat contact metric manifolds $M^{2 n+1}(n>1)$ for which the characteristic vector field is an eigenvector of the Ricci tensor. We prove that those manifolds are of constant sectional curvature. MSC 2000: 53C15, 53C25 Keywords: Contact metric manifold, conformally flat Riemannian manifold

1. Introduction

It is well-known that the curvature of a three-dimensional Riemannian manifold is completely determined by its Ricci tensor. This motivates the study of the properties of this tensor. Let $M^{2 n+1}$ be a $(2 n+1)$-dimensional contact metric manifold and (φ, ξ, η, g) its contact metric structure. We denote by ∇, R and Q the Levi-Civita connection, the Riemannian curvature and the Ricci operator on $M^{2 n+1}$ respectively. If the Ricci operator Q commutes with φ then the characteristic vector field is an eigenvector field of the Ricci tensor, i.e. $Q \xi=(\operatorname{Tr} \ell) \xi$, $(\ell:=R(\cdot, \xi) \xi$), but the converse does not need to be true. We come across the relation $Q \xi=(\operatorname{Tr} \ell) \xi$ in the study of several problems regarding contact metric manifolds. Many examples of 3 -dimensional contact metric manifolds, on which the characteristic vector field is an eigenvector of the Ricci operator, are known such as the 3-dimensional flat torus, the 3dimensional contact metric manifolds on which the Ricci operator commutes with φ which are not Sasakian [3], [4], etc. This fact led S.Tanno [11] to the study of conformally flat K-contact manifolds $M^{2 n+1}(n>1)$. He proved that those manifolds are of constant curvature +1 . G.Calvaruso, D.Perrone and L.Vanhecke [5] studied 3-dimensional conformally flat contact

0138-4821/93 \$ 2.50 © 2004 Heldermann Verlag
metric manifolds with $Q \xi=(\operatorname{Tr} \ell) \xi$. They proved that those manifolds are of constant curvature. R.Sharma [10] studied conformally flat contact metric manifolds of dimension >3 which satisfy the conditions: i) $Q \xi=(\operatorname{Tr} \ell) \xi$ and $i i) K(\xi, X)=K(\xi, \varphi X)$ for every tangent vector field X orthogonal to ξ. He proved that those manifolds are of constant curvature. A.Ghosh and R.Sharma [6] proved that every conformally flat contact strongly pseudo-convex integrable CR-metric manifold of dimension >3 satisfying $Q \xi=(\operatorname{Tr} \ell) \xi$ is of constant curvature. We note down that every 3 -dimensional contact metric manifold is strongly pseudo-convex integrable CR-manifold [12]. Therefore the respective problem for the dimension 3 has already been studied in [5]. A.Ghosh, Th.Koufogiorgos and R.Sharma [7] proved that every conformally flat contact strongly pseudo-convex integrable CR-metric manifold of dimension >3 is of constant curvature. In the same paper they proved that every conformally flat contact metric manifold with $Q \xi=(\operatorname{Tr} \ell) \xi$ and $K(\xi, X)+K(\xi, \varphi X)$ independent of X is of constant curvature.

We should note down that the condition $Q \xi=(\operatorname{Tr} \ell) \xi$ is invariant under a D-homothetic deformation [8] and it is equivalent to the condition that the characteristic vector field ξ is an eigenvector of the Laplacian $\Delta=g^{i j} \nabla_{i} \nabla_{j}$. We note also that it is shown in [2] that there exist three-dimensional conformally flat contact metric spaces which are not real space forms.

The main result of this paper is the following:
Let $M^{2 n+1}(n>1)$ be a conformally flat contact metric manifold with the characteristic vector field an eigenvector of the Ricci operator Q at every point. Then $M^{2 n+1}$ is of constant curvature.
This result generalizes S.Tanno's [11] result for the K-contact manifolds and extends the result of G.Calvaruso, D.Perrone and L.Vanhecke [5].

2. Preliminaries

A contact manifold is a C^{∞}-manifold $M^{2 n+1}$ together with a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$. Since $d \eta$ is of rank $2 n$, there exists a unique vector field ξ on $M^{2 n+1}$ satisfying $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for all X. The vector field ξ is called the characteristic vector field or Reeb vector field of the contact structure η. Every contact manifold has an underlying almost contact structure (η, φ, ξ) where φ is a global tensor field of type $(1,1)$ such that

$$
\begin{equation*}
\eta(\xi)=1, \varphi \xi=0, \eta \circ \varphi=0, \varphi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

A Riemannian metric g can be defined (not uniquely) such that

$$
\begin{equation*}
\eta(X)=g(\xi, X), \Phi(X, Y)=d \eta(X, Y)=g(X, \varphi Y) \tag{2.2}
\end{equation*}
$$

The metric g is said to be associated to the contact structure η. We note that g and φ are not unique for a given contact form η, but g and φ are canonically related to each other.

We refer to $\left(M^{2 n+1}, \eta, \xi, \varphi, g\right)$ as a contact metric structure.
In what follows, we shall denote by ∇ the Levi-Civita connection of $M^{2 n+1}, R$ the corresponding Riemannian curvature tensor, Q the Ricci operator and r the scalar curvature.

