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Abstract. The natural mapping of the right quaternion vector space H2 onto
the quaternion projective line (identified with the four-sphere) can be defined for
complex quaternions H ⊗R C as well. We discuss its exceptional set, the fiber
subspaces, and how the linear automorphism groups of two-dimensional quaternion
vector spaces and modules induce groups of projective automorphisms of the image
quadrics.

1. Notation

Consider the skew fieldH of quaternions. We will use the usual notation a = a0+ia1+ja2+ka3
with real numbers ai and the ‘quaternion units’ i, j, k. The symbol a denotes the quaternion
a0− ia1− ja2− ka3 conjugate to a, and the quaternion norm is denoted by N(a). It has the
properties that N(a) = aa = aa = a20+a

2
1+a

2
2+a

2
3, and that N(ab) = N(a)N(b). The group

of unit quaternions will be identified with the three-sphere S3 = {a ∈ H | N(a) = 1}.
If V is a vector space over the field K, we write rkK, dimK, etc., to indicate the field,

if ambiguity is possible. Likewise we write PK(V ) for the projective space defined by V .
Nonetheless we use ‘standard’ notation to indicate ‘standard’ objects: The real projective
space PR(H2) is of dimension seven and will be denoted simply by P 7. The subset {(q0, q1) |
N(q0)+N(q1) = 1} of H2 is called its unit seven-sphere and is denoted by S7. P 7 arises from
S7 by identification of antipodal points.
The projective line PH(H2) is the set of one-dimensional right quaternion linear subspaces

of H2, and is denoted by P 1(H), i.e.,

P 1(H) = {(q0, q1)H | (q0, q1) 6= (0, 0)}. (1)
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2. The Hopf mapping P 7 → S4

The topology of P 1(H) as induced by the natural mapping H2 → P 1(H) is homeomorphic
to S4. This homeomorphism is explicitely realized by the stereographic projection: The real

vector space H⊕ R contains the unit sphere S4 = {
[
y

η

]
∈ H⊕ R | N(y) + η2 = 1}.

The stereographic projection σ : P 1(H)→ S4 is defined by

σ(
[ 1
y

]
H) =

1

N(y) + 1

[ 2y
N(y)− 1

]
, (2)

σ(
[ 0
1

]
H) =

[ 0
1

]

and

σ−1
[
y

η

]
=
[ 1− η
y

]
H. (3)

The Hopf mapping is usually defined as the mapping from S7 onto P 1(H), which maps
[
q0
q1

]

to
[
q0
q1

]
H. We will use the fact that both

[
q0
q1

]
and

[
−q0
−q1

]
are mapped to the same projective

point, and use the mapping
[
q0
q1

]
R 7→

[
q0
q1

]
H. In order to make the image a sphere embedded

into a real vector space, we define the Hopf mapping ϕ by

ϕ : P 7 → S4, ϕ(
[
q0
q1

]
R) = σ−1(

[
q0
q1

]
H). (4)

The ϕ-preimage of
[
y
η

]
∈ S4 equals

ϕ−1
[
y
η

]
=
[
1− η
y

]
H. (5)

The set
[
1− η
y

]
H has an interpretation as a projective point of P 1(H), a one-dimensional

right quaternion linear subspace of H2, as a four-dimensional real linear subspace of H2, or a
three-dimensional subspace of P 7.

Remark. We let H = {1,−1} ⊂ H and consider the group G = S3/H, which is isomorphic
to SO3. The group G acts on the fibers of ϕ in the following way: If g = a ·H = ±a, then

g(
[
p0
q1

]
R) = ±

[
p0a
q1a

]
R =

[
p0a
q1a

]
R. This makes ϕ : P 7 → S4 a principal SO3-bundle over the

base space S4 (cf. [3], p. 105).

We embed the affine space H ⊕ R into the real projective space P 5 = PR(R ⊕ H ⊕ R). The

point
[
y
η

]
∈ H⊕ R is identified with the projective point

[
1
y
η

]

R. Consider the mapping

ψ : H2 → R⊕H⊕ R, ψ
[
a
b

]
=

[ N(a) +N(b)
2ba

N(b)−N(a)

]

. (6)
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Because
1

N(q1q
−1
0 )

[ 2q1q
−1
0

N(q1q
−1
0 )− 1

]
=

1

N(q1) +N(q0)

[ 2q1q0

N(q1)−N(q0)

