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Abstract. Various types of primeness have been considered for near-rings. One of
these is the concept of equiprime, which was defined in 1990 by Booth, Groenewald
and Veldsman. We will investigate when the near-ring N0(G) of continuous zero-
preserving self maps of a topological group G is equiprime. This is the case when G
is either T0 and 0-dimensional or T0 and arcwise connected. We also give conditions
for N0(G) to be strongly prime and strongly equiprime. Finally, we apply these
results to sandwich near-rings of continuous functions.
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1. Preliminaries

In this paper, all near-rings will be right distributive. The notation “A�N” means “A is an
ideal of N”. Let G be an additive topological group. The sets of arbitrary and zero-preserving
continuous self-maps of G form near-rings with respect to addition and composition of func-
tions, and are denoted N(G) and N0(G), respectively. Near-rings of continuous functions
have been extensively studied. See for example Magill [8], [9]. We remark that N0(G) is
zerosymmetric, i.e. n0 = 0n = 0 for all n ∈ N0(G).

There are a number of definitions of primeness for near-rings in the literature. The
classical definition is given in Pilz [10]: A near-ring N is called prime (resp. semiprime)
if A, B � N (resp. A � N), AB = 0 implies A = 0 or B = 0 (resp. A2 = 0 implies
A = 0). N is called equiprime (cf. Booth, Groenewald and Veldsman [1]) if a, x, y ∈ N ,
anx = any for all n ∈ N implies a = 0 or x = y. Note also an equiprime near-ring is
zerosymmetric [11, p. 2750]. Both of these definitions of primeness generalise the usual
notion of primeness for associative rings. Equiprimeness is of particular interest from the
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radical-theoretic perspective in that it leads to a Kurosh-Amitsur prime radical for both
zerosymmetric and arbitrary near-rings [1].

There are two generalisations to near-rings of the notion of strongly prime (cf. Handelman
and Lawrence [4]). A near-ring N is strongly prime [3] if 0 6= a ∈ N implies that there exists a
finite subset F of N such that aFx = 0 implies x = 0, for all x ∈ N . N is strongly equiprime
[2] if 0 6= a ∈ N implies that there exists a finite subset F of N such that x, y ∈ N, afx = afy
for all f ∈ F implies x = y. Note that equiprime =⇒ prime and strongly equiprime =⇒
strongly prime. To prove the first implication, let N be an equiprime near-ring and let
0 6= A, B � N . Let a ∈ A\{0}, b ∈ B\{0}. Then by the equiprimeness of N , and hence also
its zerosymmetry, there exists n ∈ N such that anb 6= an0 = 0. Moreover, an ∈ A and so
AB 6= 0. Hence N is prime. The second implication is proved by a similar argument, after
noting that a strongly equiprime near-ring is equiprime and hence zerosymmetric. We note
also (cf. [3]) that a strongly prime near-ring is prime. We refer to Pilz [10] for all undefined
concepts concerning near-rings.

For all notions relevant to topological groups, we refer to any of the standard texts, e.g.
Higgins [5] and Husain [6]. We will make frequent use of the well-known result that every T0

topological group is T3 (and hence Hausdorff). Composition of functions will be denoted by
juxtaposition, e.g. ab rather than a ◦ b. For basic topological notions we refer to any of the
standard texts, for example Kelley [7].

Veldsman [11] has noted that the near-ring M0(G) of all zero-preserving self-maps of an
additive group G is always equiprime. This is not in general true for N0(G), where G is a
topological group. In fact N0(G) need not even be semiprime, as the next result shows.

Proposition 1.1. Let G be a disconnected topological group, with open components which
contain more than one element. Then N0(G) is not semiprime.

Proof. Let H be the component of G which contains 0. As is well-known, H is a normal
subgroup of G and the remaining components of G are the cosets of H in G. Let I := {x ∈
N0(G) | x(G) ⊆ H}. It is straightforward to check that I is a right ideal of G. Now let
m, n ∈ N0(G), a ∈ I, g ∈ G. Since a(g) ∈ H, (a + n)(g) and n(g) are contained in the same
component (coset of H). By the continuity of m, m(a + n)(g) and mn(g) are contained in
the same component. Hence (m(a + n) − mn)(g) ∈ H, and so m(a + n) − mn ∈ I. Thus
I � N0(G). Let J := {n ∈ N | nx = 0 for all x ∈ I}. Then J is a left ideal of N0(G). Since
N0(G) is zerosymmetric, I is left invariant, and hence J is also a right ideal of N0(G). Thus
J � N0(G). Moreover (I ∩ J)2 = 0, but I ∩ J 6= 0. For let 0 6= h ∈ H and let a be defined by

a(g) :=

{
0 g ∈ H
h g ∈ G\H .