In the theory of contact metric manifolds the tensor fields $\ell:=R(\cdot, \xi) \xi$ and $h:=\frac{1}{2}\left(£_{\xi} \varphi\right)$, where $£$ is the Lie derivation, play a fundamental role. h is a symmetric operator which
satisfies the following relations:

$$
\begin{equation*}
h \varphi=-\varphi h, \quad h \xi=0, \quad \operatorname{Tr} h=\operatorname{Tr} h \varphi=0 \tag{2.3}
\end{equation*}
$$

On a contact metric manifold we have the following further important relations involving h,

$$
\begin{gather*}
\nabla_{X} \xi=-\varphi X-\varphi h X, \tag{2.4}\\
\nabla_{\xi} \varphi=0, \tag{2.5}\\
\operatorname{Tr} \ell=g(Q \xi, \xi)=2 n-\operatorname{Tr} h^{2} . \tag{2.6}
\end{gather*}
$$

We denote by D the subbundle of the tangent bundle $T M^{2 n+1}$ of $M^{2 n+1}$ defined by $\eta=0$. The restriction $\varphi^{\prime}=\varphi_{/ D}$ of φ to D defines an almost complex structure on D. That means that $\varphi_{/ D}^{2}=-I$ and the Riemannian metric g^{\prime} defined by $g^{\prime}(X, Y)=-d \eta\left(X, \varphi_{/ D} Y\right)$, for all vector fields X, Y which belong to D, define on D an almost Hermitian structure. The pair $\left(\eta, \varphi_{/ D}\right)$ is called the CR-structure associated with the contact metric structure (η, ξ, φ, g) [12]. If the complex distribution $\left\{X-i \varphi_{/ D} X / X \in D\right\}$ is integrable, the contact metric structure (η, ξ, φ, g) is a strongly pseudo-convex integrable CR-structure.

A contact metric structure is a strongly pseudo-convex integrable CR-structure if and only if it satisfies the integrability condition

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y-g(X+h X, Y) \xi+\eta(Y)(X+h X)=0, \forall X, Y \in \mathfrak{X}\left(M^{2 n+1}\right) . \tag{2.7}
\end{equation*}
$$

A K - contact manifold $M^{2 n+1}$ is a contact metric manifold such that the characteristic vector field ξ is a Killing vector field with respect to $g . M^{2 n+1}$ is K-contact if and only if $h=0$ or $Q \xi=2 n \xi$. If the almost complex structure J on $M^{2 n+1} \times \Re$ defined by the relation

$$
J\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f \xi, \eta(X) \frac{d}{d t}\right)
$$

is integrable, $M^{2 n+1}$ is said to be Sasakian. A contact metric manifold is Sasakian if and only if it satisfies

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y, \forall X, Y \in \mathfrak{X}\left(M^{2 n+1}\right) \tag{2.8}
\end{equation*}
$$

Any Sasakian manifold is K-contact. The converse holds only for three-dimensional spaces. We refer to [1] for more information about contact metric manifolds.

A Riemannian manifold $\left(M^{n}, g\right)$ is called conformally flat if it is conformally equivalent to a Euclidean space. A Riemannian manifold $\left(M^{n}, g\right)$ is conformally flat if and only if it satisfies

$$
\begin{align*}
R(X, Y) Z= & \frac{1}{n-2}[g(Y, Z) Q X-g(X, Z) Q Y+g(Q Y, Z) X-g(Q X, Z) Y]- \\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y], \text { for } n>3, \tag{2.9}
\end{align*}
$$

and

$$
\left(\nabla_{X} P\right) Y=\left(\nabla_{Y} P\right) X, \text { for } n=3,
$$

where $r=\operatorname{Tr} Q$ is the scalar curvature of M^{n} and $P=-Q+\frac{r}{4} I d$.

3. Conformally flat contact metric manifolds with $Q \xi=\varrho \xi$, where ϱ is a smooth function

Let $M^{2 n+1}(\eta, \xi, \varphi, g)$ be a contact metric manifold. h is a symmetric operator. Hence it is diagonalizable. That means that there exists an orthonormal frame of eigenvectors of h.

Since $h \xi=0, \xi$ is an eigenvector of h. If $X \in \operatorname{Ker} \eta$ is an eigenvector of h with eigenvalue λ then from (2.3) we conclude that φX is also an eigenvector of h with eigenvalue $-\lambda$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}, \xi\right\}$ be an orthonormal frame formed by unit eigenvectors e_{i} of h with eigenvalue $\lambda_{i},(i=1,2, \ldots, n)$. Then the following relations hold:

$$
\begin{align*}
\nabla_{\xi} e_{i} & =\sum_{\substack{j=1 \\
j \neq i}}^{n} a_{i j} e_{j}+\sum_{j=1}^{n} b_{i j} \varphi e_{j}, i=1,2, \ldots, n \tag{3.1}\\
\nabla_{\xi} \varphi e_{i} & =\sum_{\substack{j=1 \\
j \neq i}}^{n} a_{i j} \varphi e_{j}-\sum_{j=1}^{n} b_{i j} e_{j}, i=1,2, \ldots, n \tag{3.2}
\end{align*}
$$

where

$$
\begin{align*}
a_{i j} & =-a_{j i}, i, j=1,2, \ldots, n \tag{3.3}\\
b_{i j} & =b_{j i}, i, j=1,2, \ldots, n . \tag{3.4}
\end{align*}
$$

From the relation (2.4) we obtain

$$
\begin{align*}
\nabla_{e_{i}} \xi & =-\left(1+\lambda_{i}\right) \varphi e_{i}, i=1,2, \ldots, n, \tag{3.5}\\
\nabla_{\varphi e_{i}} \xi & =\left(1-\lambda_{i}\right) e_{i}, i=1,2, \ldots, n . \tag{3.6}
\end{align*}
$$