]
, (7)

we have the equivalence

ψ
[
a
b

]
R =

[
y0
y
y5

]

R ⇐⇒ ϕ
[
a
b

]
=
1

y0

[
y
y5

]
. (8)

If we use coordinates with respect to the bases
[
1
0

]
,
[
i
0

]
,
[
j
0

]
,
[
k
0

]
,
[
0
1

]
,
[
0
i

]
,
[
0
j

]
,
[
0
k

]
and

[
1
0
0

]

,

[
0
1
0

]

,

[
0
i
0

]

,

[
0
j
0

]

,

[
0
k
0

]

,

[
0
0
1

]

, ψ reads

ψ




x0
...
x8



 =





x20 + x
2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6 + x

2
7

2(+x0x4 + x1x5 + x2x6 + x3x7)

2(−x0x5 + x1x4 − x2x7 + x3x6)

2(−x0x6 + x1x7 + x2x4 − x3x5)

2(+x0x7 + x1x6 − x2x5 − x3x4)

x24 + x
2
5 + x

2
6 + x

2
7 − x

2
0 − x

2
1 − x

2
2 − x

2
3





. (9)

3. The projective automorphism group of S4

The group S3 acts as a subgroup of SO8 via right translations Ra
[
q0
q1

]
=
[
q0a
q1a

]
, and this action

leaves the fibers of ϕ invariant. This right multiplication however is not right H-linear, but
semilinear with respect to the inner automorphism x 7→ a−1xa of H.
We ask if the action of SO5 on S

4 is induced by a subgroup of SO8, or by a subgroup of
GL(2,H). It will turn out that the answer to an even more general question is affirmative.
We use the notation PGL(S4) ≤ PGL5 for the projective automorphisms of the unit sphere
when embedded into P 5. A projective automorphism xR 7→ (A · x)R is determined by the
set of scalar multiples AR of a regular matrix A. It leaves the quadric xT ·J ·x = 0 invariant,
if and only if ATJA = λJ with λ 6= 0. Thus

PGL(S4) = {AR | ATJA = λJ}, (10)

J =




−1
1 . . .

1



, λ ∈ R \ 0.

Lemma 1. PGL(S4) has two connected components. The component containing the identity,
which consists of orientation-preserving transformations, is denoted by PGL+(S4), and is
isomorphic to SO5,1/{±1}.

Proof. If λ < 0 in equation (10), then the matrix A = A/
√
|λ| fulfills A

T
JA = −J . This

means that the last five column vectors of A span a subspace where the scalar product
〈x, y〉 = xTJy is negative definite in. This contradicts the inertia theorem, so λ > 0.
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Let O5,1 = {A | ATJA = J} and SO5,1 = {A ∈ O5,1 | det(A) > 0}. Then for all
AR ∈ PGL(S4), A/

√
λ ∈ O5,1. Conversely, A ∈ O5,1 implies that AR ∈ PGL(S4). This shows

the isomorphism PGL(S4) ∼= O5,1/{±1}. The group SO5,1 has two connected components,
distinguished by the sign of the upper left 5× 5 minor (cf. [1], p. 44). As this minor is of odd
order, SO5,1/{±1} is connected, which shows the statement of the theorem. 2

Lemma 2. The Hopf mapping provides an isomorphism

ϕ? : GL(2,H)/R× ∼= PGL+(S4), ϕ?(LR) = ϕLϕ−1. (11)

Here R× denotes the subgroup of homothetical transformations with nonzero real factors.

Proof. We first note that

[
a b

c d

][ 1
q

]
=
[ 1
d−1(1 + (d−1c− a−1b)(q + a−1b)−1a−1)

]
H, (12)

wherever defined. This shows that L ∈ GL(2,H) induces in P 1(H) a composition of trans-
formations of the following types: q 7→ q + a, q 7→ qa, q 7→ aq, and q 7→ 1/q. All of them are
Möbius transformations and map the set of lines and circles onto itself. This property is not
destroyed by σ, and so ϕ?L = ϕLϕ

−1 maps circles to circles. It is well known (cf. [2], p. 992)
that then ϕ?L = κ|S4 with κ ∈ PGL(S4). Because GL(2,H) is connected, κ ∈ PGL+(S4)
(the connectedness of GL(2,H) can be shown in a way completely analogous to the proof of
Lemma 13).
Clearly ϕ? : GL(2,H) → PGL(S4) is a homomorphism with kerϕ? consisting of the

homothetical transformations
[
a
b

]
7→ λ

[
a
b

]
, λ ∈ R. To show that ϕ? is onto, we allow a

topological argument:

dimRGL(2,H) = 16,
dimRGL(2,H)/R× = dimR PGL+(S4) = 15, (13)

and PGL+(S4) is connected. The image of ϕ? is an open subgroup of PGL
+(S4) because ϕ? is

of constant rank 15 (its kernel has dimension one), and therefore coincides with PGL+(S4). 2

