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Abstract. It is well known that for 2-codimensional aCM subschemes of Pr with
a fixed Hilbert function H there are all the possible graded Betti numbers between
suitable bounds depending on H. For aCM subschemes of codimension c ≥ 3 with
Hilbert function H it is just known that there are upper bounds for the graded
Betti numbers depending on H and these can be reached; but what are the graded
Betti numbers which can be realized is not yet completely understood. The aim
of the paper is to construct c-codimensional subschemes of Pr which could recover
as many graded Betti numbers as possible generalizing both the 2-codimensional
case and the maximal case.
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Introduction

In the last few years a large number of researchers in algebraic geometry made deep investiga-
tions about Hilbert functions and graded Betti numbers of projective schemes. In particular,
to try to find all the possible Hilbert functions and all the possible graded Betti numbers
of c-codimensional (reduced) schemes of Pr is surely one of the most important questions
but not so easy to solve. On the other hand, the problem of finding all the possible graded
Betti numbers for schemes with an assigned Hilbert function seems just as difficult. Many
results are available on this field but they deal always with particular situations as for the
aCM schemes of codimension 2 or, more recently, for the arithmetically Gorenstein schemes
of codimension 3 (see, for instance, papers by Gaeta [7], Buchsbaum-Eisenbud [1], Stanley
[17], Campanella [3], Maggioni-Ragusa [14], Bigatti [2], Hulett [12], De Negri-Valla [5], Diesel
[6], Geramita-Migliore [11], Ragusa-Zappalà [16], and many others).
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The following observation can be considered the motivation of the project that we intend
to develope and of which this paper is in some sense a starting point: for aCM schemes of
codimension 2 with an assigned Hilbert function H the possible graded Betti numbers have
both a maximum and a minimum value, in the sense that there exist integers aij, bij for
i = 1, 2 and j ≥ 1, depending only on H, such that any minimal free resolution of such a
scheme must have graded Betti numbers αij with

aij ≤ αij ≤ bij

for i = 1, 2 and j ≥ 1; moreover, there are resolutions with graded Betti numbers aij and
bij, respectively, and any possibility satisfying the previous bounds can be realized (see for
instance [3] or [14]). This is no longer true for aCM schemes of codimension c ≥ 3; for
such schemes with a fixed Hilbert function there is still a maximum for the graded Betti
numbers but there is not necessarily a minimum (see the example by E.G. Evans in the
paper [12]). Recently, A. Geramita, T. Harima, and Y.S. Shin in [9] construct suitable
reduced 0-dimensional subschemes of Pr which realize the maximum for the graded Betti
numbers with respect to an assigned Hilbert function. On the other hand, it is possible to
construct reduced zero-dimensional schemes which realize the maximum for the graded Betti
numbers with respect to a given Hilbert function simply lifting, by Hartshorne method, the
corresponding lex-segment ideal.
Our project is to find methods to build aCM schemes of any codimension which could

realize all the possible graded Betti numbers relative to a given Hilbert function. Here
we develope a construction which generalizes both the codimension 2 case of [14] and the
maximal situation as in [9]. Even if this method does not permit to obtain all the wanted
graded Betti numbers it recovers a large part of the possibilities and, moreover, one can use
this construction to easily build schemes with assigned generators’ degrees or last syzygies’
degrees (and consequently Cohen Macaulay type). Our intent is to develope in the near
future other methods to try to recover all the remaining cases.
All this can be done in a general setting or applying suitable conditions either on the

schemes or on the Hilbert function. For instance, it seems of great interest to solve the
same questions for Gorenstein schemes (of codimension > 3), level schemes, schemes lying on
an irreducible hypersurface of minimal degree, schemes in uniform position, or for maximal
Hilbert functions, Hilbert functions generic with respect to the minimal degree and so on.
Now we give a sketch of the paper. The first section is initially devoted to prepare the

machinery we need to define the “partial intersection” subschemes of Pr; in particular, we
study some properties of the “left segments”. Then, after defining such subschemes we prove
that they are reduced aCM schemes consisting of union of linear varieties. In Section 2 we
compute the Hilbert function of c-codimensional partial intersections in terms of their left
segment support and provide a free resolution for these schemes. Section 3 is dedicated
to compute both the minimal generators’ degrees and the last syzygies’ degrees in terms
of their support. This will complete all the graded Betti numbers for partial intersection
of codimension 3. In the last section, using a “linear decomposition” for O-sequences, we
perform all the partial intersections (or equivalently all the left segments) having an assigned
Hilbert function.
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1. Partial intersections in codimension c

Throughout this paper k will denote an algebraically closed field, Pr the r-dimensional pro-
jective space over k, R=k[x0, x1, . . . , xr]=

⊕
n∈Z

H0(OPr(n)).

If V ⊂ Pr is a subscheme, IV will denote its defining ideal and HV (n) = dimk Rn −
dimk(IV )n its Hilbert function. Moreover, if V ⊂ Pr is a c-codimensional aCM scheme with
minimal free resolution

0 - ⊕R(−j)αcj · · · - ⊕R(−j)α2j - ⊕R(−j)α1j - IV - 0

then the integers {αij}j will denote the i-th graded Betti numbers.
In this section we construct suitable c-codimensional aCM subschemes of Pr for which

we will be able to compute both Hilbert functions and the first and the last graded Betti
numbers.
In order to define these subschemes of Pr, we need some elementary properties of partic-

ular posets.
Let (P ,≤) be a poset. We denote, for every H ∈ P ,

SH = {K ∈ P | K < H}, SH = {K ∈ P | K ≤ H}.

Definition 1.1. A subset A of the poset P is said to be a left segment if for every H ∈ A,
SH ⊆ A. In particular, when P = Nc with the order induced by the natural order on N, a
finite left segment will be mentioned as a c-left segment.

