
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 45 (2004), No. 1, 117-131.

Normalizing Extensions of Semiprime Rings
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Abstract. In this paper we study normalizing extensions of semiprime rings.
For an extension S of R we construct the canonical torsion-free S∗, which is a
normalizing extension of the symmetric ring of quotients Q of R. We extend results
which are known for centralizing extensions and for normalizing bimodules to one-
to-one correspondence between closed ideals. Finally we study prime ideals, non-
singular prime ideals and (right) strongly prime ideals of intermediate extensions.
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Introduction

Prime ideals in ring extensions R ⊆ S have extensively been studied in recent years. In
particular, when the extension is generated by a finite set of R-centralizing elements, S is
called a liberal extension ([12], [13]). A normalizing extension is again a finite extension
which is generated by a set of R-normalizing generators ([7], [8], [9], [11]). Also strongly
normalizing extensions have been considered in [10].
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tially supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil).
Some results of this paper are contained in the Ph.D. thesis written by the second named author and presented
to Universidade Federal do Rio Grande do Sul (Brazil) [14].

0138-4821/93 $ 2.50 c© 2004 Heldermann Verlag



118 M. Ferrero, R. R. Steffenon: Normalizing Extensions of Semiprime Rings

Prime ideals in (not necessarily finite) centralizing extensions were studied in [1], [2] and
[3]. In those papers the results on prime ideals were obtained as applications of the results
on closed submodules of centralizing bimodules over prime and semiprime rings.

Recently the results on closed submodules were extended to normalizing bimodules over
semiprime rings in [5]. The main result in that paper gives a one-to-one correspondence
between closed submodules of a normalizing bimodule M over a semiprime ring R, closed
submodules of its extension to a bimodule M∗ over the symmetric ring of quotients Q of R
and closed submodules of M0, the set of all the R-normalizing elements of M∗ (actually, this
last set is not a module, but it can be treated in a very similar way over the set of all the
R-normalizing elements of Q).

The purpose of this paper is to extend the results on centred extensions to normalizing
extensions, applying the results of [5]. Throughout the paper R is a semiprime ring and S is
a normalizing extension of R. Recall that if M is an R-bimodule, then M is said to be an
R-normalizing bimodule if there exists X = (xi)i∈Ω ⊆ M such that M is generated over R
by the set X and Rxi = xiR, for every i ∈ Ω. A ring S is said to be a normalizing extension
of R if R ⊆ S and S is a normalizing bimodule over R.

In Section 1, we consider some types of normalizing extensions and give examples showing
that they are, in general, all different. We show that the torsion submodule is not in general
an ideal, but it is an ideal if the extension is of some special type, called essentially normalizing
extension. The canonical torsion-free extension S∗ of S is constructed in Section 2.

In the next Section 3 we extend the results on closed submodules of [5] to closed ideals. In
Section 4 we study intermediate extensions and we show that the one-to-one correspondence
can be extended to this context. We also prove that the correspondence preserves prime and
semiprime ideals of intermediate extensions.

Finally, in Section 5 we study strongly prime and non-singular prime ideals of interme-
diate extensions of prime rings. We extend here several results of ([2], Section 6).

In the paper we use freely the terminology and results of [5]. In particular, unless oth-
erwise stated, submodule means sub-bimodule. An ideal H of R is always a two-sided ideal
and this will be denoted by H � R. The set of all essential ideals of R is denoted by E(R)
and we will write simply E if there is no possibility of misunderstanding. The symmetric
Martindale ring of quotients of R will be denoted by Q. The right annihilator of a subset F
in R will be denoted by AnnR,r(F ). The notations ⊂ and ⊃ mean strict inclusions.

1. Normalizing extensions of rings

Let R be a semiprime ring and S a ring extension of R. Recall that an element x ∈ S is said
to be centralizing (resp. normalizing) over R if rx = xr, for every r ∈ R (resp. Rx = xR).
Also, x is said to be strongly normalizing over R if Ix = xI, for any ideal I of R [10].

Another notion we will use in the paper is the following

Definition 1.1. An element x ∈ S is said to be essentially normalizing if x is normalizing
over R and satisfies the following condition: for any I ∈ E there exists J = J(I) ∈ E such
that Jx ⊆ xI and xJ ⊆ Ix.
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The ring extension S ⊇ R is said to be a centralizing (resp. normalizing, strongly normal-
izing, essentially normalizing) extension if there exists a subset X = (xi)i∈Ω of S which is
centralizing (resp. normalizing, strongly normalizing, essentially normalizing) over R and
S =

∑
i∈Ω Rxi.

Consider the following conditions:

(i) S is a centralizing extension of R.

(ii) S is a strongly normalizing extension of R.

(iii) S is an essentially normalizing extension of R.

(iv) S is a normalizing extension of R.

We immediately have

Lemma 1.2. The following implications hold: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Now we give examples to show that the converse of the above implications do not hold.