Since H is a component of G, it is closed. But by the hypothesis of this proposition, H is
also open. It follows that G is the union of the disjoint open sets H and G\H. Hence a is
continuous. Clearly, a ∈ I. Let g ∈ G, x ∈ I. Then ax(g) = 0, since x(g) ∈ H. Hence
ax = 0, so a ∈ J , whence a ∈ I ∩ J . It follows that N0(G) is not semiprime. 2

We remark that there are abundant examples of topological groups which satisfy the condi-
tions of Proposition 1.1. For example, let R denote the real numbers with the usual topology
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and let Z2 denote the residue classes modulo 2 with the discrete topology. Then G := R×Z2

with the product topology is an example of such a topological group.

2. 0-dimensional topological groups

We recall that a topological space X is called 0 -dimensional if the topology on X has a
base consisting of clopen (i.e. both open and closed) sets. In this section we will provide
information on the primeness of N0(G) in the case that the topology on G is 0-dimensional.
Let X, Y be nonempty sets and let F be a set of functions from X into Y . We recall that
F is said to separate points if x1, x2 ∈ X, x1 6= x2 implies that there exists f ∈ F such that
f(x1) 6= f(x2).

Lemma 2.1. Let X be an infinite set and let F be a finite set of functions of X into a set
Y . If each element of F has finite range, then F cannot separate points.

Proof. Let F := {f1, . . . , fn}. Since f1 has finite range, there exists y1 ∈ Y such that
f(x) = y1 for infinitely many points x of X. Let X1 := {x ∈ X | f1(x) = y1}. Since f2

has finite range, there exists y2 ∈ Y such that f2(x) = y2 for infinitely many points x of X1.
Let X2 := {x ∈ X1 | f2(x) = y2}. Continuing in this way we obtain a nested sequence of
infinite sets X1 ⊇ X2 ⊇ · · · ⊇ Xn such that fi(x) = yi for all x ∈ Xi, 1 ≤ i ≤ n. In particular
fi(x) = yi for all x ∈ Xn. Hence F does not separate points in Xn, and so cannot separate
points in X. 2

Proposition 2.2. Let G be a 0-dimensional, T0 topological group with more than one ele-
ment. Then

(a) N0(G) is equiprime.
(b) N0(G) is strongly prime if and only if the topology on G is discrete.
(c) N0(G) is strongly equiprime if and only if G is finite.

Proof. (a) Let a, x, y ∈ N0(G), a 6= 0, x 6= y. Then there exist g, h ∈ G such that
a(g) 6= 0, x(h) 6= y(h). Without loss of generality we may assume that x(h) 6= 0. Since G is
T0, and hence Hausdorff, there exists a clopen set U which contains x(h), but not y(h) or 0.
Let n be defined by

n(k) :=

{
g k ∈ U
0 k ∈ G\U .

Since U is clopen, n is continuous. Clearly, n ∈ N0(G). Moreover anx(h) = a(g) 6= 0 and
any(h) = a(0) = 0. Hence anx 6= any so N0(G) is equiprime.

(b) Suppose the topology on G is discrete. Let 0 6= a ∈ N0(G) and let g ∈ G be such that
a(g) 6= 0. Define f by

f(k) :=

{
g k 6= 0
0 k = 0

.
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Then f ∈ N0(G). Let 0 6= x ∈ N0(G) and let h ∈ G be such that x(h) 6= 0. Then
afx(h) = a(g) 6= 0. If we let F := {f} we see that N0(G) is strongly prime.

Conversely, suppose that the topology on G is not discrete. Let U be a nonempty clopen
subset of G such that 0 /∈ U . Let 0 6= g ∈ G and let a 6= 0 be defined by

a(k) :=

{
g k ∈ U
0 k ∈ G\U .

Then a ∈ N0(G). Let F := {f1, . . . , fn} be a finite subset of N0(G). Since G\U is clopen
and fi is continuous f−1

i (G\U) is clopen. Let Vi := f−1
i (G\U)\U . Then Vi is clopen and

0 ∈ Vi. Let V :=
⋂n

i=1 Vi. Then V is clopen and 0 ∈ V . Since G is T0 and not discrete, V is
infinite. Let 0 6= h ∈ V . Then fi(h) /∈ U for 1 ≤ i ≤ n. Define x 6= 0 by

x(k) :=

{
h k ∈ U
0 k ∈ G\U .