We are going to find explicit ϕ?-preimages of generators of SO5. The stabilizer of
[
0
1

]
in SO5

is isomorphic to SO4 and acts on the invariant subspace H⊕ 0. We know that every element
of SO4, when acting in the standard way on the three-sphere S

3 ⊂ H, is a product of a left
and a right multiplication with unit quaternions. Thus all γ ∈ SO5 with γ

[
0
1

]
=
[
0
1

]
have

the form

γ
[
y
η

]
= λaρ

−1
b

[
y
η

]
=
[
ayb−1

η

]
. (14)

If a, b ∈ S3 and ϕ
[
q0
q1

]
=
[
y
η

]
, we have

ϕ
[
bq0
aq1

]
= σ−1

[ 1

aq1q
−1
0 b

−1

]
R



Johannes Wallner: Hopf Mappings for Complex Quaternions 249

=
1

N(bq0) +N(aq1)

[ 2aq1q̄0b̄
N(aq1)−N(bq0)

]

=
1

N(q0) +N(q1)

[ 2aq1q̄0b
−1

N(q1)−N(q0)

]
=
[
ayb−1

η

]
.

by multiplicativity of N(·). Thus the action of SO4 as stabilizer of c(0, 1) in SO5 is induced
by the subgroup of matrices

La,b =

[
a 0
0 b

]
∈ GL(2,H), (a, b ∈ S3). (15)

Consider the subgroups

σ1,t :




y1
...
y5



 7→





y1 cos t− y5 sin t
y2
y3
y4

y1 sin t+ y5 cos t




, (16)

σa,t = λaσ1,tλ
−1
a . (17)

The family σ1,t of rotations generates SO5 together with the stabilizer of
[
0
1

]
. It is directly

verified that for all
[
y
η

]
∈ S4 the equation

((1− η) sin t+ y cos t)((1− η) cos t− y sin t)−1 (18)

= (y1 cos 2t− η sin 2t+ iy2 + jy3 + ky4)

(1− (η cos 2t+ y1 sin 2t))
−1

holds. This means that

S1,t =

[
cos t − sin t
sin t cos t

]
=⇒ ϕS1,tϕ

−1 = σ1,2t ∈ SO5. (19)

It follows that σa,2t is induced by

Sa,t = ϕ
−1σa,2tϕ =

[
1 0
0 a

][
cos t − sin t
sin t cos t

][
1 0
0 a

]
. (20)

At last we see that

I =

[
0 1
1 0

]
=⇒ ι

[
y
η

]
= ϕIϕ−1

[
y
η

]
=
[
y
−η

]
. (21)

We define the R-basis
[
1
0

]
, . . . ,

[
0
k

]
,
[
0
1

]
, . . . ,

[
0
k

]
ofH2 to be orthonormal. Then the following

makes sense:

Lemma 3. The preimage ϕ−1? (SO5) is contained in SO8 ∩GL(2,H).
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Proof. The right H-linear automorphisms Sa,t and La,b of H2 are contained in SO8, if we see
them as R-linear automorphisms of R8. 2

Lemma 4. Consider a point

[
y0
y
y5

]

R ∈ S4 ⊂ (R ⊕ H ⊕ R) ∼= P 5. We define the vectors

v1, . . . , w6 ∈ H2 by

w3 =
[
y0 − y1
y − y5 − y1

]
, w4 =

[
y0 − y2

y − iy5 − iy2

]
,

w5 =
[
y0 − y3

y − jy5 − jy3

]
, w6 =

[
y0 − y4

y − ky5 − ky4

]
,

v1 =
[
y0 − y5
y

]
, v2 =

[
y

y0 + y5

]
, v3 =

[ 1 1
−1 1

]
· w3,

v4 =
[ 1 −i
−i 1

]
· w4, v5 =

[ 1 −j
−j 1

]
· w5, v6 =

[ 1 −k
−k 1

]
· w6.

Then the preimage ϕ−1
[
y0
y
y5

]

equals v1H = . . . = v6H.