Differentiating the inner products $g\left(e_{i}, e_{j}\right), g\left(e_{i}, \xi\right), i, j=1,2, \ldots, 2 n$ with respect to e_{k}, $k=1,2, \ldots, 2 n$ we obtain the following relations:

$$
\begin{align*}
\nabla_{e_{i}} e_{i} & =\sum_{\substack{k=1 \\
k \neq i}}^{n} A_{i k} e_{k}+\sum_{\substack{k=1 \\
k \neq i}}^{n} \bar{A}_{i k} \varphi e_{k}+A_{i} \varphi e_{i}, \\
\nabla_{\varphi e_{i}} \varphi e_{i} & =\sum_{\substack{k=1 \\
k \neq i}}^{n} B_{i k} e_{k}+\sum_{\substack{k=1 \\
k \neq i}}^{n} \bar{B}_{i k} \varphi e_{k}+B_{i} e_{i}, \\
\nabla_{e_{i}} e_{j} & =-A_{i j} e_{i}+\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} C_{i j}^{k} e_{k}+\sum_{k=1}^{n} \bar{C}_{i j}^{k} \varphi e_{k}, i \neq j, \tag{3.7}\\
\nabla_{\varphi e_{i}} \varphi e_{j} & =-\bar{B}_{i j} \varphi e_{i}+\sum_{k=1}^{n} D_{i j}^{k} e_{k}+\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} \bar{D}_{i j}^{k} \varphi e_{k}, i \neq j,
\end{align*}
$$

$$
\begin{aligned}
& \nabla_{e_{i}} \varphi e_{j}=-\bar{A}_{i j} e_{i}-\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} \bar{C}_{i k}^{j} e_{k}-\bar{C}_{i j}^{j} e_{j}-Z_{i j} \varphi e_{i}+\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} N_{i j}^{k} \varphi e_{k}, i \neq j, \\
& \nabla_{\varphi e_{i}} e_{j}=-E_{i j} e_{i}-B_{i j} \varphi e_{i}-D_{i j}^{j} \varphi e_{j}-\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} D_{i k}^{j} \varphi e_{k}+\sum_{\substack{k=1 \\
i \neq k \neq j}}^{n} F_{i j}^{k} e_{k}, i \neq j, \\
& \nabla_{e_{i}} \varphi e_{i}=-A_{i} e_{i}-\sum_{\substack{k=1 \\
k \neq i}}^{n} \bar{C}_{i k}^{i} e_{k}+\sum_{\substack{k=1 \\
k \neq i}}^{n} Z_{i k} \varphi e_{k}+\left(1+\lambda_{i}\right) \xi, \\
& \nabla_{\varphi e_{i}} e_{i}=-B_{i} \varphi e_{i}-\sum_{\substack{k=1 \\
k \neq i}}^{n} D_{i k}^{i} \varphi e_{k}+\sum_{\substack{k=1 \\
k \neq i}}^{n} E_{i k} e_{k}-\left(1-\lambda_{i}\right) \xi,
\end{aligned}
$$

where

$$
\begin{align*}
N_{i j}^{k} & =-N_{i k}^{j}, C_{i j}^{k}=-C_{i k}^{j}, F_{i j}^{k}=-F_{i k}^{j}, \bar{D}_{i j}^{k}=-\bar{D}_{i k}^{j}, \tag{3.8}\\
i, j, k & \in\{1,2, \ldots, n\}, i \neq k \neq j, i \neq j .
\end{align*}
$$

From now on we suppose that $M^{2 n+1}(\varphi, \xi, \eta, g)$ is a conformally flat contact metric manifold for which the characteristic vector field ξ is an eigenvector field of the Ricci tensor, i.e. $Q \xi=\varrho \xi$, where ϱ is a smooth function on $M^{2 n+1}$. The relations (2.6) and $Q \xi=\varrho \xi$ yield $\varrho=T r \ell$. Hence

$$
\begin{equation*}
Q \xi=(\operatorname{Tr} \ell) \xi \tag{3.9}
\end{equation*}
$$

If $n=1, M^{3}$ is of constant curvature 0 or 1 [5].
We suppose that $n>1$. We compute the curvature tensors $R\left(e_{i}, \varphi e_{i}\right) \xi, R\left(e_{i}, e_{j}\right) \xi$, $R\left(\varphi e_{i}, \varphi e_{j}\right) \xi, R\left(e_{i}, \varphi e_{j}\right) \xi, i, j=1,2, \ldots, n, i \neq j$, in two ways, first using (2.9) and (3.9) and secondly through (3.5), (3.6), (3.7) and (3.8) as $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$. Comparing the resulting exprensions we obtain the following relations:

$$
\begin{align*}
\left(1-\lambda_{i}\right) A_{i j}+\left(1+\lambda_{i}\right) B_{i j}-\left(1-\lambda_{j}\right) Z_{i j}-\left(1-\lambda_{j}\right) D_{i j}^{i} & =0 \tag{3.10}\\
\left(1-\lambda_{i}\right) \bar{A}_{i j}+\left(1+\lambda_{i}\right) \bar{B}_{i j}-\left(1+\lambda_{j}\right) \bar{C}_{i j}^{i}-\left(1+\lambda_{j}\right) E_{i j} & =0 \tag{3.11}\\
\left(1+\lambda_{i}\right) A_{i j}-\left(1+\lambda_{j}\right) Z_{i j} & =e_{j} \cdot \lambda_{i}, \tag{3.12}\\
\left(1-\lambda_{j}\right) \bar{C}_{j i}^{j}-\left(1+\lambda_{i}\right) \bar{A}_{j i}+2 \lambda_{j} \bar{C}_{i j}^{j} & =0 \tag{3.13}\\
\left(1+\lambda_{j}\right) \bar{C}_{i k}^{j}-\left(1+\lambda_{i}\right) \bar{C}_{j k}^{i}-\left(1-\lambda_{k}\right) \bar{C}_{i j}^{k}+\left(1-\lambda_{k}\right) \bar{C}_{j i}^{k} & =0, \tag{3.14}\\
\left(1+\lambda_{i}\right) N_{j i}^{k}-\left(1+\lambda_{j}\right) N_{i j}^{k}+\left(1+\lambda_{k}\right) C_{i j}^{k}-\left(1+\lambda_{k}\right) C_{j i}^{k} & =0 \tag{3.15}\\
\left(1-\lambda_{j}\right) E_{i j}-\left(1-\lambda_{i}\right) \bar{B}_{i j} & =\varphi e_{j} \cdot \lambda_{i} \tag{3.16}\\
\left(1+\lambda_{i}\right) D_{i j}^{i}-\left(1-\lambda_{j}\right) B_{i j}-2 \lambda_{i} D_{j i}^{i} & =0 \tag{3.17}\\
\left(1-\lambda_{j}\right) F_{i j}^{k}-\left(1-\lambda_{i}\right) F_{j i}^{k}-\left(1-\lambda_{k}\right) \bar{D}_{i j}^{k}+\left(1-\lambda_{k}\right) \bar{D}_{j i}^{k} & =0, \tag{3.18}\\
\left(\lambda_{j}-1\right) D_{i k}^{j}+\left(1-\lambda_{i}\right) D_{j k}^{i}+\left(1+\lambda_{k}\right) D_{i j}^{k}-\left(1+\lambda_{k}\right) D_{j i}^{k} & =0, \tag{3.19}
\end{align*}
$$

108 F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi$

$$
\begin{align*}
\left(1-\lambda_{i}\right) Z_{i j}-\left(1-\lambda_{j}\right) A_{i j}+2 \lambda_{i} D_{j i}^{i} & =0, \tag{3.20}\\
\left(1+\lambda_{i}\right) \bar{A}_{i j}-\left(1-\lambda_{j}\right) \bar{C}_{i j}^{i} & =\varphi e_{j} \cdot \lambda_{i}, \tag{3.21}\\
\left(1+\lambda_{i}\right) D_{j i}^{j}-\left(1-\lambda_{j}\right) B_{j i} & =e_{i} \cdot \lambda_{j}, \tag{3.22}\\
\left(1+\lambda_{j}\right) E_{j i}-\left(1+\lambda_{i}\right) \bar{B}_{j i}-2 \lambda_{j} \bar{C}_{i j}^{j} & =0, \tag{3.23}\\
\left(1-\lambda_{j}\right) C_{i j}^{k}+\left(1+\lambda_{i}\right) D_{j i}^{k}-\left(1-\lambda_{k}\right) N_{i j}^{k}-\left(1-\lambda_{k}\right) D_{j k}^{i} & =0, \tag{3.24}\\
\left(1-\lambda_{j}\right) \bar{C}_{i j}^{k}+\left(1+\lambda_{i}\right) \bar{D}_{j i}^{k}-\left(1+\lambda_{k}\right) \bar{C}_{i k}^{j}-\left(1+\lambda_{k}\right) F_{j i}^{k} & =0, \tag{3.25}
\end{align*}
$$

where $i, j, k \in\{1,2, \ldots, n\}, i \neq k \neq j, i \neq j$.
Lemma 1. Let $M^{2 n+1}(\varphi, \xi, \eta, g)(n>1)$ be a conformally flat contact metric manifold with the characteristic vector field ξ an eigenvector of the Ricci operator Q at every point. Then the following relations hold:

$$
\begin{aligned}
\bar{C}_{k j}^{i}-\bar{C}_{j k}^{i}+\bar{C}_{i k}^{j}-\bar{C}_{k i}^{j}+\bar{C}_{j i}^{k}-\bar{C}_{i j}^{k} & =0, \quad i \neq k \neq j, \quad i \neq j, \\
D_{j k}^{i}-D_{k j}^{i}+D_{k i}^{j}-D_{i k}^{j}+D_{i j}^{k}-D_{j i}^{k} & =0, \quad i \neq k \neq j, \quad i \neq j, \\
\bar{C}_{j k}^{i}-\bar{C}_{j i}^{k}+\bar{D}_{j k}^{i}-F_{j k}^{i} & =0, \quad i \neq k \neq j, \quad i \neq j, \\
D_{k i}^{j}-D_{k j}^{i}+C_{k i}^{j}-N_{k i}^{j} & =0, \quad i \neq k \neq j, \quad i \neq j, \\
B_{j i}+A_{j i}-Z_{j i}-D_{j i}^{j} & =0, \quad i \neq j, \\
\bar{B}_{j i}+\bar{A}_{j i}-\bar{C}_{j i}^{j}-E_{j i} & =0, \quad i \neq j .
\end{aligned}
$$

Proof. It is well known that on every contact metric manifold $M^{2 n+1}$ the following formula holds [9] :

$$
d \Phi=d^{2} \eta=0
$$

The above formula implies

$$
\begin{equation*}
\left(\nabla_{X} \Phi\right)(Y, Z)+\left(\nabla_{Y} \Phi\right)(Z, X)+\left(\nabla_{Z} \Phi\right)(X, Y)=0 \tag{3.26}
\end{equation*}
$$

where

$$
\left(\nabla_{X} \Phi\right)(Y, Z)=X \cdot g(Y, \varphi Z)-g\left(\nabla_{X} Y, \varphi Z\right)-g\left(Y, \varphi \nabla_{X} Z\right), \forall X, Y, Z \in \mathfrak{X}\left(M^{2 n+1}\right) .
$$