Example 1.3. Assume that φ is an involution of a field K and put S = K[x, φ], the
skew polynomial ring over K (we write the coefficients in the right). Then S is a strongly
normalizing extension of K which is not centralizing over K. This is clear since s ∈ S is
centralizing if and only if s ∈ ∑

i x
2iK. 2

Example 1.4. Let Z be the ring of integers, R = Z × Z, φ : R → R the automorphism
defined by φ(n, m) = (m, n), for n,m ∈ Z. Put S = R[x, φ] the skew polynomial ring over
R. An element s ∈ S is R-normalizing if and only if either s ∈ ∑n

i=0 x2iR (in this case s is
centralizing over R) or s ∈ ∑n

i=0 x2i+1R. It is easy to see that in the last case s is essentially
normalizing, but not strongly normalizing. It follows that S is an essentially normalizing
extension of R and it is not strongly normalizing. 2

Example 1.5. Let Z2 be the prime field of characteristic 2 and R = Z2 ×
∏∞

i=2 Zi, where
Zi = Z for all i ≥ 2, the product of rings. Consider the epimorphism of R given by
φ(ā1, a2, a3, . . .) = (ā2, a3, . . .), where ā = a + 2Z ∈ Z2, and put S = R[x, φ]. Then S is
a normalizing extension of R with (xi)i≥0 as a set of normalizing generators, but is not essen-
tially normalizing. In fact, if S is essentially normalizing over R, then at least one generator
of S has to be of the form s = r0 + r1x + · · · + rnx

n, where r1 = (1̄, r12, r13, . . .). We have
that I = Z2 ×

∏∞
i=2 2Z ∈ E(R) and do not exist J ∈ E(R) with Js ⊆ sI. 2

The torsion submodule T (M) of a normalizing bimodule M over R has been defined and
studied in ([5], Sections 2 and 5). The normalizing bimodule M is said to be torsion-free if
T (M) = 0. When we consider a normalizing extension S of R it would be convenient that
torsion submodule T (S) will be an ideal. However, this is not the case, as we will see in the
following example.

Let R=K[x1, x2, . . .] be the ring of polynomials in an infinite set of indeterminates {x1, x2,. . .}
over a field K. Then R is a commutative prime ring. Consider the K-endomorphisms σ and
φ of R defined by σ(xi) = xi+1 for any i, φ(xi) = xi−1 if i ≥ 2 and φ(x1) = 0.
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Let W be the free monoid generated by X, Y and consider the ring defined as follows:

T = R < X, Y, σ, φ >= {
∑
w

waw : aw ∈ R,w ∈ W},

where
∑

wwaw denotes a finite sum. The addition in T is defined as usual and the multipli-
cation by xiX = Xσ(xi) and xiY = Y φ(xi).

A monomial is an element of the type wa ∈ T , where a is a monomial in R and w ∈ W .
Thus T can be regarded as a graded ring in two different ways:

(Gr1) The degree of a monomial is the sum of the degrees with respect to X and Y .

(Gr2) The degree of the monomial wa is the usual total degree of the coefficient a in R with
respect to {x1, x2, . . .}.

Let I = (Xx1) be the ideal of T generated by Xx1. Then I is homogeneous in both gradua-
tions because the generator is Gri-homogeneous, i = 1, 2.

Lemma 1.6. Under the above notation we have:

(i) X, Y /∈ I.

(ii) If 0 6= f ∈ R, then f /∈ I and XY f /∈ I.

Proof. (i) Assume that X ∈ I. Then X =
∑

j fjXx1gj, where fj, gj ∈ T . Computing the
Gr2-degree we obtain a contradiction. Similarly Y /∈ I.

(ii) It is enough to show that XY f /∈ I. Suppose that 0 6= f ∈ R and XY f ∈ I. Then
XY f =

∑
j fjXx1gj, where fj, gj ∈ T . Since W is a free monoid there exists at least one j

for which fj contains a summand beginning with XY . Using Gr1 we obtain a contradiction.
2

Put S = T/I and denote by x = X + I, y = Y + I. It is clear that S is a ring extension of
R. We have

Example 1.7. S is a normalizing extension of the prime ring R with normalizing generator
set (w + I)w∈W . Moreover, x, y ∈ T (S) and xy /∈ T (S). In particular, T (S) is not an ideal
of S.

Proof. It is clear that Rx = xR and Ry = yR. The first part follows. Since R is a
commutative prime ring, xx1 = 0 and x1y = 0, we obtain x, y ∈ T (S). Also xixy = xxi+1y =
xyxi, for all i, so xy is R-centralizing. If xy ∈ T (S), then for some 0 6= r ∈ R we have
xyr = 0, i.e., XY r ∈ I, a contradiction. 2

Note that a torsion-free normalizing extension S of R is an essentially normalizing extension
([5] Lemma 2.4). In this case T (S) = 0 is, of course, an ideal. We show that the same is true
for an essentially normalizing extension.

Assume that S is a normalizing extension of R and X = (xi)i∈Ω is a set of R-normalizing
generators. We may suppose that xi0 = 1, for some i0 ∈ Ω.

If I ⊆ P are ideals of S, as in [5] we define the closure of I in P by

[I]P = {x ∈ P : there exist F, H ∈ E such that FxH ⊆ I}.
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The ideal I is said to be closed in P if [I]P = I.

Lemma 1.8. If S is an essentially normalizing extension of R and I ⊆ P are ideals of S,
then [I]P is also an ideal of S.

Proof. We already know that [I]P is a submodule of RSR, by the results in [5]. Let y ∈ [I]P
and take any generator x ∈ X. Then there exist F, H ∈ E such that FyH ⊆ I. Also, by
Definition 1.1 there exist F ′, H ′ ∈ E such that F ′x ⊆ xF and xH ′ ⊆ Hx. So we have that
F ′xyH ⊆ xFyH ⊆ xI ⊆ I and FyxH ′ ⊆ FyHx ⊆ Ix ⊆ I. Therefore xy, yx ∈ [I]P and the
result follows. 2

As a particular case of the above we have the following

Corollary 1.9. Assume that S is an essentially normalizing extension of R. Then the
torsion submodule T (S) is an ideal of S.