Proof. equation (3) shows the result for v1. The equation v2 = I−1ϕ−1ι(v1) shows the

statement for v2. The rest is a translation of the formulas w3 = ϕ−1σ1,π
2
( 1
y0

[
y
y5

]
), w4 =

ϕ−1σi,π
2
( 1
y0

[
y
y5

]
), w5 = ϕ−1σj,π

2
( 1
y0

[
y
y5

]
), w6 = ϕ−1σk,π

2
( 1
y0

[
y
y5

]
), and v3 =

1√
2
S−11,π

4
(w3),

v4 =
1√
2
S−1i,π

4
(w4), v5 =

1√
2
S−1j,π

4
(w5), v6 =

1√
2
S−1k,π

4
(w6). 2

4. Complex quaternions

Definition. The tensor product
H̃ = H⊗R C, (22)

is called the algebra of complex quaternions.

We denote the imaginary unit in C by the symbol iC. We further naturally extend the
definition of conjugate quaternion and norm, using the same formulas as in the real case).
The relationsN(a) = aa ∈ 1⊗C, N(ab) = N(a)N(b), a−1 = 1

N(a)
a remain true. A polynomial

identity in quaternions carries over to a polynomial identity for complex quaternions, as the
embedding H → H̃ defines a homomorphism H[x1, . . . , xn] → H̃[x1, . . . , xn] of polynomial
rings.
Consider the left and right multiplication operators λa and ρa, which are defined by

λa(x) = ax and ρa(x) = xa.

Lemma 5. The sets H̃a and aH̃ are C-linear subspaces of H̃. Their C-dimension equals four
if N(a) 6= 0, and two if N(a) = 0, a 6= 0. In the latter case ker(ρa) = aH̃ and ker(λa) = H̃a.
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Figure 1. Left: The quadric N(x) = 0 in PC(H⊗ C). Right: see the proof of Lemma 8.

Proof. The coordinate matrix of λa with respect to the basis (1⊗1+ i⊗ iC, 1⊗1− i⊗ iC, j⊗

1 + k ⊗ iC, j ⊗ 1− k ⊗ iC) is given by La =
[
B1 −B2
B2 B1

]
, with

B1 =
[
a0 − iCa1 0
0 a0 + iCa1

]
, B2 =

[ 0 a2 − iCa3
a2 + iCa3 0

]
. (23)

If one of a0± iCa1, a2± iCa3 is nonzero (which is the case if a 6= 0), then obviously rk(λa) ≥ 2,

and dimC(kerλa) ≤ 2. The determinant of λa equals N(a)2, so dimC(aH̃) = 4 if N(a) 6= 0.
The same results hold for aH̃, because xa = āx̄ for all x, a.
If N(a) = 0, then H̃a ⊂ kerλā. Because dim(H̃a) = rk(λa) ≥ 2, we have actually

dim(H̃a) = 2 and H̃a = kerλā. The argument for aH̃ is similar. 2

Consider the three-dimensional complex projective space PC(H̃), consisting of elements aC
with a ∈ H̃. The equation N(a) = 0 defines a quadric, i.e., a nonsingular quadratic variety.
It carries two families of projective subspaces of C-dimension one (its generator lines), which
have the property that (i) all points of the quadric are incident with exactly one line of each
family (ii) any two lines of different families intersect in one point.

Lemma 6. If N(a) = 0, then the sets aH̃ and H̃a coincide with the two generator lines of
the quadric N(x) = 0 incident with aC. One family of generators consists of the sets aH̃, the
other one of the sets H̃a.

Proof. By Lemma 5, the subspaces aH̃ and H̃a are of C-projective dimension one. Obviously
they are contained in the quadric N(x) = 0. As all points of this quadric are incident with
exactly one generator line, this description exhausts all generators.
If ab 6= 0, the generators aH̃ and H̃b intersect in abC, which shows that they belong to

different families of generators (cf. Fig. 1). 2
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5. Extension of the Hopf mapping to H⊗ C.

We consider the affine space H̃⊕ C, and embed it into the projective space

P 5(C) ∼= PC(C⊕ H̃⊕ C) (24)

via
(a, λ) 7→ (1, a, λ)C.