Taking $X=e_{k}, Y=e_{i}, Z=e_{j}, i \neq k \neq j, i \neq j, i, j, k \in\{1,2, \ldots, n\}$, into (3.26) and using the relations (3.7) we obtain

$$
\begin{equation*}
-\bar{C}_{k i}^{j}+\bar{C}_{k j}^{i}-\bar{C}_{i j}^{k}+\bar{C}_{i k}^{j}-\bar{C}_{j k}^{i}+\bar{C}_{j i}^{k}=0, i \neq k \neq j, i \neq j . \tag{3.27}
\end{equation*}
$$

Similarly, for $X=\varphi e_{k}, Y=\varphi e_{i}, Z=\varphi e_{j}, i \neq k \neq j, i \neq j, i, j, k \in\{1,2, \ldots, n\}$, the relation (3.26) yields, because of (3.7),

$$
\begin{equation*}
D_{k i}^{j}-D_{k j}^{i}+D_{i j}^{k}-D_{i k}^{j}+D_{j k}^{i}-D_{j i}^{k}=0, i \neq k \neq j, i \neq j \tag{3.28}
\end{equation*}
$$

F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi 109$

Also, putting $X=\varphi e_{k}, Y=e_{i}, Z=\varphi e_{j}, i \neq k \neq j, i \neq j, i, j, k \in\{1,2, \ldots, n\}$, in the relation (3.26) and taking into account the relations (3.7), (3.8) we have

$$
\begin{equation*}
-\bar{C}_{i j}^{k}+\bar{C}_{i k}^{j}-F_{j k}^{i}+F_{k j}^{i}-\bar{D}_{k j}^{i}+\bar{D}_{j k}^{i}=0, i \neq k \neq j, i \neq j \tag{3.29}
\end{equation*}
$$

Replacing in (3.26) X, Y, Z by $e_{k}, \varphi e_{j}, e_{i}, i \neq k \neq j, i \neq j, i, j, k \in\{1,2, \ldots, n\}$, respectively and taking into account the relations (3.7), (3.8) we have

$$
\begin{equation*}
D_{j i}^{k}-D_{j k}^{i}+C_{k i}^{j}-C_{i k}^{j}+N_{i k}^{j}-N_{k i}^{j}=0, \quad i \neq k \neq j, \quad i \neq j \tag{3.30}
\end{equation*}
$$

The relation (3.29) because of the relation (3.27) can be written in the form

$$
\begin{equation*}
\bar{C}_{j k}^{i}-\bar{C}_{k j}^{i}-\bar{C}_{j i}^{k}+\bar{C}_{k i}^{j}+F_{k j}^{i}-F_{j k}^{i}+\bar{D}_{j k}^{i}-\bar{D}_{k j}^{i}=0, \quad i \neq k \neq j, \quad i \neq j \tag{3.31}
\end{equation*}
$$

We alternate the indices i, k in the relation (3.29) and we add the result to (3.29). We obtain in this way the relation

$$
\bar{C}_{i k}^{j}+\bar{C}_{k i}^{j}-\bar{C}_{i j}^{k}-\bar{C}_{k j}^{i}-F_{i k}^{j}-F_{k i}^{j}+\bar{D}_{k i}^{j}+\bar{D}_{i k}^{j}=0, \quad i \neq k \neq j, i \neq j
$$

We alternate the indices i, j in the above relation and we add the result to (3.31). We obtain then

$$
\begin{equation*}
\bar{C}_{j k}^{i}-\bar{C}_{j i}^{k}+\bar{D}_{j k}^{i}-F_{j k}^{i}=0, \quad i \neq k \neq j, \quad i \neq j \tag{3.32}
\end{equation*}
$$

The relation (3.30) because of the relation (3.28) can be written in the form

$$
\begin{equation*}
D_{k i}^{j}-D_{i k}^{j}+D_{i j}^{k}-D_{k j}^{i}+N_{i k}^{j}-N_{k i}^{j}+C_{k i}^{j}-C_{i k}^{j}=0, i \neq k \neq j, i \neq j \tag{3.33}
\end{equation*}
$$

We alternate the indices i, j in the relation (3.30) and we add the result to (3.30). We obtain in this way the relation

$$
D_{i j}^{k}+D_{j i}^{k}-D_{j k}^{i}-D_{i k}^{j}+C_{i j}^{k}+C_{j i}^{k}-N_{i j}^{k}-N_{j i}^{k}=0, i \neq k \neq j, i \neq j
$$

We alternate the indices j, k in the above relation and we add the result to (3.33). We obtain then

$$
\begin{equation*}
D_{k i}^{j}-D_{k j}^{i}+C_{k i}^{j}-N_{k i}^{j}=0, \quad i \neq k \neq j, \quad i \neq j \tag{3.34}
\end{equation*}
$$

We alternate the indices i, j in the relation (3.12) and we subtract (3.22) from the result. We obtain then the following relation

$$
\left(1-\lambda_{j}\right) B_{j i}-\left(1+\lambda_{i}\right) D_{j i}^{j}-\left(1+\lambda_{i}\right) Z_{j i}+\left(1+\lambda_{j}\right) A_{j i}=0, \quad i \neq j
$$