If U is a finite subset of Nc then the c-left segment

< U >=
⋃

H∈U

SH

will be called the c-left segment generated by U. Note that every c-left segment A has sets
of generators and among those there is a unique minimal set of generators consisting of the
maximal elements of A, which will be denoted by G(A).
In the sequel αi : Nc → N will denote the projection to the i-th component; moreover,

α̂i : Nc → Nc−1 will indicate the map α̂i(m1, . . . ,mc) = (m1, . . . ,mi−1,mi+1, . . . ,mc).
If A is a c-left segment, we set ai = max{αi(H) | H ∈ A}, for 1 ≤ i ≤ c. The c-tuple

T = (a1, . . . , ac) will be called the size of A.
A c-left segment is said to be degenerate if ai = 1 for some i.
If A is a c-left segment, F (A) will denote the set of minimal elements of Nc \ A, i.e.

F (A) = {H ∈ Nc \ A | SH ⊆ A}.

Note that, if H = (m1, . . . ,mc) is in F (A) andmi > 1, then Hi = (m1, . . . ,mi−1, . . . ,mc) ∈
A. Moreover, the elements

T1 = (a1 + 1, 1, . . . , 1), . . . , Tc = (1, 1, . . . , ac + 1)

always belong to F (A).
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In the sequel we denote the c-tuple (1, . . . , 1) by I and, for every subset Z of ST , we
denote

CT (Z) = {T + I −H | H ∈ Z}.

Finally, for every c-left segment A we define

A∗ = CT (ST \ A).

Observe that A∗ is a c-left segment: namely, if T + I −H ∈ A∗ and K < T + I −H, we see
that H < T + I −K hence T + I −K /∈ A, therefore K = T + I − (T + I −K) ∈ A∗.
For this c-left segment we set a∗i = max{αi(H) | H ∈ A

∗} and T ∗i = (1, . . . , a
∗
i +1, . . . , 1)

for 1 ≤ i ≤ c.

Example 1.2. Let A =< (1, 3, 2), (2, 2, 1) >; then
T = (2, 3, 2) and ST \ A = {(2, 3, 1), (2, 1, 2), (2, 2, 2), (2, 3, 2)}, hence

A∗ = {(1, 1, 2), (1, 3, 1), (1, 2, 1), (1, 1, 1)} =< (1, 1, 2), (1, 3, 1) > .

Proposition 1.3. If A is a c-left segment, then
1. F (A) = CT (G(A∗)) ∪ {T1, . . . , Tc},

2. F (A∗) = CT (G(A)) ∪ {T ∗1 , . . . , T
∗
c }.

3. If T ∗i 6= Ti, for some i, then T
∗
i ∈ CT (G(A)).

Proof. 1. Let H ∈ F (A), H /∈ {T1, . . . , Tc}, then H ∈ ST \ A : namely, if H /∈ ST ,
H = (h1, . . . , hc), there is an index j such that hj > aj; on the other hand by assumption
H 6= Tj there is ht > 1 for some t 6= j; denoted H ′ = (h′1, . . . , h

′
c), with h

′
t = ht − 1 and

h′i = hi for i 6= t, we have H
′ < H which should imply H ′ ≤ T a contradiction with h′j > aj.

Consequently, T + I −H ∈ A∗; on the other hand, if L > T + I −H then H > T + I − L
therefore T + I − L ∈ A, i.e. T + I − L /∈ ST \ A, which means L /∈ A∗. In conclusion
H ∈ CT (G(A∗)).
Conversely, letH ∈ CT (G(A∗)), then T+I−H ∈ G(A∗). From this we get T+I−H ∈ A∗,

i.e. H /∈ A. Moreover, if K < H then T + I −K > T + I −H which implies T + I −K /∈ A∗

since T + I −H belongs to G(A∗). Thus K ∈ A and consequently, H ∈ F (A).

2. It works with the same argument as in 1.

3. Suppose that T ∗i 6= Ti, indeed a
∗
i < ai for some i, then T + I − T ∗i = (a1, . . . , ai − a

∗
i +

1, . . . , ac) ∈ A; on the other hand, from (1, . . . , a∗i − 1, . . . , 1) ∈ A
∗ we get that (a1, . . . , ai−

a∗i + 2, . . . , ac) /∈ A, i.e. T + I − T
∗
i is maximal in A, so T + I − T

∗
i ∈ G(A).

Fix a c-left segment A and consider c families of hyperplanes of Pr, c ≤ r,

{A1j}1≤j≤a1 , {A2j}1≤j≤a2 , . . . , {Acj}1≤j≤ac

sufficiently generic, in the sense that A1j1∩. . .∩Acjc are
c∏
i=1

ai pairwise distinct linear varieties

of codimension c.
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For every H = (j1, . . . , jc) ∈ A, we denote by

LH =
c⋂

h=1

Ahjh .

With this notation we have the following

Definition 1.4. The subscheme of Pr

V =
⋃

H∈A

LH

will be called a c-partial intersection with respect to the hyperplanes {Aij} and support on the
c-left segment A.
If B ⊆ A is a c-left segment, W =

⋃
H∈B

LH will be called a sub partial intersection of V.

Note that for c = 2 these are substantially the partial intersections studied in [14].
In the paper [13] the authors use schemes which are similar to partial intersections in

order to lift Artinian monomial ideals. Nevertheless, this new approach will be crucial for
our goals.
Let Aj = α̂c(α

−1
c (j)), i.e. the set of (c− 1)-tuples H such that (H, j) ∈ A (c ≥ 2). It is

trivial to see that Aj is a (c− 1)-left segment. Moreover, clearly, A1 ⊇ A2 ⊇ . . . ⊇ Aac .

Remark 1.5. Let V ⊂ Pr be a c-partial intersection with support on A and hyperplanes
Aij, with 1 ≤ i ≤ c, then

V =
⋃

1≤j≤ac

(Vj ∩ Acj)

where Vj are (c − 1)-partial intersections, with Vj ⊇ Vj+1. Namely, it is enough to set Vj =⋃
H∈Aj

LH .