Proof. By Lemma 1.8, T1(S) = [0]S is an ideal. The result follows since T (S) = T2(S) =
[T1(S)]S ([5], Section 5). 2

In general, to define the torsion ideal of S we extend the definition of T (S). In this paper
we want to study closed ideals. So we may assume that the set of closed ideals of S is not
empty. Thus we define the torsion ideal t(S) of S as the intersection of all the closed ideals
of S, i.e., the smallest closed ideal. Thus any closed ideal of S contains t(S). It is easy to
see that there is a one-to-one correspondence between the closed ideals of S and the closed
ideals of S/t(S), via the canonical projection (see [5], Lemma 2.2).

There is another way to define t(S). We put t1(S) = (T (S)), the ideal generated by
T (S). Let t2(S) be the ideal generated by t

′
2(S), where t

′
2(S) is the submodule of S such

that t
′
2(S)/t1(S) = T (S/t1(S)). We proceed similarly to define tγ(S) for any non-limit

ordinal number γ. If α is a limit ordinal we put tα(S) =
∑

β<α tβ(S). We have a transfinite
sequence of ideals. Therefore there exists an ordinal ρ with tρ(S) = tρ+1(S). This means that
T (S/tρ(S)) = 0 and hence tρ(S) is a closed ideal of S. It is easy to see that t(S) = tρ(S).

Remark 1.10. If S is an essentially normalizing extension of R, then t(S) = T (S), by
Corollary 1.9.

Example 1.11. In Example 1.7 the torsion ideal of S is the ideal generated by x and y and
the factor ring S/t(S) = R.

2. The canonical torsion-free extension

If M is a normalizing bimodule over R, then there exists a canonical torsion-free normalizing
Q-bimodule M∗ of M , where Q is the symmetric ring of quotients of R ([5], Section 8). The
purpose of this section is to show that the same is true for a normalizing extension.

Let S =
∑

i∈Ω Rxi be a normalizing extension of R with normalizing generators (xi)i∈Ω.
First we assume that S is torsion-free.
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Let W denote the free monoid generated by Ω (with the empty word as identity). Take
w = i1i2 . . . in ∈ W and consider xw = xi1 · . . . · xin ∈ S, a normalizing element of S. Using
similar notation as in ([5], Section 3), we put Aw = AnnR,r(xw) , Bw = AnnR,l(xw) and let
φw be the isomorphism of rings φw : R/Bw → R/Aw defined by φw(r +Bw) = r′ +Aw, where
rxw = xwr′.

For any w ∈ W we consider a free R/Aw-module Tw = wR/Aw, with the unitary basis
w, and define a structure of left R/Bw-module on Tw by (r + Bw)w = wφw(r + Aw), r ∈ R.
Then Tw is an R-bimodule and T =

⊕
w∈W wR/Aw is a normalizing bimodule over R with

(w)w∈W as a set of normalizing generators. Moreover, we see that T has a ring structure and
so is a normalizing extension of R.

In fact, if wrw and vrv are monomials in T we put wrw · vrv = wvrv
wrv, where rv

w is an
element of R such that rwxv = xvr

v
w. It is easy to see that this is a well-defined multiplication

and defines a ring structure on T . Also we may consider R ⊆ T via the application sending
r to r · 1T and so T is a normalizing extension of R. Moreover, the application Φ : T → S
defined by Φ(w) = xw is an epimorphism of normalizing extensions such that Φ|R = idR.

Note that T is torsion-free over R. Thus by Lemma 2.2 of [5] there is a canonical one-to-
one correspondence between the set of all the closed ideals of S and the set of all the closed
ideals of T containing KerΦ.

Now we define an extension of T to a normalizing Q-bimodule T ∗, as in ([5], Section
3). Aw and Bw are closed ideals of R and so there exist closed ideals A∗

w and B∗
w of Q with

A∗
w∩R = Aw and B∗

w∩R = Bw. Thus the isomorphism φw can be extended to an isomorphism
from Q/B∗

w to Q/A∗
w, denoted by φw again ([5], Corollary 1.2). Put T ∗ =

⊕
w∈W wQ/A∗

w,
the canonical extension of T to a bimodule T ∗ over Q. Note that AnnQ,r(w) = A∗

w and
AnnQ,l(w) = B∗

w. It is easy to see that T ∗ is a ring extension of T and a torsion-free
normalizing extension of Q, with (w)w∈W as a set of normalizing generators. Also, for any
x ∈ T ∗ there exists H ∈ E such that xH ⊆ T and Hx ⊆ T .

Note that the construction of T ∗ here is similar to the construction of M∗ in ([5], Section
3). In fact, to see this it is enough to consider the extension S as generated over R by
(xw)w∈W instead of (xi)i∈Ω. Thus we may apply the results of that paper. In particular, by
([5], Theorem 4.9) there is a one-to-one correspondence via contraction between the set of all
the R-closed submodules of T and the set of all the Q-closed submodules of T ∗. We have

Lemma 2.1. The one-to-one correspondence above is a one-to-one correspondence between
closed ideals.

