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Abstract. Various types of primeness have been considered for near-rings. One of
these is the concept of equiprime, which was defined in 1990 by Booth, Groenewald
and Veldsman. We will investigate when the near-ring No(G) of continuous zero-
preserving self maps of a topological group G is equiprime. This is the case when GG
is either T and O-dimensional or 7T and arcwise connected. We also give conditions
for No(G) to be strongly prime and strongly equiprime. Finally, we apply these
results to sandwich near-rings of continuous functions.
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1. Preliminaries

In this paper, all near-rings will be right distributive. The notation “A <1 N” means “A is an
ideal of N”. Let GG be an additive topological group. The sets of arbitrary and zero-preserving
continuous self-maps of GG form near-rings with respect to addition and composition of func-
tions, and are denoted N(G) and Ny(G), respectively. Near-rings of continuous functions
have been extensively studied. See for example Magill [8], [9]. We remark that Ny(G) is
zerosymmetric, i.e. n0 = 0n = 0 for all n € Ny(G).

There are a number of definitions of primeness for near-rings in the literature. The
classical definition is given in Pilz [10]: A near-ring N is called prime (resp. semiprime)
if AAB< N (resp. A< N), AB = 0 implies A = 0 or B = 0 (resp. A? = 0 implies
A =0). N is called equiprime (cf. Booth, Groenewald and Veldsman [1]) if a,z,y € N,
anx = any for all n € N implies a = 0 or x = y. Note also an equiprime near-ring is
zerosymmetric [11, p. 2750]. Both of these definitions of primeness generalise the usual
notion of primeness for associative rings. Equiprimeness is of particular interest from the
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radical-theoretic perspective in that it leads to a Kurosh-Amitsur prime radical for both
zerosymmetric and arbitrary near-rings [1].

There are two generalisations to near-rings of the notion of strongly prime (cf. Handelman
and Lawrence [4]). A near-ring N is strongly prime [3] if 0 # a € N implies that there exists a
finite subset F' of N such that aFx = 0 implies = 0, for all x € N. N is strongly equiprime
2] if 0 # a € N implies that there exists a finite subset F' of N such that z,y € N,afz = afy
for all f € F implies x = y. Note that equiprime = prime and strongly equiprime —
strongly prime. To prove the first implication, let N be an equiprime near-ring and let
0# A, B<N. Let a € A\{0},b € B\{0}. Then by the equiprimeness of N, and hence also
its zerosymmetry, there exists n € N such that anb # an0 = 0. Moreover, an € A and so
AB # 0. Hence N is prime. The second implication is proved by a similar argument, after
noting that a strongly equiprime near-ring is equiprime and hence zerosymmetric. We note
also (cf. [3]) that a strongly prime near-ring is prime. We refer to Pilz [10] for all undefined
concepts concerning near-rings.

For all notions relevant to topological groups, we refer to any of the standard texts, e.g.
Higgins [5] and Husain [6]. We will make frequent use of the well-known result that every T
topological group is T3 (and hence Hausdorff). Composition of functions will be denoted by
juxtaposition, e.g. ab rather than a o b. For basic topological notions we refer to any of the
standard texts, for example Kelley [7].

Veldsman [11] has noted that the near-ring My(G) of all zero-preserving self-maps of an
additive group G is always equiprime. This is not in general true for Ny(G), where G is a
topological group. In fact No(G) need not even be semiprime, as the next result shows.

Proposition 1.1. Let G be a disconnected topological group, with open components which
contain more than one element. Then No(G) is not semiprime.