Conversely, if V1 ⊇ . . . ⊇ Vs are (c−1)-partial intersections with support on the (c−1)-left
segments A1 ⊇ . . . ⊇ As, respectively, and with respect to c−1 families of hyperplanes {Aij},
1 ≤ i ≤ c − 1, if we consider another family of “generic” hyperplanes {Acj}, j = 1, . . . , s,
then

V =
⋃

1≤j≤s

(Vj ∩ Acj)

is a c-partial intersection with support on A = {(H, j) | H ∈ Aj, 1 ≤ j ≤ s}. Note that such
an A is a c-left segment: in fact, if (H, j) ∈ A and (H ′, j′) ≤ (H, j), we have j′ ≤ j ≤ s and
H ′ ≤ H ∈ Aj ⊆ Aj′ , hence (H ′, j′) ∈ A.

In the sequel we need the following lemma.

Lemma 1.6. Let V1 ⊇ . . . ⊇ Vs be s ≥ 2 (c−1)-codimensional aCM subschemes of Pr and Aj,
with IAj = (fj), 1 ≤ j ≤ s, be hyperplanes such that Yi = Vi∩Ai are c-codimensional for each
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i and suppose that Yi and Yj have no common components for i 6= j. Let Y = Y1 ∪ . . . ∪ Ys−1
and X = Y ∪ Ys. Then the following sequence of graded R-modules

0 - IYs(−(s− 1))
f
- IX

ϕ
- IY /(f) - 0

is exact, where f =
s−1∏
i=1

fi and fi is the form defining Ai for i = 1, . . . , s − 1 and ϕ is the

natural map. Moreover

IX = IV1 + f1IV2 + f1f2IV3 + · · ·+ f1 . . . fs−1IVs + (f1 . . . fs).

Proof. Observe that the exactness of the above sequence in the middle depends on the fact
that f is regular modulo IYs , since Yi and Yj have no common components for i 6= j. So, the
only not trivial fact to prove is that the map ϕ is surjective. For this we use induction on
s. For s = 2, since V1 is aCM, IY = IV1 + (f1), therefore every element in IY /(f1) looks like
z + (f1) with z ∈ IV1 ⊆ IV2 . Hence, z ∈ IY1 ∩ IY2 = IX . So, ϕ is surjective and the sequence
is exact. Now, from the exactness of this sequence it follows that IX is generated by IV1 and
f1IY2 , i.e. IX = IV1 + f1IV2 + (f1f2).
Let us suppose the lemma true for s−1. This means, in particular, that IY = IV1+f1IV2+

· · ·+ f1 . . . fs−2IVs−1 + (f1 . . . fs−1); therefore, every element z ∈ IY /(f1 . . . fs−1) has the form
x + (f1 . . . fs−1) with x ∈ IV1 + f1IV2 + · · · + f1 . . . fs−2IVs−1 . Hence, x ∈ IVs which implies
x ∈ IY ∩ IYs = IX . Again, by the exactness of our sequence we get that IX is generated
by f1 . . . fs−1IYs and by IV1 + f1IV2 + · · · + f1 . . . fs−2IVs−1 , i.e. IX = IV1 + f1IV2 + · · · +
f1 . . . fs−1IVs + (f1 . . . fs).

Corollary 1.7. The ideal IX associated to any c-partial intersection X is minimally gener-
ated by elements which are products of linear forms.

Proof. Since any c-partial intersection X, by the genericity of the hyperplanes Aij, is in the
hypotheses of the previous lemma, we have

IX = IV1 + f1IV2 + f1f2IV3 + · · ·+ f1 . . . fs−1IVs + (f1 . . . fs),

it is enough to use induction on c.

Remark 1.8. Note that, by construction of partial intersections, f1 · . . . · fs is a minimal
generator for IX .

Theorem 1.9. Every c-partial intersection X of Pr is a reduced aCM subscheme consisting
of a union of c-codimensional linear varieties.

Proof. By definition X is a reduced scheme of codimension c union of linear varieties of the
same codimension.
To show that X is aCM we use induction on c. The property is trivially true for c = 1,

so we can assume that every (c − 1)-partial intersection is aCM. Since X is a c-partial
intersection we have X =

⋃
1≤i≤s

(Vi ∩Ai), where Vi are (c− 1)-partial intersections, Vi ⊇ Vi+1

for i = 1, . . . , s − 1 and Ai are hyperplanes. Now we use induction on s. For s = 1, X is
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aCM as it is a hyperplane section of an aCM scheme. Suppose that Y =
⋃

1≤i≤s−1
(Vi ∩ Ai) is

aCM and show that X = Y ∪ (Vs ∩ As) is aCM. Applying the previous lemma we get the
exact sequence

0 - IVs∩As(−(s− 1))
f
- IX - IY /(f) - 0

where f =
s−1∏
i=1

fi and fi is the form defining Ai for i = 1, . . . , s − 1, from which we see that

a resolution of IX can be obtained as direct sum of the resolutions of IVs∩As(−(s − 1)) and
IY /(f); since both have resolutions of length c the same is true for IX and we are done.

2. Hilbert functions for partial intersections

In this section we compute the Hilbert function of a partial intersection V of codimension c
in terms of its support A.
In the sequel, if H = (m1, . . . ,mc) ∈ Nc, then we will write v(H) = m1 + · · ·+mc.

Theorem 2.1. If V ⊂ Pr is a partial intersection of codimension c with support on A, then
the (r − c+ 1)-st difference of its Hilbert function is

∆r−c+1HV (n) =
{H ∈ A | v(H) = n+ c}

.

Proof. We work by induction on c. For c = 1, A = {1, 2, . . . , a1}, V = A11 ∪ . . . ∪ A1a1 . We
have

∆rHV (n) =

{
1 if 0 ≤ n ≤ a1 − 1

0 if n ≥ a1
.