Proof. Let I be an R-closed submodule of T and I∗ the extension of I to a Q-closed submodule
of T ∗. If I∗ is an ideal so is I = I∗ ∩ T . Conversely, if I is an ideal of T , s ∈ I∗ and y ∈ T ∗,
then there exist H, F ∈ E such that sH ⊆ I, Hs ⊆ I, yF ⊆ T and Fy ⊆ T , by Corollary 4.8
of [5]. Hence FysH ⊆ I and HsyF ⊆ I, and so sy ∈ I∗ and ys ∈ I∗, by the above quoted
result. 2

We consider again the epimorphism Φ : T → S. Since S is torsion-free over R, 0 is a closed
ideal of S. Then KerΦ is a closed ideal of T and so there exists a Q-closed ideal K∗ of T ∗

such that K∗ ∩ T = KerΦ. We put S∗ = T ∗/K∗ and denote by j : S → S∗ the application
defined as follows. Let x ∈ S and take y ∈ T such that Φ(y) = x. Thus y ∈ T ∗ and
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we put j(x) = π(y), where π : T ∗ → S∗ is the canonical projection. Since K∗ is a closed
ideal of T ∗ the ring S∗ is a torsion-free normalizing extension of Q and j is an injective ring
homomorphism, called the canonical injection (cf. [5], Section 4).

Now let S be any normalizing extension of R. We consider the torsion-free normalizing
extension of S/t(S), where t(S) is the torsion ideal of S. Then there exists the torsion-free
extension of S/t(S), denoted again by S∗. We define j : S → S∗ as the composition of
the canonical mappings S → S/t(S) and S/t(S) → S∗, where the second application is the
canonical injection.

Definition 2.2. The pair (S∗, j) is called the canonical torsion-free extension of S to a
normalizing extension of Q.

It is clear that Ker(j) = t(S) and we may consider S ⊆ S∗ if and only if S is torsion-free.
If (xi)i∈Ω is a set of R-normalizing generators of S, then (j(xi))i∈Ω is a set of Q-normalizing
generators of S∗. Finally, the pair (S∗, j) satisfies a universal property, as in ([5], Section 8),
so is unique up to isomorphisms.

Note that since S∗ is torsion-free, then S∗ is always an essentially normalizing extension
of Q.

Example 2.3. Let S be the normalizing extension given in Example 1.7. Then S∗ = Q,
since S/t(S) = R. We can modify the example in such a way that the canonical extension is
not trivial. For example, if S1 = S[Y ], where Y is a set of indeterminates, then S∗1 = Q[Y ]
is a polynomial ring over Q.

3. The one-to-one correspondence

A one-to-one correspondence between closed submodules is obtained in ([5], Theorem 8.3).
The purpose of this section is to show that the same is true for ideals of normalizing exten-
sions.

In [5], the set Z of all the R-normalizing elements of Q was considered (Section 1). This
is a multiplicative semigroup with an identity and has an addition partially defined, but is
not in general a ring. Also in Sections 6–8 of that paper, the subset M0 of all the elements
of M∗ which are R-normalizing plays an important role. This subset has also partially
defined addition and a multiplication by the elements of Z, and the operations have natural
properties. We extended the terminology by saying that M0 is a Z-module.

We consider here the corresponding sets. Let S0 = {x ∈ S∗ : Rx = xR}. Hence S0 is a
semigroup with identity element and is a Z-module in the above sense. Also the operations
have natural properties such as associativity and distributivity when addition is defined. We
say here that S0 is a Z-semigroup. Note that by definition Z ⊆ S0.

We can consider semigroup ideals of S0. A semigroup ideal I is a subset with the property:
for any x ∈ I and s ∈ S0 we have sx, xs ∈ I. Actually a more restrictive concept is of interest
here:

Definition 3.1. A semigroup (submodule, semigroup ideal) I of S0 is said to be saturated if
the following holds: if a1, a2, . . . , an ∈ I and the addition a1 + a2 + . . . + an is defined in S0,
then a1 + a2 + . . . + an ∈ I.
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If A and B are saturated ideals of S0, we define the product of A and B by

AB = {
n∑

i=1

aibi : ai ∈ A, bi ∈ B and
n∑

i=1

aibi ∈ S0}.

It is easy to see that AB is also a saturated ideal of S0.
Recall that an ideal H of Z is said to be essential if AnnZ(H) = 0. The set of all the

essential ideals of Z is denoted by E(Z). An ideal I of S0 is said to be closed if s ∈ S0 and
sH ⊆ I, for some H ∈ E(Z), implies that s ∈ I.

Note that S, S∗ and S0 are defined as in ([5], Theorem 8.3). The one-to-one correspon-
dence in that theorem also shows that any closed submodule of S0 is saturated. Hence any
closed ideal of S0 is a saturated ideal.

As an easy consequence we have

Theorem 3.2. Let S be a normalizing extension of a semiprime ring R, (S∗, j) the canonical
torsion-free extension of S and S0 the normalizer of R in S∗. Then there is a one-to-one
correspondence between the set of all the R-closed ideals of S, the set of all the Q-closed ideals
of S∗ and the set of all the Z-closed ideals of S0. Moreover, the correspondence associates the
closed ideal I of S with the closed ideal I∗ of S∗ and the closed ideal I0 of S0 if j−1(I∗) = I
and I0 = I∗ ∩ S0 (equivalently, I∗ = QI0).

Proof. Recall that I∗ = {x ∈ S∗ : there exists H ∈ E such that xH ⊆ I} = {x ∈ S∗ :
there exists H ∈ E such that Hx ⊆ I}. Then if I is an ideal so is I∗. In fact, if x ∈ I∗ and
y ∈ S∗, then there exist F, H ∈ E such that xH ⊆ I and Fy ⊆ S. Thus FyxH ⊆ I and it
follows that yx ∈ I∗. Similarly, xy ∈ I∗ and so I∗ is an ideal. The rest is clear. 2

4. Intermediate extensions

In this section we consider intermediate extensions. Since closed ideals always contain t(S) we
restrict ourselves to the torsion-free case. So we assume that S is a torsion-free normalizing
extension of R.