Proof. Let H be the component of G' which contains 0. As is well-known, H is a normal
subgroup of G and the remaining components of G are the cosets of H in G. Let I := {x €
No(G) | z(G) € H}. It is straightforward to check that [ is a right ideal of G. Now let
m,n € No(G),a € 1,9 € G. Since a(g) € H, (a+ n)(g) and n(g) are contained in the same
component (coset of H). By the continuity of m, m(a + n)(g) and mn(g) are contained in
the same component. Hence (m(a +n) —mn)(g) € H, and so m(a +n) —mn € I. Thus
I <1 No(G). Let J:={ne€ N |nx=0forall z € I}. Then J is a left ideal of Ny(G). Since
No(G) is zerosymmetric, [ is left invariant, and hence J is also a right ideal of Ny(G). Thus
J < No(G). Moreover (INJ)?2 =0, but INJ #0. For let 0 # h € H and let a be defined by

0 ge
a(g)::{h ieG\H '

Since H is a component of G, it is closed. But by the hypothesis of this proposition, H is
also open. It follows that G is the union of the disjoint open sets H and G\H. Hence a is
continuous. Clearly, a € I. Let g € G,z € I. Then ax(g) = 0, since z(g9) € H. Hence
ax =0, s0 a € J, whence a € I N J. It follows that Ny(G) is not semiprime. O

We remark that there are abundant examples of topological groups which satisfy the condi-
tions of Proposition 1.1. For example, let R denote the real numbers with the usual topology
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and let Zy denote the residue classes modulo 2 with the discrete topology. Then G := R X Z,
with the product topology is an example of such a topological group.

2. 0-dimensional topological groups

We recall that a topological space X is called 0-dimensional if the topology on X has a
base consisting of clopen (i.e. both open and closed) sets. In this section we will provide
information on the primeness of Ny(G) in the case that the topology on G is 0-dimensional.
Let X,Y be nonempty sets and let F' be a set of functions from X into Y. We recall that
I is said to separate points if x1,x9 € X, 1 # 19 implies that there exists f € F such that

far) # fla2).

Lemma 2.1. Let X be an infinite set and let F' be a finite set of functions of X into a set
Y. If each element of F' has finite range, then F cannot separate points.

Proof. Let F := {fi,...,f.}. Since f; has finite range, there exists y; € Y such that
f(z) = y; for infinitely many points = of X. Let X; := {z € X | fi(x) = y1}. Since f,
has finite range, there exists yo € Y such that fy(x) = ys for infinitely many points x of Xj.
Let X5 := {2 € Xj | fa(x) = yo}. Continuing in this way we obtain a nested sequence of
infinite sets X; O Xy D -+ D X, such that f;(z) = y; for all z € X;,1 <4 < n. In particular
fi(x) = y; for all x € X,,. Hence F' does not separate points in X,,, and so cannot separate
points in X. O

Proposition 2.2. Let G be a 0-dimensional, Ty topological group with more than one ele-
ment. Then

(a) No(G) is equiprime.

(b) No(G) is strongly prime if and only if the topology on G is discrete.

(c) No(G) is strongly equiprime if and only if G is finite.

Proof. (a) Let a,z,y € No(G), a # 0,z # y. Then there exist g,h € G such that
a(g) # 0,z(h) # y(h). Without loss of generality we may assume that x(h) # 0. Since G is
To, and hence Hausdorff, there exists a clopen set U which contains x(h), but not y(h) or 0.
Let n be defined by

keU
”%”:{g ke G\U -

Since U is clopen, n is continuous. Clearly, n € Ny(G). Moreover anz(h) = a(g) # 0 and
any(h) = a(0) = 0. Hence anz # any so Ny(G) is equiprime.

(b) Suppose the topology on G is discrete. Let 0 # a € Ny(G) and let g € G be such that
a(g) # 0. Define f by

_J g k#0
f%y_{o k=0 "
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Then f € No(G). Let 0 # 2 € No(G) and let h € G be such that z(h) # 0. Then
afx(h) =a(g) #0. If we let F':= {f} we see that Ny(G) is strongly prime.

Conversely, suppose that the topology on G is not discrete. Let U be a nonempty clopen
subset of G such that 0 ¢ U. Let 0 # g € G and let a # 0 be defined by

kelU
“%%:{g ke G\U ~

Then a € Nyo(G). Let F := {fi1,..., fn} be a finite subset of Ny(G). Since G\U is clopen
and f; is continuous f; '(G\U) is clopen. Let V; := f7'(G\U)\U. Then V; is clopen and
0€V;. Let V:=[_, Vi. Then V is clopen and 0 € V. Since G is Ty and not discrete, V' is
infinite. Let 0 # h € V. Then f;(h) ¢ U for 1 < i < n. Define x # 0 by

h keU
”“:{Okeew‘

Then af;x =0, 1 <7 <n, whence aFz = 0. Hence Ny(G) is not strongly prime.
(c) If G is finite, so is Ny(G). Since Ny(G) is equiprime by (a), it follows easily that it is
strongly equiprime.