Then afix = 0, 1 ≤ i ≤ n, whence aFx = 0. Hence N0(G) is not strongly prime.

(c) If G is finite, so is N0(G). Since N0(G) is equiprime by (a), it follows easily that it is
strongly equiprime.

Conversely, suppose that G is infinite. Let U be a proper clopen subset of G which
contains 0, and let 0 6= g ∈ G. Define

a(k) :=

{
0 k ∈ U
g k ∈ G\U .

Then 0 6= a ∈ N0(G). Let F := {f1, . . . , fn} be a finite subset of N0(G). Now the range of
afi has at most two points for 1 ≤ i ≤ n. It follows from Lemma 2.1 that {af1, . . . afn} does
not separate points. Let g1, g2 ∈ G be such that g1 6= g2 and afi(g1) = afi(g2) for 1 ≤ i ≤ n.
Let x and y be defined by

x(k) :=

{
0 k ∈ U
g1 k ∈ G\U , y(k) :=

{
0 k ∈ U
g2 k ∈ G\U .

Then x, y ∈ N0(G) and x 6= y. However afix = afiy for 1 ≤ i ≤ n. Hence N0(G) is not
strongly equiprime. 2

3. Arcwise connected topological groups

In this section, G will be a T0, arcwise connected topological group with more than one
element. As is well known, this implies that G is completely regular (cf. Husain [6, pp 48-49,
Theorems 4 and 5]).

Lemma 3.1. Let 0 6= a ∈ N0(G). Then aN0(G) separates points.
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Proof. Let g1, g2 ∈ G, g1 6= g2. Let h ∈ G be such that a(h) = k 6= 0. Let p, q ∈ R with
p < q. Since G is completely regular and T0 (and hence T1, so one-point sets are closed),
there exists a continuous function θ : G −→ [p, q] such that θ(g1) = p, θ(g2) = q. Moreover,
p, q can be chosen such that p ≤ 0 ≤ q and θ(0) = 0. (If this is not so, replace θ with
ϕ where ϕ(z) := θ(z) − θ(0) and replace p and q with p − θ(0) and q − θ(0), respectively.
Clearly ϕ will map G into [p − θ(0), q − θ(0)] , ϕ(0) = 0, and since 0 is in the range of ϕ,
p− θ(0) ≤ 0 ≤ q − θ(0).) Now either p < 0 or 0 < q. Assume the latter. Since G is arcwise
connected, there exists a continuous function λ : [0, q] −→ G such that λ(0) = 0, λ(q) = h.
Define µ : [p, q] −→ G by

µ(t) :=

{
0 p ≤ t ≤ 0
λ(t) 0 < t ≤ q

.

Then µ is continuous. Let n := µθ. Then n(0) = µθ(0) = µ(0) = 0. Hence n ∈ N0(G).
Moreover, an(g1) = aµθ(g1) = aµ(p) = a(0) = 0 and an(g2) = aµθ(g2) = aµ(q) = aλ(q) =
a(h) = k 6= 0. Hence aN0(G) separates points. 2

Proposition 3.2. N0(G) is equiprime.

Proof. Let a, x, y ∈ N0(G), a 6= 0, x 6= y. Let g ∈ G be such that x(g) 6= y(g). By Lemma 3.1,
aN0(G) separates points. Hence there exists n ∈ N0(G) such that anx(g) 6= any(g) whence
anx 6= any. Hence N0(G) is equiprime. 2

Proposition 3.3. Suppose that the topology on G has a base B consisting of arcwise con-
nected open sets. Then N0(G) is not strongly prime (and hence not strongly equiprime).

Proof. Let U be an open set containing 0 whose closure cl(U) is not G. Let g ∈ G\cl(U).
Since G is completely regular, there exists a continuous function α : G −→ [0, 1] such that
α(cl(U)) = 0 and α(g) = 1. Since G is arcwise connected, there exists a continuous function
β : [0, 1] → G such that β(0) = 0 and β(1) = g. Let a := βα. Then 0 6= a ∈ N0(G) and
a(U) = 0.

