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Abstract. The Gauss map of complete helicoidal (consequently rotational) sur-
faces with non-zero constant mean curvature in the Euclidean 3-space contains
a maximal circle of the sphere. Observing the Gauss map image for complete
spacelike surfaces in the Lorentz-Minkowski 3-space L3, we propose the follow-
ing conjecture: “Given a complete spacelike surface in L3, with non-zero constant
mean curvature, its Gauss map image contains an arbitrary maximal geodesic of
the hyperboloid contained in L3”. We answer the conjecture for the special class
of spacelike rotational surfaces in L3 and obtain that, in this case, the conjecture
is also true, as in the Euclidean space R3.

1. Introduction

In 1841, Delaunay [5] described the following way of constructing rotational symmetric sur-
faces of constant mean curvature in the Euclidean 3-space R3. First, roll a given conic section
on a line contained in a plane and then rotate about that line the trace of a focus, which is
the profile curve of the rotational surface.

Observing the Delaunay surfaces and the fact that the Gauss map image of a cylinder
is a maximal circle of the sphere, in 1981, do Carmo [3] proposed the following conjecture:
“Given a complete surface in R3, with non-zero constant mean curvature, its Gauss map
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image contains a maximal circle of the sphere S2, that is a maximal geodesic of the sphere”.
In 1984, Seaman [13] answered affirmatively the conjecture for the special class of helicoidal
surfaces and, as a particular case, for Delaunay surfaces. In 1999, do Esṕırito-Santo, Frensel
and Ripoll [6] obtained also a partial answer for do Carmo’s conjecture showing that if the
boundary of the image of the Gauss map has at most two components, then the conjecture in
R3 is true. They were motivated by the work of Hoffman, Osserman and Schoen [8] where it
is shown that the normals to a complete surface of constant mean curvature in the Euclidean
space R3 cannot lie in a closed hemisphere of the sphere S2, unless the surface is a plane or a
right circular cylinder. As far as we know, do Carmo’s conjecture in R3, without additional
conditions, is still open.

In 1984, Hano and Nomizu [7] studied the Delaunay problem in the Lorentz-Minkowski
3-space L3, restricting themselves to the spacelike surfaces of revolution. In this case, the axis
of revolution is either spacelike, timelike or lightlike. In the first two cases, they prove results
of the same kind as Delaunay’s except that the nature of quadrics needs special attention. In
any case, the surfaces were obtained up to a congruence by a Lorentz transformation. The
Gauss map of a spacelike surface S can be regarded as a map N : S → H2, where H2 denotes
the future directed component of the hyperbolic plane, H2 = {(x, y, z) ∈ L3 : x2 + y2 − z2 =
−1, z > 0}. Maximal circles of the sphere S2 correspond now to maximal geodesics of H2,
which are obtained as the intersection of H2 and the timelike planes of L3 passing through
the origin. Actually, every spacelike unit vector a ∈ L3 determines a maximal geodesic γa

of H2 given by γa = {p ∈ H2 : 〈a, p〉 = 0}, where 〈, 〉 is the Lorentzian metric of L3. In
this setting, besides spacelike planes and hyperbolic planes H2(r) of radius r, the simplest
example of a complete spacelike surface with constant mean curvature in L3 is a hyperbolic
cylinder H1XR, whose Gauss map image is precisely a maximal geodesic of H2.

In this context we adapted do Carmo’s conjecture for the Lorentz-Minkowski 3-space:
“Given a complete spacelike surface in L3 , with non-zero constant mean curvature, its
Gauss map image contains a maximal geodesic of H2 ”. We found out that, for the special
class of complete spacelike rotational surfaces with non-zero constant mean curvature in L3,
the conjecture is also true. In this way, the conjecture proposed in L3 is still open, as in the
Euclidean space R3. We point out that the case when the mean curvature vanishes identically
was studied by Kobayashi [9] and McNertney [10] and are called maximal surfaces. These
surfaces do not appear in our conjecture because the plane satisfies that condition and its
Gauss map image is just a point (constant), not a maximal geodesic.

Other results about the Gauss map of surfaces in the Lorentz-Minkowski space were
obtained, for example, in [1], [2], [4], [12] and [14]. In the first work, Akutagawa and Nishikawa
allow us to produce a wealth of spacelike surfaces of constant mean curvature in L3 and to
relate the geometry of these surfaces to the theory of harmonic mappings through their
Gauss maps. In the second paper, Aiyama states that spacelike hyperplanes in the Lorentz-
Minkowski space Ln+1 are the only complete spacelike hypersurfaces with constant mean
curvature whose Gauss map image is bounded. This result was also independently proved by
Xin in [14] (see also [12] for a previous weaker version of it, given by Palmer). Finally, in [4],
Choi and Treibergs interpret properties of spacelike constant mean curvature hypersurfaces
in terms of the Gauss map, which is a harmonic mapping.

This paper is organized as follows: in Section 2 we introduce some preliminaries. In
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Sections 3, 4 and 5 we study each type of surface of revolution, depending on the causal
character of its axis of revolution. In the first part of each section, specially Section 3, we
reproduce some computations and results we need from [7] (see Propositions 3.5, 4.2 and
5.1). Hano and Nomizu did not emphasize the completeness of these surfaces and just cited
the completeness of one of them. Since this information is very important for our conjecture,
we control the completeness of the surfaces by Propositions 3.6, 4.3 and 5.2, using the helpful
Lemma 2.2 of [11]. Finally, we point out that Theorem 3.7 and Theorem 5.3 give the positive
answer for the conjecture proposed for the class of spacelike surfaces of revolution with
spacelike axis and lightlike axis, respectively. According to Proposition 4.3, for the spacelike
surfaces of revolution with timelike axis the conjecture is true, since all of them are not
complete.

Acknowledgement. The authors would like to express their gratitude to the referee for
valuable suggestions that really improved the paper.