On the other hand, there is only one H ∈ A whose v(H) = n + 1, for n = 0, 1, . . . , a1 − 1.
Let us suppose that the conclusion is true for every (c − 1)-partial intersection. Now let
V =

⋃
H∈A

LH =
⋃

1≤j≤ac

(Vj ∩ Acj) be a c-partial intersection, where the Vj’s are (c− 1)-partial

intersections with support on Aj and the Acj’s are hyperplanes. By the inductive hypothesis

we know that ∆r+1−(c−1)HVj(n) =
{H ∈ Aj | v(H) = n+ c− 1}

. On the other hand, since
the Vj’s are aCM

∆r+1−cHVj∩Acj = ∆
r+1−(c−1)HVj .

Now we will prove, by induction on ac that

∆r+1−cHV (n) =
ac∑

j=1

∆r+1−cHVj∩Acj(n+ 1− j).

Since there is nothing to say for ac = 1 we can assume that for W =
⋃

1≤j≤ac−1
(Vj ∩ Acj) we

have

∆r+1−cHW (n) =
ac−1∑

j=1

∆r+1−cHVj∩Acj(n+ 1− j),
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and it remains to verify that

∆r+1−cHV (n) = ∆
r+1−cHW (n) + ∆

r+1−cHVac∩Acac (n+ 1− ac).

From the short exact sequence of Lemma 1.6 we get

dim(IV )n = dim(IVac∩Acac )(n+1−ac) + dim(IW )n − dimR(−(ac − 1))n

from which we deduce

HV (n) = HW (n) +HVac∩Aac (n+ 1− ac).

Therefore

∆r+1−cHV (n) =
ac∑

j=1

{H ∈ Aj | v(H) = n+ c− j}
 =


ac⋃

j=1

{H ∈ Aj | v(H) = n+ c− j}
,

since the previous union runs over disjoint sets. To conclude the proof it is enough to perform
a bijection

ϕ :
ac⋃

j=1

{H ∈ Aj | v(H) = n+ c− j} → {H ∈ A | v(H) = n+ c}.

If K ∈
⋃ac
j=1{H ∈ Aj | v(H) = n+ c− j}, there exists a unique 1 ≤ h ≤ ac such that K ∈ Ah

and v(K) = n+ c− h; then, define

ϕ(K) = (K,h) ∈ {H ∈ A | v(H) = n+ c}.

One easily shows that such a map is bijective.

Example 2.2. Let A be the 3-left segment generated by the following elements of N3

(1, 2, 3), (2, 3, 2), (3, 4, 1), (4, 1, 3), (4, 2, 2), (4, 3, 1), (5, 1, 2), (5, 2, 1).

Then the elements H ∈ A such that
v(H) = 3 is (1, 1, 1);

v(H) = 4 are (1, 1, 2), (1, 2, 1), (2, 1, 1);

v(H) = 5 are (1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1);

v(H) = 6 are (1, 2, 3), (1, 3, 2), (1, 4, 1), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1),
(4, 1, 1);

v(H) = 7 are (2, 3, 2), (2, 4, 1), (3, 1, 3), (3, 2, 2), (3, 3, 1), (4, 1, 2), (4, 2, 1), (5, 1, 1);

v(H) = 8 are (3, 4, 1), (4, 1, 3), (4, 2, 2), (4, 3, 1), (5, 1, 2), (5, 2, 1);
therefore, if V ⊂ Pr is any 3-partial intersection with support on A, we have

∆r−2HV : 1, 3, 6, 9, 8, 6, 0→ .
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Now we want to construct a free resolution of length c (not necessarily minimal) for a
c-codimensional partial intersection V ⊂ Pr.
Construction 2.3. We start by working by induction on c.
If c = 1 then V =

⋃n
i=1Ai, where Ai are hyperplanes and the minimal graded free

resolution of IV is

0 - R(−n)
f

- IV - 0

where f = f1 · . . . · fn and fi is the form defining Ai.
Let V =

⋃
1≤i≤s

(Vi ∩ Ai), where Vi are (c − 1)-partial intersections, Vi ⊇ Vi+1 for i =

1, . . . , s− 1 and Ai are hyperplanes. Now we use induction on s. If s = 1 then V = V1 ∩A1;
let

F• - IV1
- 0

be a graded free resolution for IV1 of length c− 1, since V1 is aCM, using a mapping cone of
the map

IV1
f1- IV1

we get the following graded free resolution of length c

0 -Fc−1(−1) -Fc−2(−1)⊕ Fc−1 -· · · -F1(−1)⊕ F2 -F1 -IV -0.

Denote by Y =
⋃

1≤i≤s−1
(Vi∩Ai) and Ys = Vs∩As. By inductive hypothesis we know resolutions

of length c for IY and IYs :

0 - · · · - Fi
Mi- Fi−1 - · · · - F1 - IY - 0

0 - · · · - Gi

Ni- Gi−1
- · · · - G1 - IYs - 0

Note that f = f1 · . . . · fs−1 is a minimal generator for IY (see Remark 1.8); moreover, using
Lemma 1.6 we can assume that the system of generators for IY used in the previous resolution
consists of f and elements in IV . Therefore, F1 = F ′1 ⊕ R(−(s − 1)), M1 = (M

′
1|f) with the

entries of M ′
1 in IV and

M2 =

(
M ′
2

Q2

)

where M ′
2 is the matrix defining the map F2 → F ′1. From the short exact sequence of Lemma

1.6 one gets the following resolution of length c for IV

· · · -Gi(1− s)⊕ Fi
Pi-Gi−1(1− s)⊕ Fi−1 -· · ·

P2-G1(1− s)⊕ F
′
1

P1-IV

where

P1 =
(
fN1 M ′

1

)
, P2 =

(
N2 X2
0 M ′

2

)
,

X2 is a matrix such that fN1X2 = −M ′
1M

′
2 and, in general, for i > 2,

Pi =

(
Ni Xi

0 Mi

)

with Xi satisfying the equality Ni−1Xi = −Xi−1Mi.
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3. Minimal generators and last syzygies for partial intersections