Conversely, suppose that G is infinite. Let U be a proper clopen subset of G which
contains 0, and let 0 # g € G. Define

0 keU
a%%:{g keG\U -

Then 0 # a € No(G). Let F :={fi,..., f.} be a finite subset of Ny(G). Now the range of
af; has at most two points for 1 <i < n. It follows from Lemma 2.1 that {af1,...af,} does
not separate points. Let g1, g2 € G be such that g; # go and afi(g1) = afi(ge) for 1 <i <n.
Let x and y be defined by

0 keU 0 keU
“M'{glkaﬁU’M“'{ngemU'

Then z,y € No(G) and = # y. However afix = afiy for 1 < i < n. Hence Ny(G) is not
strongly equiprime. O

3. Arcwise connected topological groups

In this section, G will be a Ty, arcwise connected topological group with more than one
element. As is well known, this implies that G is completely regular (cf. Husain [6, pp 48-49,
Theorems 4 and 5]).

Lemma 3.1. Let 0 # a € No(G). Then aNo(G) separates points.



G.L. Booth, P.R. Hall: Primeness in Near-rings of Continuous Functions 25

Proof. Let ¢1,92 € G, g1 # go. Let h € G be such that a(h) = k # 0. Let p,q € R with
p < q. Since G is completely regular and T, (and hence T}, so one-point sets are closed),
there exists a continuous function 6 : G — [p, ¢ such that 6(g1) = p,0(g2) = q. Moreover,
p,q can be chosen such that p < 0 < ¢ and 0(0) = 0. (If this is not so, replace ¢ with
© where p(z) := 6(z) — 6(0) and replace p and ¢ with p — #(0) and ¢ — 6(0), respectively.
Clearly ¢ will map G into [p — 0(0),q — 6(0)] , »(0) = 0, and since 0 is in the range of ¢,
p—0(0) <0<q—0(0).) Now either p < 0 or 0 < g. Assume the latter. Since G is arcwise
connected, there exists a continuous function A : [0,¢] — G such that A\(0) = 0, A\(q) = h.
Define pu : [p,q] — G by

] 0 p<t<O0
Mt)'—{)\(t) 0<t<gq

Then p is continuous. Let n := pf. Then n(0) = pf(0) = u(0) = 0. Hence n € Ny(G).

Moreover, an(g1) = apb(g1) = ap(p) = a(0) = 0 and an(gz) = aub(g2) = ap(q) = aX(q) =
a(h) =k # 0. Hence aNy(G) separates points. O

Proposition 3.2. Ny(G) is equiprime.

Proof. Let a,z,y € No(G), a # 0,z # y. Let g € G be such that z(g) # y(g). By Lemma 3.1,
aNy(G) separates points. Hence there exists n € Nyo(G) such that anz(g) # any(g) whence
anx # any. Hence Ny(G) is equiprime. O

Proposition 3.3. Suppose that the topology on G has a base B consisting of arcwise con-
nected open sets. Then No(G) is not strongly prime (and hence not strongly equiprime).

Proof. Let U be an open set containing 0 whose closure cl(U) is not G. Let g € G\cl(U).
Since G is completely regular, there exists a continuous function o : G — [0, 1] such that
a(cl(U)) =0 and a(g) = 1. Since G is arcwise connected, there exists a continuous function
B :10,1] — G such that (0) = 0 and (1) = g. Let a := Ba. Then 0 # a € Ny(G) and
a(U) = 0.