2. Preliminaries

Let L3 denote the 3-dimensional Lorentz-Minkowski space, that is the real vector space R3

endowed with the Lorentzian metric ds2 = dx2
1 + dx2

2 − dx2
3, where x = (x1, x2, x3) are the

canonical coordinates in L3.
As usual, the norm in this space is defined by

‖x‖ =
√
|〈x, x〉|.

A vector x in L3 is called timelike, spacelike or lightlike if, respectively 〈x, x〉 < 0; 〈x, x〉 > 0
or x = 0; or 〈x, x〉 = 0 and x 6= 0.

We can define for any a, b ∈ L3 the cross product a ∧ b ∈ L3, given by

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a2b1 − a1b2),

where a = (a1, a2, a3) and b = (b1, b2, b3). Thus for any x ∈ L3 it holds the relation 〈a∧b, x〉 =
det(a, b, x).

The isometries group of L3 is the semi-direct product of the translations group and the
orthogonal Lorentzian group O(1, 2). With respect to the orthogonal group, there are three
one-parameter subgroups of isometries of L3, that fix an axis (line), depending on the causal
character of the axis. If the axis is spacelike it is given by 1 0 0

0 cosh t sinh t
0 sinh t cosh t

 , t ∈ R (hyperbolic group).

If the axis is timelike it is given by cos t − sin t 0
sin t cos t 0
0 0 1

 , 0 < t < 2π (elliptic group),
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and if the axis is lightlike it is given by 1 −t t
t 1− t2/2 t2/2
t −t2/2 1 + t2/2

 , t ∈ R (parabolic group).

A surface S in L3 is said spacelike if the induced metric is a Riemannian metric. In [7],
Hano and Nomizu obtained parametrizations for the spacelike surfaces of revolution in L3,
using the fact that they must be invariant by the action of one of the 1-parameter subgroups
of isometries, cited above. By taking the profile curve Ω in the xz-plane, parametrized by
Ω(θ) = (x(θ), 0, z(θ)), they obtained the following parametrizations, for both spacelike and
timelike axis:

XS(θ, t) = (x(θ), z(θ) sinh t, z(θ) cosh t), a < θ < b, z(θ) 6= 0; (2.1)

XT (θ, t) = (x(θ) cos t, x(θ) sin t, z(θ)), a < θ < b, x(θ) 6= 0. (2.2)

For lightlike axis, the profile curve is given by Ω(s) = (0, y(s), z(s)), where s is the arc length
parameter, and the parametrization is given by

XL(s, t) =

(
−t (y(s)− z(s)) , y(s)− (y(s)− z(s))

t2

2
, z(s)− (y(s)− z(s))

t2

2

)
. (2.3)

To study the completeness of these surfaces, we need the following definition and lemma that
can be found in [11].

Definition 2.1. Suppose B and F are semi-Riemannian manifolds and let f > 0 be a smooth
function on B. The warped product M = B ×f F is the product manifold B × F furnished
with the metric tensor g = π∗(gB)+(f ◦π)2σ∗(gF ), where gB and gF are the metric tensor on
B and F , respectively, and π and σ are the projections of B×F onto B and F , respectively.
Explicitly, if x is tangent to B × F at (p, q), then

< x, x >=< dπ(x), dπ(x) > +f 2(p)(dσ(x), dσ(x)).

Lemma 2.2. If B and F are complete Riemannian manifolds, then M = B×f F is complete
for every warping function f .

Remark 2.3. We observe that the spacelike surfaces of revolution with constant mean cur-
vature H in L3 are warped products whose leaves are the different positions of the rotated
curve and whose fibers are the orbits. In fact, after computing the metric for each surface,
we get that for XS the function f is equal to z(θ), for XT the function f is equal to x(θ)
and for XL the function f is equal to y(s) − z(s). Then, to analyse the completeness of
these surfaces, it is enough to study the completeness of the profile curve Ω because, clearly,
the orbits are complete and the surface can be regarded as the warped product of Ω by the
orbit. Moreover, Ω is a maximal geodesic on S and if it is not complete the surface is not
geodesically complete and, consequently, S is not complete.
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We are going to study the Gauss map image of the above surfaces. For both spacelike and

timelike axis, it can be given, locally, by the expression N(θ, t) := ± Xθ ∧Xt

‖Xθ ∧Xt‖
. For lightlike

axis, the Gauss map is given by N(s, t) := ± Xs ∧Xt

‖Xs ∧Xt‖
. It is easy to verify that N(θ, t) and

N(s, t) are timelike vectors, as expected. So we can choose a unique timelike unit normal
field N , which is future-directed in L3 and hence we may assume that the surface is oriented
by N . By parallel translation to the origin in L3, we can regard the field N as a map whose
image is contained in H2. We will refer to this image as the Gauss map image of the surface.

Following Hano and Nomizu [7], we are going to define a conic in a two-dimensional Lorentz-
Minkowski space. For this, let L2 be the vector space R2 provided with the Lorentzian metric
ds2 = dx2

1 − dx2
2, where x = (x1, x2) are the canonical coordinates in L2.

Definition 2.4. Let F denote a fix point, D a fix line both in L2 and ε > 0 a real number.
A conic Γ having focus F , directrix D and eccentricity ε is the locus of a point P such that
d(P, F )

d(P, D)
= ε (d means the Lorentzian distance).

The conic is called a parabola, an ellipse or a hyperbola if ε = 1, 0 < ε < 1 or ε > 1,
respectively.

3. Surfaces of revolution with spacelike axis

Let us state a lemma and some computations, obtained by Hano and Nomizu [7], which
relates the profile curve ΩS of the surface with a given conic Γ and is the analogous to the
classical characterization given by Delaunay.