Recall that if N ⊆ P are submodules of a torsion-free normalizing bimodule, then N is
said to be dense in P if [N ]P = P . In this case there is a one-to-one correspondence, via
contraction, between the set of all the closed submodules of P and the set of all the closed
submodules of N ([5], Lemma 2.1). Also, in the torsion-free case we have that

[N ]P = {x ∈ P : there exists H ∈ E such that xH ⊆ N} =

{x ∈ P : there exists F ∈ E such that Fx ⊆ N},

([5], Corollary 4.2).
An intermediate extension is a subring of S containing R. Assume that U ⊆ V are

intermediate extensions such that U is dense in V .
If I is an ideal of U , then [I]V is an ideal of V , as is easy to see. Also, if I is a closed

R-submodule of U we have I = [I]V ∩ U . So if [I]V is an ideal of V , then I is an ideal of U .
Thus the following is an obvious extension of Lemma 2.1 from [5].
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Lemma 4.1. If U is dense in V , then there is a one-to-one correspondence between the set
of all closed ideals of V and the set of all closed ideals of U .

Now we have the following

Proposition 4.2. Assume that U ⊆ V are intermediate extensions and U is dense in V .
Then the correspondence of Lemma 4.1 preserves prime and semiprime ideals.

Proof. Let P be a closed submodule of V and put P = P ∩ U .
Assume that P is prime and let A,B be ideals of V with AB ⊆ P . It is easy to see that

[A]V [B]V ⊆ P , since P is closed. Hence we may suppose that A and B are closed. We have
(A ∩ U)(B ∩ U) ⊆ P , consequently either (A ∩ U) ⊆ P or (B ∩ U) ⊆ P and it follows that
A = [A]V = [A ∩ U ]V ⊆ [P ]V = P or B = [B]V = [B ∩ U ]V ⊆ [P ]V = P . Therefore P is
prime.

Conversely, assume that P is prime and A, B are ideals of U with AB ⊆ P. We have that
[A]V [B]V ⊆ P and so either A ⊆ [A]V ⊆ P or B ⊆ [B]V ⊆ P . Consequently, A ⊆ P ∩U = P
or B ⊆ P ∩ U = P and so P is prime.

The proof of the semiprime case is the same with A = B. 2

If V is an intermediate extension, then [V ]S is also an intermediate extension which is closed
as an R-submodule of S and V is dense in [V ]S. Thus by ([5], Theorem 8.3) there exist
a Q-closed submodule V ∗ of S∗ such that V ∗ ∩ S = [V ]S and a Z-closed submodule V0 of
S0 with V0 = V ∗ ∩ S0 and V ∗ = V0Q. Hence V ∗ is a subring of S∗ containing Q and V0

is a saturated subsemigroup of S0 containing Z. By Corollary 8.4 in [5] there is a one-to-
one correspondence between the set of all R-closed submodules of V , the set of all Q-closed
submodules of V ∗ and the set of all Z-closed submodules of V0.

A saturated ideal P0 of V0 is said to be prime (resp. semiprime) if the following holds:
AB ⊆ P0 (resp. A2 ⊆ P ), for ideals A, B of V0 (resp. A of P0), implies that either A ⊆ P0 or
B ⊆ P0. (resp. A ⊆ P0). The semigroup V0 is said to be prime (semiprime) if 0 is a prime
(semiprime) ideal of V0.

We have the following extension of Theorem 3.2.

Theorem 4.3. Let V be an intermediate extension of R, V ∗ and V0 as above. Then the one-
to-one correspondence between closed submodules gives a one-to-one correspondence between
closed ideals (resp. closed prime ideals, closed semiprime ideals).

Proof. By Proposition 4.2 we may assume that V is closed. Let P be a closed submodule of
V , P ∗ the extension of P to V ∗ and P0 = P ∗ ∩ V0. As in Theorem 3.2 it follows that when
one of the submodules P , P ∗, P0 is an ideal, so are the others.

Assume that P is a prime ideal of V and A0, B0 are ideals of V0 with A0B0 ⊆ P0.
As in the proof of Proposition 4.2 we may assume that A0 and B0 are closed. Note that
(QA0 ∩ V )(QB0 ∩ V ) ⊆ QA0B0 ∩ V ⊆ QP0 ∩ V = P . Then either A = QA0 ∩ V ⊆ P or
B = QB0 ∩ V ⊆ P and therefore either A0 = A∗ ∩ V0 ⊆ P ∗ ∩ V0 = P0 or B0 ⊆ P0. Thus P0

is prime.
Suppose that P0 is a prime ideal of V0 and AB ⊆ P ∗, A, B ideals of V ∗. As above we may

assume that A, B are Q-closed. Then we have (A ∩ V0)(B ∩ V0) ⊆ AB ∩ V0 ⊆ P ∗ ∩ V0 = P0
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and so either A0 = A ∩ V0 ⊆ P0 or B0 ⊆ P0. It follows that either A = QA0 ⊆ QP0 = P ∗ or
B ⊆ P ∗, and thus P ∗ is prime.