The projective extension S4(C) of the complex unit sphere has the equation

S4(C) : y20 = N(y) + y25. (25)

Further we consider the mapping

ψ̃ : H̃⊕ H̃→ C⊕ H̃⊕ C,
[
a
b

]
7→

[ N(a) +N(b)
2ba

N(b)−N(a)

]

. (26)

There is a corresponding mapping

ϕ̃ : P 7(C)→ P 5(C), ϕ̃(
[
a
b

]
C) = ψ̃

[
a
b

]
C, (27)

which is undefined for those
[
a
b

]
with ψ̃

[
a
b

]
= 0.

Lemma 7. ψ̃ is zero (and ϕ̃ is undefined) precisely for the elements of the set

ψ−1(0) = {
[
ca
da

]
| N(a) = 0} = {

[
a
da

]
| N(a) = 0}. (28)

Proof. Obviously ψ
[
ca
da

]
=

[ (N(c) +N(d))N(a)
cN(a)d

(N(d)−N(a))N(a)

]

= 0 for all c, d if N(a) = 0, which shows

the ‘⊇’ part of the statement. We show the reverse inclusion:
If N(a) +N(b) = N(a)−N(b) = 0 then N(a) = N(b) = 0. If N(a) = 0, Lemma 6 shows

that the set of x such that xā = 0 equals H̃a. This implies ψ−1(0) = {
[
a
da

]
| N(a) = 0}.

This set is contained in {
[
ca
da

]
| N(a) = 0}, and we are done. 2

We show a lemma whose proof uses geometry to show an algebraic relation:

Lemma 8. If a, b, a′, b′ are complex quaternions of zero norm, then the equation b′a′C = baC
is equivalent to a′ = ax, b′ = by.

Proof. Consider the quadric N(x) = 0 in H̃ and its two families of generator lines. Generators
of the same family do not intersect unless they are equal, and generators of different families
intersect in precisely one point. b′a′C = baC means that the generators b′H̃ and bH̃ intersect,
and therefore are equal. Likewise the generators H̃a′ and H̃ā are equal. Thus b′ = bx and
a′ = ȳā (see Fig. 1).
Conversely, a′ = ax, b′ = by imply these equalities of generator lines. Generators of

different families intersect in precisely one point, which must be b′aC = ba′C. 2
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Theorem 1. The image of ϕ̃ = S4(C). If v1, . . . , v6 are defined as in Lemma 4 with scalars

1⊗ 1, i⊗ 1, j⊗ 1 and k⊗ 1 instead of 1, i, j, and k, then the preimage ψ̃−1
[
y0
y
y5

]

C of a point

of S4(C) contains the vectors v1, . . . , v6. There is an r such that ϕ̃(vrC) =
[
y0
y
y5

]

C.

Proof. It follows directly from Lemma 4 that for all r the vectors ψ̃(vr) and

[
y0
y
y5

]

are C-

linearly dependent. We show that ϕ̃ is onto, i.e., there is an r such that ψ̃(vr) is nonzero.

If ψ̃(v1) = 0, then (y0− y5)2 = 0, which means y0− y5 = 0. If ψ̃(v2) = 0, then necessarily

y0 + y5 = 0. This shows that

[
y0
y
y5

]

is a ψ̃-image if either y0 or y5 are nonzero.

Now consider the case y0 = y5 = 0. If

[
0
y
0

]

∈ S4(C), then yy = 0. If y1 6= 0, consider

w3 =
[
−y1
y − y1

]
and v3 =

[
−2y1 + y
y

]
. Then ψ̃(v3) =

[
0

y(−2y1 + y)
0

]

C =
[

0
−2y1y
0

]

C =
[
0
y
0

]

C. If y2 6= 0, we use v4 instead of v3, and analogously for the cases y3 6= 0 and y4 6= 0. 2

Lemma 9. The complete ϕ̃-preimage of a point

[
y0
y
y5

]

C ∈ P 5(C) consists of ψ̃−1(0) and

a three-dimensional projective subspace U ≤ P 7(C). Assume that ψ̃(a, b) =
[
y0
y
y5

]

C. If

y0 = y5 = 0, then U =
[
a
0

]
H̃+

[
0
b

]
H̃. Otherwise, U =

[
a
b

]
H̃.