Lemma 3.1. Let Γ be a spacelike curve given in the polar form by the expression Γ(θ) =
(r(θ) sinh θ, r(θ) cosh θ), r(θ) > 0 and let ΩS be the locus of the origin when Γ is rolled along
the x-axis. If the curvature of Γ never vanishes, then ΩS is a spacelike curve for which the
center of curvature never lies on the x-axis. Conversely, such a curve ΩS is obtained as the
locus of the origin for the rolling of a certain spacelike curve Γ, which is uniquely determined
up to a Lorentz transformation of the xz-plane.

Observe that r(θ) > 0 and since Γ′(θ) is spacelike, ′ = d/dθ, we see that r2(θ) − r′2(θ) > 0.
In this case, ΩS is taken as the locus of the origin when Γ is rolled along the x-axis in such a
way that ΩS appears below the x-axis. Then, considering ξ(θ) the arc length of Γ(θ) starting
from Γ(θ0), ΩS is written as

ΩS(θ) :

{
x(θ) = ξ(θ)− ξ(θ0)− r(θ) sinh Φ(θ);
z(θ) = −r(θ) cosh Φ(θ),

(3.1)

where Φ = Φ(θ) is determined by the fact that r(θ) sinh Φ(θ) is equal to the Lorentz inner
product of the position vector of Γ and the unit tangent vector of Γ. Thus,

sinh Φ(θ) =
−r′(θ)√

r(θ)2 − r′(θ)2
and cosh Φ(θ) =

r(θ)√
r(θ)2 − r′(θ)2

. (3.2)
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We choose an arc length parameter s for Ω, in such a way that Ω̇(s) = (ẋ(s), 0, ż(s)) =
(cosh Φ, 0, sinh Φ), (· = d/ds). Then, using the parametrization (2.1) we obtain, after some
computations, the principal curvatures of the surface given by

ẍ

ż
= Φ̇ and

ẋ

z
=
−1

r
.

By the definition of the mean curvature H we have 2Hr = −1 + rΦ̇ and after some
computations, Hano and Nomizu found the following result.

Proposition 3.2. The curve Γ(θ) gives rise to a surface of revolution with constant mean
curvature H in L3 if and only if the function r(θ) satisfies the differential equation

d2 log r

dθ2
=

[(
d log r

dθ

)2

− 1

]
1 + 2rH

2 + 2rH
. (3.3)

The general solution of (3.3) is given by

1

r
= a cosh θ + b sinh θ + c, r > 0, where 2Hc = a2 − b2 − c2. (3.4)

Remark 3.3. When c = 0, r(θ) = ae±θ are lightlike lines and so are excluded.

Thus a curve Γ(θ) gives rise to a spacelike surface of revolution with constant mean curvature
if and only if r(θ) takes one of the following forms:

(a) r =
1

c
, with H =

−c

2
, (c 6= 0);

(b)
1

r
= ±λ cosh(θ + µ) + c, with λ > 0, H =

(λ2 − c2)

2c
, (c 6= 0);

(c)
1

r
= ±λ sinh(θ + µ) + c, with λ > 0, H =

−(λ2 + c2)

2c
, (c 6= 0);

(d)
1

r
= aeθ + c or ae−θ + c, with H =

−c

2
, (c 6= 0).

As observed by Hano and Nomizu, if two curves Γ1 and Γ2 simply differ by a Lorentzian
transformation of the xz-plane fixing the origin, then the resulting curves Ω1 and Ω2 generate
congruent surfaces of revolution. Thus in the list above, we may assume µ = 0 in (b) and
(c), consider only the + sign in (c) and one or the other (say, ae−θ + c) in (d). Examining
the polar equations above, it can be shown that for the case (a) the surface of revolution is

an isometric imbedding of the Euclidean plane given by (s, t) → (s,
− sinh t

c
,
− cosh t

c
), with

constant mean curvature c. This is a Lorentzian cylinder, as mentioned at the Introduction,
whose Gauss map image is a particular maximal geodesic of H2. In order to classify the

curves Γ(θ) in case r(θ) is given by (b), (c) and (d), it is convenient to take d =
1

λ
> 0 (z = d

is the directrix) and ε =
λ

|c|
( ε is the eccentricity). Some of these curves are part of an

ellipse, a hyperbola or a parabola, according to Definition 2.4. For more details, see Section
2 of [7].
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Remark 3.4. If the center of curvature of ΩS lies on the x-axis, we get the hyperboloid

x2 + y2 − z2 =
−1

H2
, z < 0.

By summarizing these results, we can write the following

Proposition 3.5. The spacelike surfaces of revolution, with non-zero constant mean curva-
ture H in L3, which are obtained by rotating ΩS(θ) along the x-axis, are given by

S1) r(θ) =
εd

1 + ε cosh(θ)
, θ ∈ R, ε > 0, ε 6= 1, H =

ε2 − 1

2εd
;

S2) r(θ) =
εd

1− ε cosh(θ)
, log ε < θ < − log ε, 0 < ε < 1, H =

ε2 − 1

2εd
;

S3) r(θ) =
εd

−1 + ε cosh(θ)
, − log ε < θ < log ε, ε > 1, H =

1− ε2

2εd
;

S4) r = 1/c, H = −c/2, c 6= 0;

S5) x2 + y2 − z2 = −1/H2, z < 0, H 6= 0;

S6) r(θ) =
εd

1 + ε sinh(θ)
, θ > log ε, ε > 0, H = −ε2 + 1

2εd
;

S7) r(θ) =
1

ae−θ + c
, a > 0, c > 0, θ ∈ R, H =

−c

2
;

S8) r(θ) =
1

ae−θ + c
, a < 0, c > 0, θ > log

(
−2a

c

)
, H =

−c

2
.

Now we are going to study the completeness of the above surfaces. For this we need Lemma
2.2 and Remark 2.3.