In this section we compute a minimal set of generators of a partial intersection scheme of
codimension c of Pr.
Let V ⊂ Pr be a c-partial intersection with respect to the hyperplanes {Aij}, 1 ≤ i ≤ c

and 1 ≤ j ≤ ai, and support on the c-left segment A of size T = (a1, . . . , ac).
Recall that Aj = α̂c(α

−1
c (j)) is the set of (c− 1)-tuples H such that (H, j) ∈ A. Denote

by Vj the (c − 1)-partial intersection with support Aj and relative hyperplanes Aij, for

1 ≤ i ≤ c− 1. As we saw V =
c⋃
i=1

(Vj ∩Acj). Now, set IAij = (fij), where fij ∈ R1, for all i, j.

Finally, to every H = (m1, . . . ,mc) ∈ ST we associate the following form

PH =
c∏

i=1

mi−1∏

j=1

fij.

Theorem 3.1. Let V ⊂ Pr be a partial intersection of codimension c with support A. Then
a minimal set of generators for IV is

{PH | H ∈ F (A)}.

Proof. We use induction on c. For c = 1,A = {1, 2, . . . , a1}, F (A) = {a1+1}, the hyperplanes
are A1j, j = 1, . . . , a1, V =

⋃a1
j=1A1j, Pa1+1 =

∏a1
j=1 f1j, hence IV = (Pa1+1). Let us suppose

the theorem true for partial intersections of codimension c− 1. Using Lemma 1.6 we have

IV = IV1 + fc1IV2 + · · ·+ fc1 . . . fc,ac−1IVac + (fc1 . . . fcac).

By the inductive hypothesis IVj is minimally generated by Gj = {PH | H ∈ F (Aj)}, 1 ≤ j ≤
ac. Set

G = G1 ∪ fc1G2 ∪ . . . ∪
ac−1∏

j=1

fcjGac ∪

{
ac∏

j=1

fcj

}

.

Now, if we set F = {PH | H ∈ F (A)}, we prove that (G) = (F ).
Indeed, consider first

∏ac
j=1 fcj ∈ G; since H = (1, . . . , 1, ac + 1) ∈ F (A) and, trivially,

PH =
∏ac

j=1 fcj, we have
∏ac

j=1 fcj ∈ F. Take now 1 ≤ j ≤ ac, an element H ∈ F (Aj) and

the form g = PH
∏j−1

h=1 fch. We first show that there is an integer t, 1 ≤ t ≤ j, such that
(H, t) ∈ F (A). For this, define D = {n ∈ N | (H,n) ∈ A}. We want to show that

t =

{
maxD + 1 if D 6= ∅

1 if D = ∅

is the required integer, i.e. (H, t) ∈ F (A). Note that, t < j as (H, j) /∈ A. By definition of t,
clearly (H, t) /∈ A, so it remains to prove that S(H,t) ⊆ A. Take K ∈ S(H,t), write K = (K ′, u),
with K ′ ∈ Nc−1; since K < (H, t) we have either K ′ < H and u ≤ t or K ′ = H and u < t. In
the first case, K ′ ∈ SH and since H ∈ F (Aj) we have K ′ ∈ Aj, therefore (K ′, j) ∈ A; on the
other hand u ≤ t < j from which we get K = (K ′, u) ∈ A. In the second case, by definition
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of t, K = (K ′, u) ∈ A. Consider the form P(H,t) = PH
∏t−1

h=1 fch; then g = P(H,t)
∏j−1

h=t fch,
therefore g ∈ (F ). Conversely, consider an element PH with H ∈ F (A); write H = (H ′, u)
with H ′ ∈ Nc−1. We want to show that H ′ ∈ F (Au). Namely, H ′ /∈ Au since (H ′, u) /∈ A;
take now K < H ′, this implies (K, u) < (H ′, u), i.e. (K, u) ∈ SH ⊆ A, therefore K ∈ Au.

Then, PH = PH′
u−1∏
h=1

fch ∈ G.

It remains to prove that the set F of generators of IV is minimal. To do this, let
H = (m1,m2, . . . ,mc) ∈ F (A) and consider the linear variety L whose defining ideal is
IL = (f1m1 , f2m2 , . . . , fcmc), where we set fiai+1 = 0, for 1 ≤ i ≤ c. Observe that if PH ∈ IL
some linear factor of PH should stay in IL but this cannot happen by the genericity of the
hyperplanes Aij. On the other hand, for every K = (n1, . . . , nc) ∈ F (A) with K 6= H, PK
belongs to IL : in fact, since K 6≤ H there is an integer t such that nt > mt which implies
that mt ≤ at, therefore ftmt 6= 0 and it divides PK , i.e. PK ∈ IL. Since this was proved for
every H ∈ F (A) we get that the set F of generators of IV is minimal.

The previous theorem, in particular, shows that the first graded Betti numbers of partial
intersections are determinated by its support.

Corollary 3.2. Let V be as above then its first graded Betti numbers depend only on A and
they are the following integers

dH = v(H)− c ∀ H ∈ F (A).

Now we compute the last graded Betti numbers of a c-codimensional partial intersection in
terms of its support.
Let V be a c-codimensional partial intersection with support A of size T = (a1, . . . , ac)

and respect to the families of hyperplanes {Aij} whose defining forms are fij. Consider the
complete intersection Z where

IZ =

(
a1∏

j=1

f1j, . . . ,

ac∏

j=1

fcj

)

.

Let V ∗ be the scheme linked to V in the complete intersection Z.

Proposition 3.3. V ∗ is a partial intersection of codimension c with support A∗.

Proof. Observe first that V ∗ =
⋃
H∈ST \A

LH . Now consider the following families of hyper-

planes Bij = Ai,ai+1−j. With respect to these families we see that V
∗ =

⋃
H∈CT (ST \A)

L′H =⋃
H∈A∗ L

′
H .