Adding the above relation to the relation obtained from (3.10) alternating the indices i, j we have

$$
\begin{equation*}
B_{j i}+A_{j i}-Z_{j i}-D_{j i}^{j}=0, \quad i \neq j \tag{3.35}
\end{equation*}
$$

110 F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi$
Similarly, alternating the indices i, j in the relations (3.16) and (3.21) and subtracting the results we obtain

$$
\left(1+\lambda_{j}\right) \bar{A}_{j i}-\left(1-\lambda_{i}\right) \bar{C}_{j i}^{j}-\left(1-\lambda_{i}\right) E_{j i}+\left(1-\lambda_{j}\right) \bar{B}_{j i}=0, i \neq j
$$

Adding the above relation to the relation obtained from (3.11) alternating the indices i, j we have

$$
\begin{equation*}
\bar{A}_{j i}+\bar{B}_{j i}-\bar{C}_{j i}^{j}-E_{j i}=0, i \neq j \tag{3.36}
\end{equation*}
$$

We suppose now that there exists an open subset U of $M^{2 n+1}$ where $h \neq 0$ and let m a point of U. Then there exists a local orthonormal frame

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}, \xi\right\}
$$

of smooth eigenvectors e_{i} of h in an open neighborhood $V \subset U$ of m with eigenvalue $\lambda_{i},(i=1,2, \ldots, n)$ and $\lambda_{i} \neq 0$ for $i=1,2, \ldots, \nu, 1 \leq \nu \leq n$.

Lemma 2. On V the following formulas hold:

$$
A_{i j}=Z_{i j}, E_{i j}=\bar{B}_{i j}, B_{i j}=D_{i j}^{i}, \bar{A}_{i j}=\bar{C}_{i j}^{i}, \forall i, j \in\{1,2, \ldots, n\}, i \neq j .
$$

Proof. Replacing in (2.9) X, Y, Z by ξ, X, Y respectively, where $X, Y \in\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\right.$ $\left.\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}\right\}$, we have

$$
R(\xi, X) Y=\frac{1}{2 n-1}[g(X, Y) Q \xi+g(Q X, Y) \xi]-\frac{r}{2 n(2 n-1)} g(X, Y) \xi
$$

The above relation because of the relation (3.9) can be written in the form

$$
R(\xi, X) Y=\frac{1}{2 n-1}\left[g(X, Y) \operatorname{Tr} \ell+g(Q X, Y)-\frac{r}{2 n} g(X, Y)\right] \xi
$$

Hence $R(\xi, X) Y=\kappa \xi$, where $\kappa=\frac{1}{2 n-1}\left[g(Q X, Y)+\left(\operatorname{Tr} \ell-\frac{r}{2 n}\right) g(X, Y)\right]$ and $X, Y \in$ $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}\right\}$.

It is well known that on every contact metric manifold $M^{2 n+1}$ the following formula holds [9] :

$$
\begin{align*}
& g(R(\xi, X) Y, Z)-g(R(\xi, X) \varphi Y, \varphi Z)+ \\
&+g(R(\xi, \varphi X) Y, \varphi Z)+g(R(\xi, \varphi X) \varphi Y, Z) \tag{3.37}\\
&= 2\left(\nabla_{h X} \Phi\right)(Y, Z)-2 \eta(Y) g(X+h X, Z)+2 \eta(Z) g(X+h X, Y), \\
& \forall X, Y, Z \in \mathfrak{X}\left(M^{2 n+1}\right)
\end{align*}
$$

F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi 111$

The relation (3.37) for $X, Y, Z \in\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, \ldots, e_{2 n}=\varphi e_{n}\right\}$, because of the relation $R(\xi, X) Y=\kappa \xi$, becomes

$$
\begin{equation*}
\left(\nabla_{h X} \Phi\right)(Y, Z)=0, \forall X, Y, Z \in\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}\right\} \tag{3.38}
\end{equation*}
$$

We have the following cases:
Case 1. Let $i \in\{1,2, \ldots, \nu\}, j \in\{1,2, \ldots, n\}, 1 \leq \nu \leq n, i \neq j$. Taking $X=Y=e_{i}$, $Z=e_{j}$, into (3.38) and using the relations (3.7) we obtain

$$
\lambda_{i}\left(\bar{A}_{i j}-\bar{C}_{i j}^{i}\right)=0
$$

Since $\lambda_{i} \neq 0$ on $V, \forall i \in\{1,2, \ldots, \nu\}, 1 \leq \nu \leq n$, the above relation yields

$$
\begin{equation*}
\bar{A}_{i j}=\bar{C}_{i j}^{i} \tag{3.39}
\end{equation*}
$$

Also, setting $X=Y=e_{i}, Z=\varphi e_{j}$, in (3.38) and taking into account the relations (3.7) we have

$$
\begin{align*}
\lambda_{i}\left(A_{i j}-Z_{i j}\right) & =0, \text { or } \\
A_{i j} & =Z_{i j}, \tag{3.40}
\end{align*}
$$

since $\lambda_{i} \neq 0$ on V.
Taking into account the relations (3.39), (3.40), (3.35) and (3.36) we obtain

$$
B_{i j}=D_{i j}^{i} \quad \text { and } \quad \bar{B}_{i j}=E_{i j}
$$

Case 2. Let $i, j \in\{\nu+1, \ldots, n\}, 1 \leq \nu \leq n, i \neq j$. Then we have on V that $\lambda_{i}=\lambda_{j}=0$. Alternating the indices i, j in the relation (3.22) we have

$$
e_{j} \cdot \lambda_{i}-\left(1+\lambda_{j}\right) D_{i j}^{i}+\left(1-\lambda_{i}\right) B_{i j}=0
$$