Proposition 3.6. The only complete spacelike surfaces of revolution in L3 with non-zero
constant mean curvature and spacelike axis are the surfaces labeled as S2, S3, S4, S5

and S8.

Proof. By Remark 2.3 it is enough to study the completeness of the curve ΩS(θ), parametr-
ized by (3.1). The tangent vector of ΩS is

Ω′S(θ) = (x′(θ), 0, z′(θ)) =

(
r2

√
r2 − r′2

(
1 +

dΦ

dθ

)
, 0,

−rr′√
r2 − r′2

(
1 +

dΦ

dθ

))
. (3.5)

It follows that ‖Ω′S(θ)‖ = r

∣∣∣∣1 +
dΦ

dθ

∣∣∣∣. By differentiating one of the expressions in (3.2) we

get
dΦ

dθ
=

r′r′′ − r′2

r2 − r′2
. Hence

‖Ω′S(θ)‖ =
r|r2 − 2r′2 + r′r′′|

r2 − r′2
. (3.6)

In the following, we are going to compute, for each case, the limits of s(θ) for θ tending to
the extremes of the correspondent interval given in Proposition 3.5. For this we recall that

the arc length parameter for ΩS(θ) is given by s(θ) =

∫ θ

‖Ω′S(u)‖du.
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(a) For the surface S1 we observe that r(θ) =
εd

1 + ε cosh θ
, θ ∈ R, ε > 0, ε 6= 1. Then, we

have

r2 − r′2 =
ε2d2(1 + ε2 + 2ε cosh θ)

(1 + ε cosh θ)4
> 0 and by (3.6),

‖Ω′S(θ)‖ =
εd

1 + ε2 + 2ε cosh θ
=

εdeθ

(eθ + ε)(εeθ + 1)
.

After integrating we obtain that s(θ) =
εd

ε2 − 1
log

(
1 + εeθ

ε + eθ

)
and the limits

lim
θ→−∞

s(θ) =
εd

1− ε2
log ε and lim

θ→∞
s(θ) =

εd

−1 + ε2
log ε

are both finite. Then the curve ΩS(θ) is not complete and, by Remark 2.3, S1 is not complete.

(b) For the surfaces S2 and S3 we observe that r(θ) = ± εd

1− ε cosh θ
. In this case, we have

r2 − r′2 =
ε2d2(1 + ε2 − 2ε cosh θ)

(1− ε cosh θ)4
> 0 and by (3.6),

‖Ω′S(θ)‖ =
εd

1 + ε2 − 2ε cosh θ
=

εdeθ

(eθ − ε)(1− εeθ)
.

After integrating we obtain that s(θ) =
εd

ε2 − 1
log

(
1− εeθ

eθ − ε

)
. For S2 we have log ε < θ <

− log ε, 0 < ε < 1, and we get

lim
θ → log ε

s(θ) = −∞ and lim
θ → − log ε

s(θ) = ∞.

For S3 we have − log ε < θ < log ε, ε > 1 and we get

lim
θ → − log ε

s(θ) = −∞ and lim
θ → log ε

s(θ) = ∞.

In both cases ΩS(θ) is complete and, consequently, S2 and S3 are complete.

(c) For S6, we have r(θ) =
εd

1 + ε sinh(θ)
, θ > log ε, ε > 0. Hence

r2 − r′2 =
ε2d2(1− ε2 + 2ε sinh θ)

(1 + ε sinh θ)4
> 0 and by (3.6)

‖Ω′S(θ)‖ =
εd

1− ε2 + 2ε sinh θ
=

εdeθ

(eθ − ε)(εeθ + 1)
.

Hence s(θ) =
εd

1 + ε2
log

(
εeθ − 1

eθ + ε

)
, − log ε < θ < log

(
1 +

√
1 + ε2

ε

)
, ε > 0, and we have

lim
θ→log( 1+

√
1+ε2

ε
)

s(θ) =
εd

1 + ε2
log

(
ε

1 +
√

1 + ε2

)
.
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Since this limit is finite, the surface S6 is not complete.

(d) For S7 and S8 we have

r(θ) =
1

ae−θ + c
, r2 − r′2 =

ce−θ(2a + ceθ)

(ae−θ + c)4
> 0 and ‖Ω′S(θ)‖ =

eθ

2a + ceθ
.

The arc lengths of these two surfaces are given by s(θ) =
1

c
log(2a + ceθ), θ < log

(a

b

)
.

For the surface S7 , a > 0, c > 0, θ ∈ R and we get

lim
θ→−∞

s(θ) =
1

c
log(2a)

which is finite and, hence, S7 is not complete.

For S8 , a < 0, c > 0, θ > log

(
−2a

c

)
. In this case

lim
θ→log(−2a

c )
s(θ) = −∞ and lim

θ→+∞
s(θ) = +∞.

We conclude that the corresponding profile curve is complete and, hence, S8 is complete.

(e) The surfaces S4 and S5 are clearly complete, since they are the Lorentzian cylinder and
the hyperboloid, respectively, which finishes the proof of the proposition.

Considering the fact that N was chosen to be contained in H2 and the parametrizations
we are considering for the rotational surfaces, let us denote by H the convenient maximal
geodesic of H2, contained in the plane x = 0. This maximal geodesic is contained in the
Gauss map image of surfaces S2, S3, S4, and S5, but it is not contained in the Gauss map
image of the surface S8. However, for this surface, the Gauss map image contains other
maximal geodesics of H2, obtained by intersecting this sheet with timelike planes through
the origin.

Theorem 3.7. The Gauss map image of the complete spacelike surfaces of revolution in L3

with non-zero constant mean curvature and spacelike axis (surfaces labeled as S2, S3, S4, S5,
and S8), contains a maximal geodesic of H2. Actually, the Gauss map image of S2, S3 and
S5 is H2. The Gauss map image of S4 is the maximal geodesic H of H2, contained in the
plane x = 0 and the Gauss map image of S8 is the open half-sheet of H2 with x > 0.