Finally, assume that P ∗ is a prime ideal of V ∗ and AB ⊆ P , where A, B are ideals of V .
Since for x ∈ A∗, y ∈ B∗ there exist F, H ∈ E such that Fx ⊆ A and yH ⊆ B, where A∗

(resp. B∗) denotes the extension of [A]V (resp. [B]V ) to a closed ideal of V ∗ (Corollary 4.8
in [5]), it easily follows that A∗B∗ ⊆ P ∗. Hence either A∗ ⊆ P ∗ or B∗ ⊆ P ∗. Therefore either
A ⊆ A∗ ∩ V ⊆ P ∗ ∩ V = P or B = B∗ ∩ V ⊆ P ∗ ∩ V = P and so P is prime.

The semiprime case is the same taking above A0 = B0 (resp. A = B). 2

As a direct consequence of the former results we have the following corollary which holds for
any intermediate extension (in particular, for V = S).

Corollary 4.4. Let V be an intermediate extension. Then the following conditions are
equivalent:

(i) V is a prime (resp. semiprime) ring.

(ii) V ∗ is a prime (resp. semiprime) ring.

(iii) V0 is a prime (resp. semiprime) semigroup.

5. Special types of prime ideals

In this section we study prime ideals of torsion-free normalizing extensions of prime rings.
First, assume that R is semiprime and M is a torsion-free R-normalizing bimodule. In ([5],

Theorem 4.5) a closed submodule was characterized as a complement submodule. Theorem
2.1 of [4] gives a stronger result for centralizing bimodules. We now give an extension of this
result. Note that our proof here is simpler than the proof of [4] for the centralizing case.

Let T be the canonical torsion-free bimodule associated to M ([5], Section 3). Any
element x ∈ T can be written as a finite sum x =

∑
i∈Ω eiai, where (ei)i∈Ω is the set of

normalizing generators of L and ai ∈ R are uniquely determined modulo AnnR,r(ei), for all
i. The support supp(x) of x is defined as the set of all ei such that eiai 6= 0.

Proposition 5.1. Assume that M is a torsion-free normalizing bimodule over a semiprime
ring R and let N ⊆ P submodules of M . Then N is closed in P if and only if for any right
submodule K of P with N ⊂ K there exists 0 6= x ∈ K such that RxR ∩N = 0.

Proof. One implication is immediate from Theorem 4.5 in [5]. For the other assume that N is
closed in P . First we prove the result for M = T , T as above. Take an element x ∈ K \N of
minimal support Γ = {e1, . . . , en}, say x = e1a1 + e2a2 + . . . + enan. If there exists a nonzero
element y ∈ N with supp(y) ⊆ Γ we may assume that y(e1) 6= 0, where y(e1) denotes the
e1-coefficient of y. Let I be the ideal of R of all the elements a such that there exists z ∈ N
with supp(z) ⊆ Γ and z(e1) = a. Then I is a nonzero ideal of R and H = I ⊕ Ann(I) is an
essential ideal.

For any 0 6= b ∈ I there exists z = e1a1b + e2b2 + . . . + enbn ∈ N and we have xb− z ∈ K
and supp(xb − z) ⊂ Γ. By the minimality of supp(x) we have xb − z ∈ N and so xb ∈ N .
Since x /∈ N and N is closed, xH 6⊆ N . Therefore there exists c ∈ Ann(I) such that xc 6= 0.
Hence xc ∈ K and RxcR ∩N = 0.
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Now the general case can be proved in a canonical way using the epimorphism Φ : T → M . 2

Note that if R is prime E is the set of all nonzero ideals of R.

Lemma 5.2. If R is prime and M is a normalizing torsion-free bimodule over R, then there
exists a submodule L of M which has a normalizing free basis and is dense in M .

Proof. If x ∈ M is a normalizing element and xa = 0, a ∈ R, then xRaR = RxaR = 0
and so x = 0, since M is torsion-free. Let (xi)i∈Ω be the set of normalizing generators of M .
Then there exists a maximal right R-independent set of generators E = (xi)i∈Λ. If L is the
free submodule of M generated by E, then it is easy to see that L is dense in M . 2

The free submodule L of M will be called a free dense submodule of M .

Corollary 5.3. If R is prime and M is a normalizing bimodule over R, then the canonical
torsion-free extension M∗ of M is free over Q.

Proof. Let L be a free dense submodule of M/T (M). It is easy to see that L∗ is free over Q
and that M∗ = (M/T (M))∗ = L∗. The result follows. 2

In the rest of the paper S is always a torsion-free normalizing extension of a prime ring R and
V is an intermediate extension. If I is an R-disjoint ideal of V , then [I]V is also R-disjoint.
Moreover, if I ∩R 6= 0, then [I]V = V . Hereafter we denote by [I] the closure [I]V of I in V .

Now we extend and improve results of ([2], Section 6). Recall that a ring T is said to be
(right) strongly prime if any nonzero ideal J of T contains a (right) insulator, i.e., a finite
set F ⊆ J such that AnnT,r(F ) = 0.

Also the (right) singular ideal Z(T ) of a T is the set of all the elements x ∈ T such that
AnnT,r(x) is an essential right ideal of T ([6], pag. 30–36). The ring T is said to be (right)
non-singular if Z(T ) = 0.

In the following strongly prime (non-singular) means right strongly prime (right non-
singular). An ideal P of T is said to be strongly prime (non-singular prime) if the factor ring
T/P is strongly prime (non-singular prime).

Proposition 5.4. Let R be prime ring and V be intermediate extension, as above. Then P
is a closed prime ideal of V provided that one of the following conditions is fulfilled:

(i) P is an ideal of V which is maximal with respect to P ∩R = 0.

(ii) P is a strongly prime R-disjoint ideal of V .