Now let F := {f1,..., fo} be a finite subset of No(G). Let V; := f;'(U) for 1 <i <n
and V := (., V;. Note that 0 e V. If V=G, af; =0 for 1 <i < nsoaFz =0 for any
0 # x € No(G) and we are done. Suppose that V' # G. Let W be an element of B such
that 0 € W C V. We have that W # 0, since then G would be discrete; however, by the
hypothesis at the beginning of this section, G has more than one element, and is connected,
and thus cannot be discrete. Let 0 ## h € W. Then there exists a continuous function
A : G — [0,1] such that A(0) = 0 and A(h) = 1. Since W is arcwise connected, there exists
a continuous function p : [0,1] — W with p(0) = 0 and u(1) = h. Let z := pA. Then
x € No(G), z(h) = h and z(G) C W C V. It follows that aF'x = 0 but z # 0. Hence Ny(G)
is not strongly prime. O

4. Sandwich near-rings

Let X and G be a topological space and a topological group respectively, and let § : G — X
be a continuous map. The sandwich near-ring No(G, X, 0) is the set {a : X — G | a is
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continuous and af(0) = 0}. Addition is pointwise and multiplication is defined by a-b := a6b.
If the topologies on X and G are discrete we denote the near-ring by My(G, X, 0).

Proposition 4.1. Suppose that X is a 0-dimensional, Ty topological space and G is a Ty
topological group, both of which have more than one element. Then No(G, X, 0) is equiprime
if and only if 0 is injective and cl(0(G)) = G.
Proof. Suppose that 6 is injective and that cl(0(G)) = X. Let a,b,c € No(G, X,0),a # 0,b #
c. Let z,y € X be such that a(z) # 0,b(y) # c(y). Note that we may assume, without loss
of generality that x € 0(G). (For if z ¢ 6(G), it is a limit point of §(G), since cl(A(G)) = X.
By continuity of z, there exists an open set U of X such that = € U,a(t) # 0 for all t € U.
Then U N O(G) # (). Now replace z with any point z € U N 0(G).) Let g € G be such that
0(g) = x. Since b(y) # c(y) either b(y) # 0 or ¢(y) # 0. Assume the former. Since 6 is
injective, 0b(y) # 0(0). Since X is Ty and 0-dimensional, it is 77. Hence there exists a clopen
subset V' of X such that 0b(y) € V, 0(0) ¢ V, Oc(y) ¢ V. Define n : X — G by
g teV
n(?) '_{ 0 teX\V -

Then nf(0) = 0 and a - n - b(y) = abdnbb(y) = ab(g) = a(x) # 0 and a-n - c(y) = abnbc(y) =
af(0) =0. Hence a-n-b# a-n-c, and so No(G, X, ) is equiprime.

Conversely, suppose that No(G, X, 0) is equiprime. Let g1, g2 € G be such that 6(g;) =
0(g2). Let U be a clopen, proper subset of X such that §(0) € U. Define a,b: X — G by

a(z) = 0 zeU bz) = 0 ze€U
Tl zeX\U |l 2 zeG\U

Then a,b € No(G,X,0), a # 0, and it is easily verified that a -n-a = a-n - b for all
n € No(G, X, 0). Since Ny(G, X, 0) is equiprime, a = b and so g; = g». Hence 0 is injective.

Suppose cl(0(G)) # X. Then there exists an element x of X which is not a limit
point of #(G). Since X is 0-dimensional, there exists a clopen subset V' of X such that
zeV,VNOG)=10. Let 0 # h € G and define ¢ : X — G by

o(x) = h zeV
10 zeX\V O

Then ¢ € Ny(G,X,0) and c-n-c=0=c-n-0 for all n € No(G, X,8). Since ¢ # 0, this
implies that No(G, X, 6) is not equiprime. This contradiction shows that cl(0(G)) = X. O

Remark 4.2. 1. Proposition 4.1 generalises Proposition 9.1 of [11] if we take the topologies
on G and X to be discrete. In this case the condition cl(#(G)) = X becomes 0(G) = X, i.e.
f is surjective.

2. If the conditions of Proposition 4.1 are satisfied, it need not hold that §(G) = X. For
example, let @ be the additive group of the rationals and let X := Q U {v/2}, both with
the relative topology with respect to the usual topology on the real numbers. Then X is
a O-dimensional T space. Let 6 : Q — X be the inclusion map. Then @ is injective and

cl(0(G)) = X. Thus Ny(Q, X, 0) is equiprime but §(Q) = Q # X.
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