Proof. The surface S4 is the Lorentzian cylinder and the Gauss map image is exactly the
geodesic H. The surface S5 is the hyperboloid, whose Gauss map image is H2. We recall
that the remaining complete surfaces can be parametrized by XS(θ, t) = (x(θ), z(θ) sinh t,
z(θ) cosh t), where t ∈ R, θ lies in one of the intervals of Proposition 3.5. Here x(θ) and z(θ)
are the coordinates of the profile curve given by (3.1) and using (3.2) we get

x(θ) = ξ(θ)− ξ(θ0) +
r(θ)r′(θ)√

r(θ)2 − r′(θ)2
; z(θ) =

−r(θ)2√
r(θ)2 − r′(θ)2

.

Since ξ′(θ) =
√

r2 − r′2, we obtain

x′(θ) =
r2 (r2 − 2r′2 + rr′′)

(r2 − r′2)
3
2

, z′(θ) =
−rr′ (r2 − 2r′2 + rr′′)

(r2 − r′2)
3
2

and
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x′(θ)2 − z′(θ)2 =
r2 (r2 − 2r′2 + rr′′)

2

(r2 − r′2)2
.

Now

∂XS

∂θ
(θ, t) = (x′(θ), z′(θ) sinh t, z′(θ) cosh t),

∂XS

∂t
(θ, t) = (0, z(θ) cosh t, z(θ) sinh t), and

∂XS

∂θ
∧ ∂XS

∂t
= (−z(θ)z′(θ),−z(θ)x′(θ) sinh t,−z(θ)x′(θ) cosh t).

We have also the coeficients of the first fundamental form of these surfaces given by

E(θ, t) = 〈∂XS

∂θ
,
∂XS

∂θ
〉 =

r2 (r2 − 2r′2 + rr′′)
2

(r2 − r′2)2
,

F (θ, t) = 0 and G(θ, t) = 〈∂XS

∂t
,
∂XS

∂t
〉 =

r4

r2 − r′2
.

Finally,

〈∂XS

∂θ
∧ ∂XS

∂t
,
∂XS

∂θ
∧ ∂XS

∂t
〉 = F 2 − EG =

−r6 (r2 − 2r′2 + rr′′)
2

(r2 − r′2)3
< 0.

Since N(θ, t) = ±
∂XS

∂θ
∧ ∂XS

∂t

||∂XS

∂θ
∧ ∂XS

∂t
||

, by choosing the sign in such a way that the third component

of N is positive, we can write

N(θ, t) =

(
−r′(θ)√

r2(θ)− r′2(θ)
,

r(θ) sinh t√
r2(θ)− r′2(θ)

,
r(θ) cosh t√
r2(θ)− r′2(θ)

)
. (3.7)

a) For the surfaces labeled as S2 and S3, it is possible to unify the reasoning by taking

r(θ) = ± εd

1− ε cosh θ
, where the plus sign corresponds to S2 and the minus sign corresponds

to S3. Hence,

r′(θ) = ± ε2d sinh θ

(1− ε cosh θ)2
,
√

r2(θ)− r′2(θ) =
εd
√

1 + ε2 − 2ε cosh θ

(1− ε cosh θ)2
,

and by (3.7)

N(θ, t) = ± 1√
1 + ε2 − 2ε cosh θ

(−ε sinh θ, (1− ε cosh θ) sinh t, (1− ε cosh θ) cosh t) .

Now, it is easy to show that the first component N1(θ, t) of N(θ, t), regarded as a function
N1 : Iε → R is bijective, where Iε = (log ε,− log ε), if 0 < ε < 1 (surface S2) and Iε =
(− log ε, log ε), if ε > 1 (surface S3). In fact, given (x, y, z) ∈ H2, there exists a unique θ ∈ Iε

such that x = N1(θ). For this θ, there exists a unique t ∈ R such that

y =
|1− ε cosh θ| sinh t√
1 + ε2 − 2ε cosh θ

and z =
|1− ε cosh θ| cosh t√

1 + ε2 − 2ε cosh θ
,

which implies that, for the surfaces S2 and S3, the function N : Iε × R → H2 is a bijection.



R. Chaves, C. Cueva Cândido: On a Conjecture about the Gauss Map. . . 201

b) For the surface S8,

r(θ) =
1

ae−θ + c
, r′(θ) =

ae−θ

(ae−θ + c)2
and

√
r2(θ)− r′2(θ) =

√
c
√

c + 2ae−θ

(ae−θ + c)2
.

Then

N(θ, t) =
1

√
c
√

c + 2ae−θ

(
−ae−θ, (ae−θ + c) sinh t, (ae−θ + c) cosh t

)
.

In this case, N1(θ) =
−ae−θ

√
c
√

c + 2ae−θ
, with θ > log(−2a

c
) and, after computing the limits, we

get
lim
θ→∞

N1(θ) = 0 and lim
θ→log(−2a

c
)+

N1(θ) = +∞.

This implies that N1 :
(
log(−2a

c
),∞

)
→ (0,∞) is a bijection and, consequently,

N :

(
log(

−2a

c
),∞

)
× R → H2

+ =
{
(x, y, z) ∈ H2 : x > 0

}
is a bijection, which implies that ImN = H2

+.

4. Surfaces of revolution with timelike axis

The results in this section are not written in [7], but there it is observed this case is quite
similar to the previous one.

Let Γ a plane curve in the xz-plane given by polar coordinate graph r = r(θ). If one rolls
Γ on the z-axis, the trace of the origin O of the polar coordinate system attached to Γ plots
another curve ΩT . The following result states the analytical relationship between Γ and ΩT ,
where prime denotes d/dθ.