Proof. (i) Since R is prime it follows easily that P is prime. Also, since P ∩ R = 0 we have
[P ] ∩R = 0 and maximality of P implies that P = [P ]. Hence P is closed.

(ii) Suppose that [P ] ⊃ P . Then there exists a finite set F ⊆ [P ] such that Fx ⊆ P , x ∈ V ,
implies x ∈ P . However, since F is finite, there exists H ∈ E with FH ⊆ P and H 6⊆ P .
This is a contradiction and the result follows. 2

The following result is an extension of Theorem 6.2 in [2].
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Theorem 5.5. Assume that R is a non-singular prime ring and V an intermediate extension.
If P is an ideal of V which is maximal with respect to P ∩ R = 0, then P is a non-singular
prime ideal.

Proof. Assume, by contradiction, that Z(V/P ) = I/P 6= 0, where I is an ideal of V . By the
maximality of P there exists 0 6= a ∈ I∩R. We show that a ∈ Z(R), which is a contradiction.

Take a free dense submodule L of S with basis (ei)i∈Λ over R. For a nonzero right ideal
J of R the right ideal N = JV + P of V properly contains P . Thus K = {y ∈ N : ay ∈ P}
is a right ideal of V with P ⊂ K because a + P ∈ Z(V/P ). Since P is closed we easily get
P ∩ L ⊂ K ∩ L.

Note that if x ∈ JV we can write x =
∑

i aivi, where ai ∈ J and vi ∈ V . Take a nonzero
ideal H of R such that viH ⊆ L, for any i. We can easily see that for any h ∈ H we
have xh ∈ ∑⊕jJej. It follows that xh can uniquely be represented in the basis (ei)i∈Λ with
coefficient in J .

By the above there exists an element z ∈ JV ∩L\P such that az ∈ P . Since P is closed,
changing z by zh we may assume that z /∈ P and it can be represented as an element of∑⊕jJej, say z =

∑n
j=1 bjej with 0 6= bj ∈ J , for 1 ≤ j ≤ n, and {e1, . . . , en} is minimal.

We claim that do not exist 0 6= y ∈ P ∩ L such that supp(y) ⊆ {e1, . . . , en}. In fact,
let 0 6= y = a1e1 + . . . + anen ∈ P ∩ L. We may suppose that a1 6= 0. For any r ∈ R
there exists r′ ∈ R with e1r = r′e1. Also there exists 0 6= a′ ∈ R with e1a

′ = a1e1. Thus
zr′a′− b1ry ∈

∑⊕jJej, a(zr′a′− b1ry) ∈ P and supp(zr′a′− b1ry) ⊂ {e1, . . . , en}. Therefore
zRa′R ⊆ P , which is a contradiction since P is closed.

By the claim we have that az = 0, since az ∈ P and supp(az) ⊆ {e1, . . . , en}. Conse-
quently AnnJ,r(a) 6= 0 and the proof is complete. 2

Now we prove the converse of Theorem 5.5.

Proposition 5.6. Let R be a prime ring and V an intermediate extension. If P is an
R-disjoint non-singular closed prime ideal of V , then R is non-singular.

Proof. Suppose that 0 6= a ∈ Z(R) and let K be a right ideal of V with K ⊃ P . Take a free
dense submodule L of S with basis (ei)i∈Λ over R. Since P is closed, K ∩ L ⊃ P ∩ L. Then
there exists x =

∑n
j=1 ajej ∈ K ∩ L \ P ∩ L of minimal support with this property, i.e., for

any element y ∈ K ∩ L such that supp(y) ⊂ supp(x) we have y ∈ P ∩ L. As in the proof of
Theorem 5.5 we show that for any y ∈ P ∩ L with supp(y) ⊆ supp(x) we have that y = 0.

Since a1R 6= 0 there exists r ∈ R such that a1r 6= 0 and aa1r = 0. Also, let r′ ∈ R
be with e1r

′ = re1. Thus 0 6= xr′ ∈ K ∩ L and so axr′ = 0, since supp(axr′) ⊂ supp(x).
Hence AnnK/P,r(a) 6= 0 and we have a + P ∈ Z(V/P ) = 0. Consequently a ∈ P ∩ R = 0, a
contradiction. This shows that Z(R) = 0. 2

Recall that if S is a strongly normalizing extension of R and P is a prime ideal of S, then
P = P ∩ R is a prime ideal of R ([10], Proposition 1.5). Also, if I is an ideal of R, then IS
is an ideal of S with IS ∩ R = I. Thus, by factoring out the ideals P and PS from R and
S, respectively, we immediately have the following
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Corollary 5.7. Let R be a prime ring, S a strongly normalizing extension of R and V an
intermediate extension. If P is a prime ideal of R and P is an ideal of V which is maximal
with respect to P ∩ R = P, then P is non-singular in R if and only if P is non-singular in
V .

Now we consider strongly prime rings and ideals. The following result is an extension of
Theorem 6.1 of [2].

Theorem 5.8. Let R be a strongly prime ring, V an intermediate extension and P an ideal
of V which is maximal with respect to P ∩R = 0. Then P is a strongly prime ideal.

Proof. Suppose that I is an ideal of V with I ⊃ P . Then I ∩ R 6= 0 and so there exists a
finite set F ⊆ I ∩ R such that AnnR,r(F ) = 0. Put K = {y ∈ V : Fy ⊆ P}, a right ideal of
V containing P . We prove that K = P and this shows that F is an insulator in V/P .