Theorem 3.4. Let V ⊂ Pr be a partial intersection of codimension c with support A. Then
the last graded Betti numbers of V are

sH = v(H) ∀ H ∈ G(A).



296 A. Ragusa; G. Zappalà: Partial Intersections and Graded Betti Numbers

Proof. By liaison theory we know that the degrees of a set of generators for the last
syzygies of IV can be computed in terms of the degrees of a set of generators for IV ∗ , precisely,
sH = v(T )− v(H) + c, for all H ∈ F (A∗). By item 2. of Proposition 1.3 we have F (A∗) =
CT (G(A)) ∪ {T ∗1 , . . . , T

∗
c }. On the other hand, one of these syzygies is not minimal if and

only if it comes from a generator of IV ∗ which is also a generator for IZ . But IV ∗ and IZ
have a common generator only for those i ∈ {1, . . . , c} such that Ti = T ∗i . Then, using item
3. of the mentioned proposition we have that the minimal syzygies are exactly those coming
from CT (G(A)). Therefore, the degrees of a minimal set of generators for the last syzygies
are v(T )− v(K) + c, for K ∈ CT (G(A)); now, write K = T + I −H with H ∈ G(A) and we
obtain that

sH = v(T )− v(K) + c = v(T )− (v(T ) + v(I)− v(H)) + c = v(H).

From the previous results it follows easily

Corollary 3.5. For a c-partial intersection X with support on a c-left segment A the fol-
lowing are equivalent
1. X is a complete intersection;

2. X is arithmetically Gorenstein;

3. A is principal.

Remark 3.6. All the graded Betti numbers for a 3-codimensional partial intersection V can
be computed easily in terms of A. Precisely, from the previous results we know the generators’
and last syzygies’ degrees and the Hilbert function; therefore, using the relationship α2j =
∆r+1HV (j) + α1j + α3j we can compute the second syzygies’ degrees.

Example 3.7. Since we are now able to compute all the graded Betti numbers for any
partial intersection V ⊂ Pr of codimension 3 we will apply the results to the Example 2.2.
The support A of V was minimally generated by

G(A) = {(1, 2, 3), (2, 3, 2), (3, 4, 1), (4, 1, 3),

(4, 2, 2), (4, 3, 1), (5, 1, 2), (5, 2, 1)};

thus, one can compute first A∗ getting

G(A∗) = {(1, 4, 1), (4, 3, 1), (5, 2, 1), (1, 3, 2),

(3, 2, 2), (5, 1, 2), (1, 2, 3), (2, 1, 3)};

then
F (A) = {(5, 1, 3), (2, 2, 3), (1, 3, 3), (5, 2, 2), (3, 3, 2),

(1, 4, 2), (5, 3, 1), (4, 4, 1), (6, 1, 1), (1, 5, 1), (1, 1, 4)}.

Applying the previous results a minimal free resolution of IV looks like

0 -R(−6)⊕R(−7)⊕R(−8)6 -R(−5)5 ⊕R(−6)2 ⊕R(−7)11 -

-R(−3)⊕R(−4)4 ⊕R(−5)2 ⊕R(−6)4 -IV -0.

We conclude this section emphasizing that these partial intersections can be used to provide
schemes with fixed generators’ degrees or syzygies’ degrees (for instance level schemes or
schemes with an assigned Cohen Macaulay type).
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4. Linear decompositions of Hilbert functions

The goal of this section is to construct partial intersections with a given Hilbert function H.
For this we will give the notion of linear decomposition of an O-sequence and we will explain
the connection with the c-left segments.
Decompositions of Hilbert functions were used by Geramita, Harima and Shin. Never-

theless our decompositions will generalize those in [8] and will have unimportant overlap
with those in [10].
If ϕ : N0 → N is an O-sequence we call the integer ϕ(1) the embedding dimension of ϕ

and the set of integers n such that ϕ(n) 6= 0 the support of ϕ; furthermore if ϕ and ψ are
O-sequences such that ϕ(n) ≥ ψ(n) for every n ∈ N0, we will write simply ϕ ≥ ψ.

Definition 4.1. Let ϕ be an O-sequence with finite support, ϕ(1) = c ≥ 2. A linear decom-
position of ϕ is a succession of O-sequences of embedding dimension < c, (ϕ1, ϕ2, . . . , ϕd)
such that
1) ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕd;

2) ϕ(n) =
d∑
j=1

ϕj(n+ 1− j)

for every n ∈ N0 (we use the convention ϕ(n) = 0 for all n < 0).
A linear decomposition of ϕ, (ϕ1, ϕ2, . . . , ϕd) is said principal if d = min {n ∈ N |

ϕ(n) <
(
c+n−1
n

)}
.

All the O-sequences ϕ, ϕ(1) = c ≥ 2, with finite support, have principal linear decomposi-
tions. For instance now we build, recursively, the maximal decomposition (ϕ1, ϕ2, . . . , ϕd) of
ϕ (the proofs can be deduced by [9], Theorem 2.3), where

d = min

{
n ∈ N

 ϕ(n) <
(
c+ n− 1

n

)}
.

Note that every linear decomposition (ψ1, . . . , ψe) of the O-sequence ϕ has e ≥ d.
If ϕ′1 = ϕ, ϕ1 is defined by

ϕ1(0) = 1; ϕ1(1) = c− 1; ϕ1(n) = min
{
ϕ1(n− 1)

<n−1>, ϕ′1(n)
}
.

Let us suppose that we built the O-sequences ϕ′j−1 and ϕj−1, then we define for 2 ≤ j ≤ d

ϕ′j(n) = ϕ
′
j−1(n+ 1)− ϕj−1(n+ 1),

and for 2 ≤ j ≤ d− 1

ϕj(0) = 1; ϕj(1) = c− 1; ϕj(n) = min
{
ϕj(n− 1)

<n−1>, ϕ′j(n)
}
;

note that

min

{
n ∈ N

 ϕ′j(n) <
(
c+ n− 1

n

)}
= d− j + 1;

finally we set ϕd = ϕ
′
d.