Lemma 4.1. Let Γ be a timelike curve given by polar coordinate graph r = r(θ) with r(θ) >
0. Let ΩT be the locus of the origin when Γ is rolled along the z-axis. If the curvature of Γ
never vanishes, then ΩT is a spacelike curve for which the center of curvature never lies on
the z-axis. Conversely, such a curve ΩT is obtained as the locus of the origin for the rolling
of a certain timelike curve Γ, which is uniquely determined up to a Lorentz transformation
of the xz-plane.

Proof. Now we are going to take Γ a smooth curve given in the xz-plane by the timelike
vector-valued function

Γ(θ) = (r(θ) sinh θ, r(θ) cosh θ). (4.1)

Since Γ is a timelike curve, that is, the tangent vector of Γ is always timelike, we get r′2(θ)−
r2(θ) > 0. Consequently, r′(θ) never vanishes and we can assume r′(θ) > 0,∀θ. Considering
Φ(θ) the angle between Γ and Γ′, we obtain

sinh Φ(θ) =
r(θ)√

r′(θ)2 − r(θ)2
and cosh Φ(θ) =

r′(θ)√
r′(θ)2 − r(θ)2

. (4.2)
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The angle between Γ′ and the polar axis is given by Φ(θ) = Φ(θ) + θ and we can write

Γ′(θ)

‖Γ′(θ)‖
= (sinh Φ(θ), cosh Φ(θ)). (4.3)

After differentiating both sides of (4.3) we get

Γ′′(θ)

‖Γ′(θ)‖
+ Γ′(θ)

d

dθ

1

‖Γ′(θ)‖
=
(
cosh Φ(θ), sinh Φ(θ)

) dΦ

dθ
. (4.4)

By taking the inner product, in both sides of (4.4), with the normal vector to Γ(θ) we obtain

dΦ

dθ
= ‖Γ′(θ)‖kΓ(θ), (4.5)

where kΓ(θ) is the curvature of the curve Γ(θ). We point out that formula (4.5) is similar to
the formula related to a plane curve in R3.

By assumption, the curvature kΓ(θ) 6= 0, ∀θ, which implies

dΦ

dθ
= 1 +

dΦ

dθ
6= 0,∀θ. (4.6)

Now let ΩT be the locus of the origin O, when Γ is rolled along the z-axis, in such a way
that ΩT appears on the half-plane x > 0.

Following the same reasoning of Section 3, ΩT can be written as

ΩT (θ) :

{
x(θ) = r(θ) sinh Φ(θ);
z(θ) = ξ(θ)− ξ(θ0)− r(θ) cosh Φ(θ),

(4.7)

where ξ is the arc length parameter of Γ, that is ξ′ =
√

r′2 − r2.

The tangent vector of ΩT is

Ω′T (θ) = (x′(θ), 0, z′(θ)) =

(
rr′√

r′2 − r2

(
1 +

dΦ

dθ

)
, 0,

−r2

√
r′2 − r2

(
1 +

dΦ

dθ

))
. (4.8)

Since 〈Ω′T (θ), Ω′T (θ)〉 = r2(1 +
dΦ

dθ
)2, (4.6) implies that ΩT is regular and spacelike. We also

get 〈Ω′T (θ), Γ(θ)〉 = 0 and, assuming these conditions, we can choose an arc length parameter
s for ΩT , in such a way that Ω̇T (s) = (cosh Φ(s), sinh Φ(s)), where the dot denotes d/ds.

Then
ds

dθ
= ‖Ω′T (θ)‖ 6= 0, and hence θ̇(s) =

dθ

ds
6= 0,∀s.

By the first equation in (4.7) and some computations, we obtain

ṙ(s) =
d

ds

(
x(s)

sinh Φ(s)

)
= coth Φ(s)(1− r(s)Φ̇(s)), (4.9)

and from the second equation in (4.7) we get

ξ̇(s) =
1− r(s)Φ̇(s)

sinh Φ(s)
. (4.10)
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From ξ′ =
√

r′2 − r2, it follows that r2θ̇(s) = ṙ2(s) − ξ̇2(s) and using (4.9) and (4.10) we
obtain

θ̇(s) = ±1− r(s)Φ̇(s)

r(s)
. (4.11)

By choosing directions of the curve Γ and ΩT , we can choose the + sign in (4.11). Finally,
since θ̇(s) 6= 0,∀s, we have

1− r(s)Φ̇(s) 6= 0,∀s. (4.12)

The center of curvature of ΩT (s) is given by

C(s) = ΩT (s)− 1

kΩT
(s)

(sinh Φ(s),− cosh Φ(s)),

where kΩT
(s) = Φ̇(s) is the curvature of ΩT (s). After computations

C(s) =

(
−1 + r(s)Φ̇(s)

Φ̇(s)
sinh Φ(s), ξ(s)− ξ(s0) +

1− r(s)Φ̇(s)

Φ̇(s)
cosh Φ(s)

)

and by (4.12) the first coordinate of C(s) never vanishes. Then, the center of curvature of
ΩT (s) never lies on the z-axis.

Conversely, under the assumptions of the Lemma and the above computations for C(s),
one always has 1− r(s)Φ̇(s) 6= 0,∀s. Choose a starting point (x0, y0) and assign the corre-

sponding values of s = 0, θ = 0, r = r0 =
x0

sinh Φ0

. Then θ = θ(s) =

∫ s 1− r(u)Φ̇(u)

r(u)
du

is clearly a strictly monotone function of s. Hence, one may solve for s in terms of θ and
substitute into r = r(s) to obtain the polar equation r = r(θ), which defines a plane curve
Γ(θ). If one rolls this curve on the z-axis, it is possible to check that the trace of the origin of
its attached polar coordinate system is exactly the given curve ΩT , which finishes the proof
of the lemma.

Now using parametrization (2.2) we obtain the principal curvatures of the surface given by

z̈

ẋ
= −Φ̇ and

ż

x
=
−1

r
.