Now let F := {f1, . . . , fn} be a finite subset of N0(G). Let Vi := f−1
i (U) for 1 ≤ i ≤ n

and V :=
⋂n

i=1 Vi. Note that 0 ∈ V . If V = G, afi = 0 for 1 ≤ i ≤ n so aFx = 0 for any
0 6= x ∈ N0(G) and we are done. Suppose that V 6= G. Let W be an element of B such
that 0 ∈ W ⊆ V . We have that W 6= 0, since then G would be discrete; however, by the
hypothesis at the beginning of this section, G has more than one element, and is connected,
and thus cannot be discrete. Let 0 6= h ∈ W . Then there exists a continuous function
λ : G −→ [0, 1] such that λ(0) = 0 and λ(h) = 1. Since W is arcwise connected, there exists
a continuous function µ : [0, 1] −→ W with µ(0) = 0 and µ(1) = h. Let x := µλ. Then
x ∈ N0(G), x(h) = h and x(G) ⊆ W ⊆ V . It follows that aFx = 0 but x 6= 0. Hence N0(G)
is not strongly prime. 2

4. Sandwich near-rings

Let X and G be a topological space and a topological group respectively, and let θ : G −→ X
be a continuous map. The sandwich near-ring N0(G, X, θ) is the set {a : X −→ G | a is
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continuous and aθ(0) = 0}. Addition is pointwise and multiplication is defined by a ·b := aθb.
If the topologies on X and G are discrete we denote the near-ring by M0(G, X, θ).

Proposition 4.1. Suppose that X is a 0-dimensional, T0 topological space and G is a T0

topological group, both of which have more than one element. Then N0(G, X, θ) is equiprime
if and only if θ is injective and cl(θ(G)) = G.

Proof. Suppose that θ is injective and that cl(θ(G)) = X. Let a, b, c ∈ N0(G, X, θ), a 6= 0, b 6=
c. Let x, y ∈ X be such that a(x) 6= 0, b(y) 6= c(y). Note that we may assume, without loss
of generality that x ∈ θ(G). (For if x /∈ θ(G), it is a limit point of θ(G), since cl(θ(G)) = X.
By continuity of x, there exists an open set U of X such that x ∈ U, a(t) 6= 0 for all t ∈ U .
Then U ∩ θ(G) 6= ∅. Now replace x with any point z ∈ U ∩ θ(G).) Let g ∈ G be such that
θ(g) = x. Since b(y) 6= c(y) either b(y) 6= 0 or c(y) 6= 0. Assume the former. Since θ is
injective, θb(y) 6= θ(0). Since X is T0 and 0-dimensional, it is T1. Hence there exists a clopen
subset V of X such that θb(y) ∈ V, θ(0) /∈ V, θc(y) /∈ V . Define n : X → G by

n(t) :=

{
g t ∈ V
0 t ∈ X\V .

Then nθ(0) = 0 and a · n · b(y) = aθnθb(y) = aθ(g) = a(x) 6= 0 and a · n · c(y) = aθnθc(y) =
aθ(0) = 0. Hence a · n · b 6= a · n · c, and so N0(G, X, θ) is equiprime.

Conversely, suppose that N0(G, X, θ) is equiprime. Let g1, g2 ∈ G be such that θ(g1) =
θ(g2). Let U be a clopen, proper subset of X such that θ(0) ∈ U . Define a, b : X −→ G by

a(x) :=

{
0 x ∈ U
g1 x ∈ X\U , b(x) =

{
0 x ∈ U
g2 x ∈ G\U .

Then a, b ∈ N0(G, X, θ), a 6= 0, and it is easily verified that a · n · a = a · n · b for all
n ∈ N0(G, X, θ). Since N0(G, X, θ) is equiprime, a = b and so g1 = g2. Hence θ is injective.

Suppose cl(θ(G)) 6= X. Then there exists an element x of X which is not a limit
point of θ(G). Since X is 0-dimensional, there exists a clopen subset V of X such that
x ∈ V, V ∩ θ(G) = ∅. Let 0 6= h ∈ G and define c : X −→ G by

c(x) :=

{
h x ∈ V
0 x ∈ X\V .

Then c ∈ N0(G, X, θ) and c · n · c = 0 = c · n · 0 for all n ∈ N0(G, X, θ). Since c 6= 0, this
implies that N0(G, X, θ) is not equiprime. This contradiction shows that cl(θ(G)) = X. 2

Remark 4.2. 1. Proposition 4.1 generalises Proposition 9.1 of [11] if we take the topologies
on G and X to be discrete. In this case the condition cl(θ(G)) = X becomes θ(G) = X, i.e.
θ is surjective.

2. If the conditions of Proposition 4.1 are satisfied, it need not hold that θ(G) = X. For
example, let Q be the additive group of the rationals and let X := Q ∪ {

√
2}, both with

the relative topology with respect to the usual topology on the real numbers. Then X is
a 0-dimensional T0 space. Let θ : Q −→ X be the inclusion map. Then θ is injective and
cl(θ(G)) = X. Thus N0(Q, X, θ) is equiprime but θ(Q) = Q 6= X.
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