The linear decomposition of ϕ that we obtain in this way is maximal in the sense that
every linear decomposition (ψ1, . . . , ψe) must satisfy ψi ≤ ϕi for i = 1, . . . , d.
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Remark 4.2. Note that if ϕ and ψ are O-sequences, with finite support, ϕ(1) = ψ(1), such
that ϕ ≥ ψ and (ϕ1, ϕ2, . . . , ϕd), (ψ1, ψ2, . . . , ψe) are their maximal linear decompositions,
then d ≥ e and ϕj ≥ ψj for 1 ≤ j ≤ e.

If A is a c-left segment, the function ϕ : N0 → N, defined by

ϕ(n) =
 {H ∈ A | v(H) = n+ c}



is an O-sequence, with finite support, ϕ(1) ≤ c : in fact if V ⊂ Pr, r ≥ c, is a partial
intersection with support on A, as we have seen in Theorem 2.1, ϕ = ∆r−c+1HV .We will call
ϕ the O-sequence associated to the c-left segment A.
If A is a degenerate c-left segment and ϕ is its associated O-sequence, then ϕ(1) = c′ < c.

If A is degenerate, let J ⊆ {1, 2, . . . , c}, |J | = c− c′, such that αj(H) = 1 for every H ∈ A
and j ∈ J. Denote α̂J : Nc → Nc

′
the map which kills the indices belonging to J. Then

A′ = α̂J(A) is a not degenerate c′-left segment such that its associated O-sequence is again
ϕ; consequently, we can limit ourselves to consider only not degenerate c-left segments.
Every not degenerate c-left segment A provides linear decompositions of its associated

O-sequence ϕ. Now we will construct a particular linear decomposition of ϕ, σ(A), depending
on A.
If d = max {αc(H) | H ∈ A} , Aj = α̂c(α

−1
c (j)), for 1 ≤ j ≤ d and ϕj is the O-sequence

associated to Aj, then σ(A) = (ϕ1, ϕ2, . . . , ϕd) is a linear decomposition of ϕ. In fact, since
A is not degenerate we have that ϕj(1) < ϕ(1) for 1 ≤ j ≤ d; since Aj ⊇ Aj+1, ϕj ≥ ϕj+1

for 1 ≤ j ≤ d − 1; finally ϕ(n) =
d∑
j=1

ϕj(n + 1 − j) for every n ∈ N0 as it was shown in the

proof of Theorem 2.1.
Now we prove the following

Proposition 4.3. If ϕ is an O-sequence with finite support, ϕ(1) = c, then there exists a
not degenerate c-left segment Aϕ whose associated O-sequence is just ϕ. Moreover if ϕ and
ψ are O-sequences, with finite support, such that ϕ ≥ ψ then Aϕ ⊇ Aψ.

Proof. We work by induction on c.
If c = 1, ϕ(1) = 1, so there is an integer u such that ϕ(n) = 1 for 0 ≤ n ≤ u − 1,

and ϕ(n) = 0 for n ≥ u. Then Aϕ = {1, 2, . . . , u} is an 1-left segment whose associated
O-sequence is ϕ. Moreover if ϕ and ψ are O-sequences, ϕ(1) = ψ(1) = 1, with finite support,
such that ϕ ≥ ψ then it is trivial that Aϕ ⊇ Aψ.
Suppose the proposition is true for O-sequences with finite support whose embedding

dimension is less than c, and let ϕ be an O-sequence, with finite support, such that ϕ(1) = c.
Let (ϕ1, ϕ2, . . . , ϕd) be its maximal decomposition. Recall that ϕj(1) ≤ c− 1 for 1 ≤ j ≤ d.
Let Aj = Aϕj for 1 ≤ j ≤ d − 1; set cd = ϕd(1) and βd : Ncd → Nc−1 the map defined
by βj(H) = (H, 1, . . . , 1) let Ad = βd(A

ϕd). Since ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕd, by the inductive
hypothesis we have that A1 ⊇ A2 ⊇ . . . ⊇ Ad.
If j is an integer let αj : Nc−1 → Nc be the map defined by αj(H) = (H, j), for every

H ∈ Nc−1. Now we set A = Aϕ =
d⋃
j=1

αj(Aj).
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A is a c-left segment. Namely, if H ∈ A and K ∈ SH , we can write H = (H
′, t),

K = (K ′, u) where H ′, K ′ ∈ Nc−1, K ′ ≤ H ′ and u ≤ t. But H ∈ A, so H ′ ∈ At; since At is a
(c− 1)-left segment K ′ ∈ At ⊆ Au, i.e. K = (K ′, u) ∈ αu(Au) ⊆ A.
Now we prove that the O-sequence associated to A is just ϕ. In fact

ϕ(n) =
d∑

j=1

ϕj(n+ 1− j) =
d∑

j=1


{
H ∈ Aj

v(H) = n+ 1− j + c− 1
}

=
d∑

j=1


{
H ∈ αj(Aj)

v(H) = n+ c
} =


{
H ∈ A

v(H) = n+ c
},

since αj(Aj) ∩ αh(Ah) = ∅, for every j 6= h.
Finally we prove that if ϕ ≥ ψ are O-sequences with finite support, ϕ(1) = ψ(1) = c,

then Aϕ ⊇ Aψ. Let (ϕ1, ϕ2, . . . , ϕd), (ψ1, ψ2, . . . , ψe) be the maximal decompositions of ϕ
and ψ respectively; we know that d ≥ e and ϕj ≥ ψj for 1 ≤ j ≤ e. Given H ∈ Aψ, there is an
index t, 1 ≤ t ≤ e, such that H ∈ αt((Aψ)t), so we can write H = (H ′, t), H ′ ∈ (Aψ)t. Since
ϕt ≥ ψt and ϕt(1) = ψt(1) ≤ c − 1 we have that (Aψ)t ⊆ (Aϕ)t, which implies H ′ ∈ (Aϕ)t,
i.e. H ∈ Aϕ.