By the definition of the mean curvature H, we get 2Hr = −1− rΦ̇ and easily find that the
surface S has constant mean curvature H if and only if the function r(θ) satisfies the same
differential equation (3.3) which, of course, has the same solution (3.4).

The result below follows the same steps of Proposition 3.5.

Proposition 4.2. The spacelike surfaces of revolution with non-zero constant mean curva-
ture H in L3, which are obtained by rotating ΩT (θ) along the z-axis, are given by

T1) r(θ) =
εd

1− ε cosh θ
, − log ε < θ < log(

1 +
√

1− ε2

ε
), 0 < ε < 1, H =

ε2 − 1

2εd
;

T2) r(θ) =
εd

−1 + ε cosh θ
, θ < log(

1−
√

1− ε2

ε
), 0 < ε < 1, H =

1− ε2

2εd
;
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T3) r(θ) =
εd

−1 + ε cosh θ
, θ < − log ε, ε > 1, H =

1− ε2

2εd
;

T4) r(θ) =
εd

1− ε sinh θ
, − log ε < θ < log(

1 +
√

1 + ε2

ε
), ε > 0, H =

−1− ε2

2εd
;

T5) r(θ) =
εd

−1− ε sinh θ
, θ < log(

−1 +
√

1 + ε2

ε
), ε > 0, H =

1 + ε2

2εd
;

T6) r(θ) =
1

ae−θ − b
, θ < log(

a

b
), ε > 0, where a > 0 and b > 0, H =

b

2
.

As before, it is very important to control the completeness of the surfaces given above. In
this direction we can state

Proposition 4.3. There exists no complete spacelike surface of revolution in L3 with non-
zero constant mean curvature and timelike axis.

Proof. By Remark 2.3 it is enough to show that the curve ΩT (θ), parametrized by (4.7)
is not complete. It remains to show that, in each case, one of the limits of the arc length

parameter s(θ) =

∫ θ

‖Ω′T (u)‖du (for θ tending to the extremes of the correspondent interval

given in Proposition 4.2), is a finite number. Then ΩT (θ) is not complete because its arc
length parameter is not onto R.

From (4.8), ‖Ω′T (θ)‖ = r

∣∣∣∣1 +
dΦ

dθ

∣∣∣∣. By differentiating one of the expressions in (4.2) we get

dΦ

dθ
=

r′2 − rr′′

r′2 − r2
. Hence

‖Ω′T (θ)‖ =
r|2r′2 − r2 − rr′′|

r′2 − r2
. (4.13)

We will compute ‖Ω′T (θ)‖ and s(θ) for each r(θ) given in Proposition 4.2:

(a) For the surfaces T1, T2 and T3 we observe that r(θ) = ± εd

1− ε cosh θ
. Then, for these

three surfaces, we have

r′2 − r2 =
ε2d2(−1− ε2 + 2ε cosh θ)

(1− ε cosh θ)4
> 0 and

‖Ω′T (θ)‖ =
εd

−1− ε2 + 2ε cosh θ
=

εdeθ

(eθ − ε)(εeθ − 1)
.

By integrating we obtain that s(θ) =
εd

1− ε2
log

(
εeθ − 1

eθ − ε

)
.

For T1, we have − log ε < θ < log

(
1 +

√
1− ε2

ε

)
, 0 < ε < 1, and we get

lim
θ→log( 1+

√
1−ε2

ε
)

s(θ) =
εd

1− ε2
log

(
ε

1 +
√

1− ε2

)
.
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For T2, θ < log

(
1−

√
1− ε2

ε

)
, 0 < ε < 1. We obtain

lim
θ→log( 1−

√
1−ε2

ε
)

s(θ) =
εd

1− ε2
log

(
ε

1−
√

1− ε2

)
.

For T3, θ < − log ε, ε > 1, and we obtain

lim
θ→−∞

s(θ) =
dε log ε

ε2 − 1
.

(b) For T4, we get r′2 − r2 =
ε2d2(−1 + ε2 + 2ε sinh θ)

(1− ε sinh θ)4
> 0 and

‖Ω′T (θ)‖ =
εd

−1 + ε2 + 2ε sinh θ
=

εdeθ

(eθ + ε)(εeθ − 1)
.

In this case s(θ) =
εd

1 + ε2
log

(
εeθ − 1

eθ + ε

)
, − log ε < θ < log

(
1 +

√
1 + ε2

ε

)
, ε > 0, and we

obtain

lim
θ→log( 1+

√
1+ε2

ε
)

s(θ) =
εd

1 + ε2
log

(
ε

1 +
√

1 + ε2

)
.

(c) For T5, we have r′2 − r2 =
ε2d2(−1 + ε2 − 2ε sinh θ)

(1 + ε sinh θ)4
> 0 and

‖Ω′T (θ)‖ =
εd

−1 + ε2 − 2ε sinh θ
=

εdeθ

(ε− eθ)(εeθ + 1)
.

It follows that s(θ) =
εd

1 + ε2
log

(
εeθ + 1

ε− eθ

)
, θ < log

(
−1 +

√
1 + ε2

ε

)
, ε > 0, and we obtain

lim
θ→−∞

s(θ) = −dε log ε

1 + ε2
.

(d) Similarly, for T6 we have r′2 − r2 =
be−θ(2a− beθ)

(ae−θ − b)4
> 0 and ‖Ω′T (θ)‖ =

eθ

2a− beθ
.

By integrating we obtain s(θ) =
−1

b
log(2a− beθ), θ < log

(a

b

)
, and

lim
θ→−∞

s(θ) =
−1

b
log(2a).