This implies that

$$
B_{i j}=D_{i j}^{i}
$$

since $\lambda_{i}=\lambda_{j}=0$. Similarly, the relation (3.21) yields

$$
\bar{A}_{i j}=\bar{C}_{i j}^{i}
$$

Hence taking into account the relations (3.35) and (3.36) we obtain

$$
A_{i j}=Z_{i j} \quad \text { and } \quad \bar{B}_{i j}=E_{i j}
$$

Case 3. Let $i \in\{\nu+1, \ldots, n\}, j \in\{1,2, \ldots, \nu\}, 1 \leq \nu \leq n$. In this case the relation (3.22) takes the form

$$
\begin{equation*}
B_{i j}-\left(1+\lambda_{j}\right) D_{i j}^{i}=0 \tag{3.41}
\end{equation*}
$$

112 F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi$ since $\lambda_{i}=0$. Similarly the relation (3.17) takes the form

$$
\begin{equation*}
-\left(1-\lambda_{j}\right) B_{i j}+D_{i j}^{i}=0 \tag{3.42}
\end{equation*}
$$

The relations (3.41) and (3.42) form at every point of V a homogeneous system. Its determinant is equal to $\lambda_{j}^{2} \neq 0$, since $j \in\{1,2, \ldots, \nu\}, 1 \leq \nu \leq n$. Hence the only solution is

$$
B_{i j}=D_{i j}^{i}=0
$$

and the relation (3.35) yields

$$
A_{i j}=Z_{i j}
$$

Working in a similar way as before we can obtain from the relations (3.13) and (3.21)

$$
\bar{A}_{i j}=\bar{C}_{i j}^{i}=0
$$

The above relations and (3.36) yield

$$
\bar{B}_{i j}=E_{i j}
$$

This completes the proof.

Lemma 3. On V the following formulas hold:

$$
\bar{C}_{i j}^{k}=\bar{C}_{i k}^{j}, N_{i j}^{k}=C_{i j}^{k}, \bar{D}_{i j}^{k}=F_{i j}^{k}, D_{i j}^{k}=D_{i k}^{j}, \forall i, j, k \in\{1,2, \ldots, n\}, i \neq k \neq j, i \neq j
$$

Proof. We have the following cases:
Case 4. Let $i, j \in\{1,2, \ldots, n\}, k \in\{1,2, \ldots, \nu\}, 1 \leq \nu \leq n, i \neq k \neq j, i \neq j$. We apply the relation (3.37) for $X=e_{k}, Y=e_{i}, Z=e_{j}$ and taking into account that $R(\xi, X) Y=\kappa \xi$ for $X, Y \in\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}\right\}$ we obtain

$$
\begin{align*}
\left(\nabla_{h e_{k}} \Phi\right)\left(e_{i}, e_{j}\right) & =0, \text { or } \\
\lambda_{k}\left(\nabla_{e_{k}} \Phi\right)\left(e_{i}, e_{j}\right) & =0, \text { or } \\
\left(\nabla_{e_{k}} \Phi\right)\left(e_{i}, e_{j}\right) & =0, \tag{3.43}
\end{align*}
$$

since $\lambda_{k} \neq 0$.
The relation (3.43) because of the relations (3.7) gives

$$
\bar{C}_{k i}^{j}=\bar{C}_{k j}^{i} .
$$

Taking into account the above relation and (3.32) we obtain

$$
\bar{D}_{k i}^{j}=F_{k i}^{j} .
$$

F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi 113$

Similarly, setting $X=\varphi e_{k}, Y=\varphi e_{i}, Z=\varphi e_{j}$ in (3.37) we have for the same reasons

$$
D_{k i}^{j}=D_{k j}^{i} .
$$

This last relation and (3.34) give

$$
N_{k i}^{j}=C_{k i}^{j} .
$$

Case 5. Let $i, j \in\{1,2, \ldots, \nu\}, k \in\{\nu+1, \ldots, n\}, 1 \leq \nu \leq n, i \neq j$. In this case $\lambda_{i} \neq 0$, $\lambda_{j} \neq 0$. Then from Case 1 we have that

$$
\bar{C}_{i k}^{j}=\bar{C}_{i j}^{k} \text { and } \bar{C}_{j i}^{k}=\bar{C}_{j k}^{i},
$$

since $i, j \in\{1,2, \ldots, \nu\}$. The above relations and (3.27) give

$$
\bar{C}_{k j}^{i}=\bar{C}_{k i}^{j} .
$$

The last relation and (3.32) give

$$
\bar{D}_{k i}^{j}=F_{k i}^{j} .
$$

Similarly, using the result of Case 1 and the relation (3.28) we can prove that

$$
D_{k i}^{j}=D_{k j}^{i} .
$$

Using this last relation in (3.34) we have

$$
N_{k i}^{j}=C_{k i}^{j} .
$$

Case 6. Let $i, j, k \in\{\nu+1, \ldots, n\}, 1 \leq \nu \leq n, i \neq k \neq j, i \neq j$. In this case the relations (3.14) and (3.27) yield

$$
\bar{C}_{k j}^{i}=\bar{C}_{k i}^{j} .
$$

This relation and (3.32) give

$$
\bar{D}_{k i}^{j}=F_{k i}^{j} .
$$

Similarly, using the relations (3.19) and (3.28) we obtain

$$
D_{k i}^{j}=D_{k j}^{i} .
$$

The last relation and (3.34) yield

$$
N_{k i}^{j}=C_{k i}^{j} .
$$

Case 7. Let $i \in\{\nu+1, \ldots, n\}, j \in\{1,2, \ldots, \nu\}, k \in\{\nu+1, \ldots, n\}, 1 \leq \nu \leq n, k \neq i$. Then from Case 1 we have that

$$
\bar{C}_{j i}^{k}=\bar{C}_{j k}^{i},
$$

114 F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi$
since $j \in\{1,2, \ldots, \nu\}$. The above relation and (3.27) give

$$
\begin{equation*}
\bar{C}_{k j}^{i}-\bar{C}_{k i}^{j}+\bar{C}_{i k}^{j}-\bar{C}_{i j}^{k}=0 \tag{3.44}
\end{equation*}
$$