Assume, by contradiction, that K ⊃ P . By Propositions 5.4 and 5.1, there exists 0 6=
x ∈ K such that RxR ∩ P = 0. Let L be a free dense submodule of S. Then there exists
a nonzero ideal H of R such that xH ⊆ L and we have FxH ⊆ RxR ∩ P = 0. We easily
obtain xH = 0, since L is free. This is a contradiction because S is torsion-free. 2

The converse of Theorem 5.8 holds if we assume that S is a strongly normalizing extension
of R.

Proposition 5.9. Let S be a torsion-free strongly normalizing extension of R and V an
intermediate extension. If P is a strongly prime R-disjoint ideal of V , then R is strongly
prime and P is closed.

Proof. Let H be a nonzero ideal of R. Then V HV is a nonzero ideal of V and V HV 6⊆ P .
Thus there exists a finite set F ⊆ V HV such that Fx ⊆ P , x ∈ V , implies x ∈ P . Moreover,
any yj ∈ F ⊆ V HV ⊆ S can be written as yj =

∑
i xiaij, for aij ∈ H, since S is a strongly

normalizing extension, where (xi)i are strongly normalizing generators. Therefore, {aij} ⊆ H
is an insulator in R and so R is strongly prime. Finally, P is closed by Proposition 5.4. 2

As in Corollary 5.7 we immediately have the following.

Corollary 5.10. Let S be a strongly normalizing extension of R and V an intermediate
extension. If P is an ideal of R and P is an ideal of V which is maximal with respect to
P ∩R = P, then P is strongly prime if and only if P is strongly prime.

Now we relate strongly primeness between S, S∗ and S0. We say that a subsemigroup V0 of
S0 is strongly prime if any nonzero ideal of V0 contains an insulator, i.e. a finite subset F0

with AnnV0,r(F0) = 0.
Note that any ideal of V0 is closed and so is saturated. In fact, a nonzero ideal of Z has

a nonzero R-normalizing element of Q, so contains an invertible element of Q. Thus, if I is a
nonzero ideal of V0 and for z ∈ V0 we have zH ⊆ I, where 0 6= H � Z, it follows that z ∈ I.

First we prove the following
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Lemma 5.11. Let S be a torsion-free strongly normalizing extension of R and assume that
U ⊆ V are intermediate extensions such that U is dense in V . Then U is strongly prime if
and only if V is strongly prime.

Proof. If U is strongly prime and I is a nonzero ideal of V , then J = I ∩ U 6= 0. Thus there
exists a finite set F ⊆ J such that AnnU,r(F ) = 0. We can easily see that AnnV,r = 0 and so
V is strongly prime.

Conversely, assume that V is strongly prime and let I be a nonzero ideal of U . Then [I]V
is a nonzero ideal of V . Thus there exists a finite set F ⊆ [I]V such that AnnV,r(F ) = 0. Also
there exists a nonzero ideal H of R such that HF ⊆ I. By Proposition 5.9, R is strongly
prime. Hence there exists a finite set F ′ ⊆ H with AnnR,r(F

′) = 0. Consequently F ′F ⊆ I is
a finite set which is an insulator in U . In fact, take x ∈ U such that F ′Fx = 0. By Corollary
5.3 the canonical torsion-free normalizing extension S∗ of S is free over Q. Using this we
easily see that Fx = 0. Therefore x = 0 and we are done. 2

Remark 5.12. A similar argument as in Lemma 5.11 shows that if S is a normalizing
extension, R is strongly prime and V is an intermediate extension, for an ideal I of V there
exists an insulator in I if and only if there is an insulator in [I]V . Thus to show that V is
strongly prime it is enough to find an insulator in any nonzero closed ideal of V .

To end the paper we prove the following

Theorem 5.13. Let R be a prime ring, S a torsion-free strongly normalizing extension of
R and V an intermediate extension. Let V ∗ and V0 be the corresponding closed subrings of
S∗ and S0 with V ∗ ∩ S = [V ]S and V0 = V ∗ ∩ S0. The following conditions are equivalent:

(i) V is strongly prime.

(ii) R and V ∗ are strongly prime.

(iii) R and V0 are strongly prime.

Proof. We may assume that V is closed in S, by Lemma 5.11.

(i) → (iii) Suppose that V is strongly prime. Then R is strongly prime by Proposition 5.9.
Let I0 be a nonzero ideal of V0. Then we have that I = QI0 ∩ V is a nonzero ideal of V
and so there exists a finite set F = {y1, . . . , yn} ⊆ I such that AnnV,r(F ) = 0. For any i we
can write yi =

∑
j qijmij, qij ∈ Q, mij ∈ I0. We can easily see that F0 = {mij} ⊆ I0 is an

insulator in V0, since S∗ is free as right R-module.

(iii) → (ii) Let I be a nonzero ideal of V ∗. We show that I contains an insulator. Since R
is strongly prime we have that Q is also strongly prime. So by Remark 5.12 we may assume
that I is closed in V ∗. Put I0 = I ∩ V0, a nonzero ideal of V0. So there exists a finite set
F ⊆ I0 such that AnnV0,r(F ) = 0. It is not hard to show that F ⊆ I is an insulator in V ∗.

(ii) → (i) Let I be a nonzero closed ideal of V . Then there exists a closed ideal I∗ of V ∗

with I = I∗ ∩ V . By assumption there exists a finite set F ⊆ I∗ such that AnnV ∗,r(F ) = 0.
Also, since F is finite FH ⊆ I, for some 0 6= H � R. Take a finite set F ′ ⊆ H such that
AnnR,r(F

′) = 0. Then FF ′ ⊆ I is an insulator in V . 2
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