Since all the limits calculated above are finite, we conclude that there exists no complete
spacelike surface of revolution in L3 with non-zero constant mean curvature and timelike
axis.
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5. Surfaces of revolution with lightlike axis

A surface of revolution with lightlike axis x = 0, y = z can be parametrized by (2.3).
The profile curve ΩL(s) = (0, y(s), z(s)), parametrized by arc length, is spacelike, that is,

ẏ2(s) − ż2(s) = 1. The principal curvatures are given by
ÿ(s)

z(s)
and

−(ẏ(s)− ż(s))

y(s)− z(s)
. For

convenience, Hano and Nomizu make a change of coordinates in [7], using the null coordinates

(u, v) and then ΩL is written as u =
y + z√

2
, v =

−y + z√
2

, with v > 0. Therefore the tangent

vector is of the form (u̇, v̇) = ( eΦ
√

2
, −e−Φ
√

2
), by choosing an arc length parameter such that

v̇ < 0. In those coordinates the principal curvatures of the surface are expressed as
−v̈

v̇
and

−v̇

v
.

The surface has constant mean curvature H if and only if

2Hvv̇ = −vv̈ − v̇2, v > 0, v̇ < 0.

Solving this equation and using the fact that −2u̇v̇ = 1, we get

du

dv
=

−v2

2(c−Hv2)2
, (5.1)

where c is a constant.
Integrating (5.1) and taking H 6= 0, we get the possibilities for u = u(v). In this case,

the profile curve takes the form

ΩL(v) =
1√
2
(0, u(v)− v, u(v) + v), (5.2)

and the surface can be parametrized by

XL(v, t) =
√

2

(
tv,

(
−1 + t2

2

)
v +

u(v)

2
,

(
1 + t2

2

)
v +

u(v)

2

)
. (5.3)

Proposition 5.1. The spacelike surfaces of revolution with non-zero constant mean curva-
ture H in L3, which are obtained by rotating ΩL(v) along the lightlike axis x = 0, y = z, are
given by (5.3) where u = u(v) takes one of the forms

(L1) If H 6= 0 and c
H

= a2 > 0, then u(v) = 1
4H2

(
v

v2−a2 − 1
2a

log v−a
v+a

+ b
)
, where b is an

arbitrary constant and v ∈ (a,∞), a > 0.
(L2) If H 6= 0 and c

H
= −a2 < 0, then u(v) = 1

4H2

(−1
a

arctan v
a

+ v
v2+a2 + b

)
, where b is

an arbitrary constant and v ∈ (0,∞).
(L3) If H 6= 0 and c = 0, then u(v) = 1

2H2

(
1
v

+ b
)
, where b is an arbitrary constant and

v ∈ (0,∞).

The completeness of these surfaces is studied below.

Proposition 5.2. The only complete spacelike surfaces of revolution in the list above are L1

and L3 .
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Proof. By (5.2), Ω′L(v) = (0, y′(v), z′(v)) = 1√
2
(0, u′(v)− 1, u′(v) + 1). Since y′(v)2−z′(v)2 =

v2

(c−Hv2)2
, the arc-length parameter for ΩL(v) is given by

s(v) =

∫ v

ds(t)dt =

∫ v√
y′(t)2 − z′(t)2dt =

∫ v t

|c−Ht2|
dt, (5.4)

where c is the constant that appeared in (5.1).
By replacing each value of H in (5.4) we can compute the limits of s(v) for v tending to

the extremes of the correspondent intervals.

For the surface labeled as L1, s(v) =
1

|H|
log

√
v2 − a2, v ∈ (a,∞). Hence lim

v→a+
s(v) =

−∞ and lim
v→∞

s(v) = +∞, which implies that the surface L1 is complete.

For the surface labeled as L2, s(v) =
1

|H|
log

√
v2 + a2, v ∈ (0,∞). Now lim

v→0+
s(v) =

1

|H|
log a and lim

v→∞
s(v) = ∞, which implies that the surface L2 is not complete.

Finally, for L3, s(v) =
1

|H|
log v, v ∈ (0,∞). Then lim

v→0+
s(v) = −∞, lim

v→∞
s(v) = +∞

and the surface L3 is also complete.

Now we are going to show that, for lightlike surfaces, the answer for the conjecture, as
mentioned at the Introduction, is also affirmative.

Theorem 5.3. The Gauss map image of the complete spacelike surfaces of revolution in
L3 with non-zero constant mean curvature and lightlike axis (surfaces labeled as L1 and L3)
contains a maximal geodesic of H2. Actually, their Gauss map image is H2.

Proof. Since the orientation of these surfaces, parametrized by formula (5.3), was chosen
such that N is a future directed timelike vector, an easy computation shows that

N(v, t) =
1

2
√
|u′|

(2t,−1 + t2 − u′, 1 + t2 − u′) ⊂ H2, (5.5)

where u′ = u′(v).
In order to show that the image of N , for the surfaces L1 and L3, is the set H2, we are

going to prove that the function N : Iε × R → H2 is a bijection.

In fact, given (x, y, z) ∈ H2, there exists a unique t ∈ R such that t =
x

z − y
and a unique

v ∈ Iε, given by the equation
1√
|u′(v)|

= z − y. (5.6)

More clearly, we can find, exactly, the value of v in each case, as follows:

a) For the surface labeled as L1, Iε = (a,∞), a > 0 and u′(v) =
−v2

2H2(a2 − v2)2
. Then, by

replacing this expression of u′(v) in (5.6) we get
√

2|H|(v2 − a2)

v
= z − y. (5.7)
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After solving equation (5.7) for v, we get v =
z − y +

√
(z − y)2 + 8a2H2

2
√

2|H|
.

b) For the surface labeled as L3, Iε = (0,∞) and u′(v) =
−1

2H2v2
. Now, solving (5.6) for v,

we obtain v =
z − y√
2|H|

.

For the values of v, obtained in a) and b), and the value of t written above, we have that
N(v, t) = (x, y, z) and hence ImN = H2.
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