Alternating the indices i, j in the relation (3.25) and adding the result to (3.18) we obtain, because of (3.32), the relation

$$
\lambda_{j}\left(\bar{D}_{i j}^{k}-F_{i j}^{k}\right)=0 .
$$

The above relation gives

$$
\bar{D}_{i j}^{k}=F_{i j}^{k},
$$

since $j \in\{1,2, \ldots, \nu\}$. The last relation and (3.32) yield

$$
\bar{C}_{i j}^{k}=\bar{C}_{i k}^{j} .
$$

Using this relation and (3.44) we obtain

$$
\bar{C}_{k j}^{i}=\bar{C}_{k i}^{j} .
$$

Similarly, using the result of Case 1 and the relations (3.28), (3.24), (3.15) and (3.34) we can prove that

$$
N_{k i}^{j}=C_{k i}^{j} \quad \text { and } \quad D_{k i}^{j}=D_{k j}^{i} .
$$

Finally, we prove
Theorem 1. Let $M^{2 n+1}$ be a conformally flat contact metric manifold with the characteristic vector field an eigenvector of the Ricci operator Q at every point. Then $M^{2 n+1}$ is of constant curvature 1 if $n>1$ and 1 or 0 if $n=1$.

Proof. If $n=1$ then M^{3} has constant sectional curvature 0 or 1 [5]. Let $n>1$. If $h \equiv 0$, then $M^{2 n+1}$ is K-contact. S.Tanno proved [11] that a conformally flat K-contact manifold has constant sectional curvature. Z.Olszak proved [9] that any contact metric manifold of constant sectional curvature and of dimension ≥ 5 is Sasakian of constant curvature 1. Hence in this case $M^{2 n+1}$ is Sasakian of constant curvature 1. We suppose now that there exists an open subset U of $M^{2 n+1}$ where $h \neq 0$ and let m a point of U. Then there exists a local orthonormal frame

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}=\varphi e_{1}, e_{n+2}=\varphi e_{2}, \ldots, e_{2 n}=\varphi e_{n}, \xi\right\}
$$

of smooth eigenvectors e_{i} of h in an open neighborhood $V \subset U$ of m with eigenvalue $\lambda_{i},(i=1,2, \ldots, n)$ and $\lambda_{i} \neq 0$ for $i=1,2, \ldots, \nu, 1 \leq \nu \leq n$. Then from Lemmas 3.2, 3.3 and the relations (2.1), (2.2), (2.5), (3.5), (3.6), (3.7) and (3.8) we have that on V holds the integrability condition (2.7). Hence V is a strongly pseudo-convex integrable CRmanifold. Then, since V is conformally flat and $n>1$, we have from [7] that V has constant curvature 1. Hence $h=0$ on V. This is a contradiction.
F. Gouli-Andreou, N. Tsolakidou: Conformally Flat Contact Metric Manifolds with $Q \xi=\varrho \xi 115$

References

[1] Blair, D. E.: Contact metric manifolds in Riemannian geometry. Lecture Notes in Math. 509, 1976.

Zbl 0319.53026
[2] Blair, D. E.: On the existence of conformally flat contact metric 3-manifolds. Preprint 1996.
[3] Blair, D. E.; Koufogiorgos, Th.; Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q \varphi=\varphi Q$. Kodai Math. J. 13 (1990), 391-401. Zbl 0716.53041
[4] Blair, D. E.; Chen, H.: A classification of 3-dimensional contact metric manifolds with $Q \varphi=\varphi Q$, II. Bull. Inst. Math. Acad. Sinica 20 (1992), 379-383. Zbl 0767.53023
[5] Calvaruso, G.; Perrone, D.; Vanhecke, L.: Homogeneity on three-dimensional contact metric manifolds. Israel J. Math. 114 (1999), 301-321.

Zbl 0957.53017
[6] Ghosh, A.; Sharma, R.: On contact strongly pseudo-convex integrable CR-manifolds. J. Geometry 66 (1999), 116-122. Zbl 0935.53035
[7] Ghosh, A.; Koufogiorgos, Th.; Sharma, R.: Conformally flat contact metric manifolds. J. Geometry 70 (2001), 66-76.

Zbl pre1655801
[8] Koufogiorgos, Th.: On a class of contact Riemannian 3-manifolds. Results in Math. 27 (1995), 51-62.

Zbl 0833.53032
[9] Olszak, Z.: On contact metric manifolds. Tôhoku Math. J. 31 (1979), 247-253.
Zbl 0397.53026
[10] Sharma, R.: On the curvature of contact metric manifolds. J. Geometry 53 (1995), 179-190.

Zbl 0833.53033
[11] Tanno, S.: Locally symmetric K-contact Riemannian manifolds. Proc. Japan Acad. 43 (1967), 581-583.

Zbl 0155.49802
[12] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379.

Zbl 0677.53043

Received September 5, 2002