Our next result will permit to construct for every Hilbert function H (admissible for aCM
schemes) many partial intersections V ⊂ Pr (with different supports and different graded
Betti numbers) with HV = H.

Theorem 4.4. If ϕ is an O-sequence with finite support, ϕ(1) = c ≥ 2, and σ is a linear
decomposition of ϕ, then there exists a not degenerate c-left segment A such that σ(A) = σ.
In particular, the O-sequence associated to A is ϕ.

Proof. Let σ = (ϕ1, ϕ2, . . . , ϕd). It is enough to prove that for 1 ≤ j ≤ d there exists a
(c − 1)-left segment Aj whose associated O-sequence is ϕj and such that Aj ⊇ Aj+1 for

1 ≤ j ≤ d − 1. If this happens we can set A =
d⋃
j=1

αj(Aj). Now we describe a way to build

such Aj’s.
Let cj = ϕj(1) and βj : Ncj → Nc−1 be the map defined by βj(H) = (H, 1, . . . , 1) and

call Aj = βj(A
ϕj). Since c1 ≥ c2 ≥ . . . ≥ cd, these A′js have the requested property.

Remark 4.5. Partial intersections generalize the notion of k-configuration in [9], where the
authors use n-type vectors to show that every k-configuration has the extremal resolution
(relative to the Hilbert function) described by Bigatti, Hulett and Pardue ([2], [12], [15]).
Partial intersections allow us to build not only extremal resolutions but a great deal of other
resolutions which agree with a fixed Hilbert function H.

At this point the following question arises in a natural way: letW be a c-codimensional aCM
scheme; does there exist a partial intersection V with the same graded Betti numbers of W ?
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For c = 1, 2 the answer is positive (see [14] for c = 2). For c ≥ 3 the answer is negative.
Indeed, let W be an arithmetically Gorenstein scheme. If A is the left segment support of
a partial intersection V with same graded Betti numbers of W, then, using Theorem 3.4, we
have A = ST for some c-tuple T, so V is a complete intersection. Since for every c ≥ 3 there
are arithmetically Gorenstein schemes which are not complete intersections we are done.

Example 4.6. Consider the following O-sequence

ϕ = (1, 3, 5, 2, 0→).

For every r ≥ 3 there are aCM schemes X ⊂ Pr such that ∆r−2HX = ϕ. Looking at
∆3ϕ = (1, 0,−1,−5, 6, 1,−2, 0→), since −α1j + α2j − α3j = ∆3ϕ(j), one sees that any such
a scheme should have one generator in degree 2, 5 generators in degree 3, no generator in
degree > 4, and by the mentioned result of Bigatti, Hulett, Pardue, at most 2 generators in
degree 4.
The O-sequence ϕ has three principal linear decompositions:

σ1 = ((1, 2, 3, 2, 0→), (1, 2, 0→))

σ2 = ((1, 2, 3, 1, 0→), (1, 2, 1, 0→))

σ3 = ((1, 2, 3, 0→), (1, 2, 2, 0→))

σ1 is the maximal decomposition. The 3-left segment

< (1, 4, 1), (2, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2) >

associated to σ1 provides the extremal resolution:

0 -R(−5)3 ⊕R(−6)2 -R(−4)8 ⊕R(−5)4 -

-R(−2)⊕R(−3)5 ⊕R(−4)2 -IX -0.

From this resolution we have that any scheme X with ∆r−2HX = ϕ can have 2 or 1 or no
generator in degree 4. The 3-left segment

< (2, 3, 1), (3, 2, 1), (1, 2, 2), (2, 1, 2) >

again associated to σ1, produces the graded minimal free resolution:

0 -R(−5)2 ⊕R(−6)2 -R(−4)7 ⊕R(−5)3 -

-R(−2)⊕R(−3)5 ⊕R(−4) -IX -0.

Finally, the 3-left segment
< (3, 1, 1), (1, 3, 2), (2, 2, 2) >

associated to σ3 provides the graded minimal free resolution:

0 -R(−5)⊕R(−6)2 -R(−4)6 ⊕R(−5)2 -

-R(−2)⊕R(−3)5 -IX -0.

In conclusion all the possible degrees for a minimal set of generators of a 3-codimensional
aCM scheme X ⊂ Pr such that ∆r−2HX = ϕ can be reached using partial intersections.
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We do not know if the same is possible for every 3-codimensional O-sequence.
The referee suggested us the following counterexample to the above question in codimen-

sion 4.
Take the O-sequence ϕ = (1, 4, 5, 0→). The generic set X of 10 points in P4 has the defin-

ing ideal IX generated by 5 quadratic forms. Nevertheless, there is no 4-partial intersection
Y consisting of 10 points with ∆HY = ϕ and with IY generated by just 5 forms in degree 2.
In fact, if we denote fij, i = 1, 2, 3, 4, the forms defining the 4 families of hyperplanes which
give such an Y with ∆HY = ϕ, in IY there are 5 forms of degree 2. But the only possible
quadratic forms in IY can be

f11f12, f11f21, f11f31, f11f41, f21f22, f21f31, f21f41, f31f32, f31f41, f41f42.

Now, if we take any 5 of the above forms we see that at least 2 of them should have a
common factor. This implies that IY has at least a first syzygy of degree 3. Now, from
∆4ϕ = (1, 0,−5, 0, 15,−16, 5, 0→) using again the relation −α1j +α2j−α3j +α4j = ∆4ϕ(j),
since ∆4ϕ(3) = −α13 + α23 = 0, we get that IY needs at least a generator of degree 3.
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