Proof. We let ψ̃
[
a
b

]
=

[
y0
y
y5

]

∈ C⊕ H̃⊕ C. In the proof we consider only points where ϕ̃ is

defined, i.e., ψ̃ is nonzero.
There are the equivalences

(i) N(a) 6= 0, N(b) 6= 0 ⇐⇒ y0 6= ±y5,

(ii) N(a) = 0, N(b) 6= 0 ⇐⇒ y0 = y5 6= 0,

(iii) N(a) 6= 0, N(b) = 0 ⇐⇒ y0 = −y5 6= 0,

(iv) N(a) = 0, N(b) = 0 ⇐⇒ y0 = y5 = 0,

(29)

and it is obviously sufficient to treat cases (i)–(iv) separately. If N(a) 6= 0, there exists

a−1 and ψ̃
[
a
b

]
= ψ̃
[
1
ba−1

]
. The mapping ψ̃ is injective for vectors

[
1
x

]
. If N(a′) 6= 0 and
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ψ̃
[
a′

b′

]
C = ψ̃

[
a
b

]
C, we conclude b′a′−1 = ba−1 which means

[
b′

a′

]
=
[
ac
bc

]
. This shows the

result for cases (i) and (iii).
An analogous argument based on N(b) 6= 0 shows the result for cases (i) (again) and (ii).

As to case (iv), we do the following: If N(a) = N(b) = 0, then ψ̃
[
a
b

]
=

[
0
ba
0

]

. We look for

[
a′

b′

]
such that ψ̃

[
a′

b′

]
C = ψ̃

[
a
b

]
C. By Lemma 8, this is equivalent to b′ = bx, a′ = āȳ, or

[
a′

b′

]
=
[
ax
by

]
. 2

Definition. The three-dimensional subspaces U mentioned in Lemma 9 are called the fiber
subspaces of ψ̃.

Obviously the sets U \ ψ̃−1(0) form a partition of (H̃⊕ H̃) \ ψ̃−1(0).

Remark. Recall that the fiber subspaces of the complex Hopf mapping ϕ : P 3 → S2,

ϕC
[
q0
q1

]
R =

[
q0
q1

]
C are straight lines contained in an elliptic linear congruence. After a

complex extension, these lines meet the exceptional set of the Hopf mapping, which is a
union of two lines. The situation here is similar. A fiber subspace intersects ψ̃−1(0), because

ψ̃
[
ac
bc

]
= 0 if N(c) = 0.

Definition. We define two points of S4(C) to be parallel, if their span is contained in S4(C).

Lemma 10. The fiber subspaces of non-parallel points are skew. The fiber subspaces of a
plane of parallel points intersect in a common line, which is contained in the set ψ−1(0).

Proof. Assume that the fiber subspaces of ψ
[
a
b

]
and ψ

[
a′

b′

]
have a point in common, and that

both
[
a
b

]
and

[
a′

b′

]
belong to classes (i)–(iii) of the proof of Lemma 9. Then

[
ac
bc

]
=
[
a′c′

b′c′

]

with N(c) = 0,
[
ac
bc

]
6= 0. Further

[
ack
bck

]
=
[
a′c′k
b′c′k

]
for all k ∈ H, so these fiber subspaces

have a line in common.
The generator lines H̃c and H̃c′ of the quadric N(x) = 0 intersect in the point ac = a′c′,

so they are equal and c = c′k, N(k) 6= 0. Thus there is the following chain of equivalences:[
ac
bc

]
=
[
a′c′

b′c′

]
⇐⇒ a − a′k, b − b′k ∈ ker(Rc) = im(λc) ⇐⇒

[
a
b

]
=
[
a′

b′

]
k +

[
m
n

]
c with

k,m, n ∈ H̃, N(k) 6= 0 ⇐⇒
[
a
b

]
H̃ = (

[
a′

b′

]
+
[
m
n

]
c)H̃ with m,n ∈ H̃. Direct computation

shows that

ψ
[
a′ + λmc
b′ + µnc

]
= ψ
[
a′

b′

]
+ 2λ

[ (a′cm)0
b′cm

−(a′cm)0

]

+ 2µ

[ (b′cn)0
nc̄ā′

(b′cn)0

]

, (30)

where (·)0 denotes the first component with respect to the standard C-basis (1, i, j, k) ⊗ 1.
It is easily verified that this is indeed a parametrization of a plane, unless ac = bc = 0.
The remaining cases are similar, but to avoid computations we could also use the fact that
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GL(2, H̃) leaves the set ψ−1(0) invariant and apply one of the mappings Sa,t of the proof of
Lemma 9 such that neither

[
a
b

]
nor
[
a′

b′

]
belong to case (iv). 2

Lemma 11. For all planar sections c of S4(C) which are conics, there is a line c̃ with
ϕ̃(c̃) = c. The same is true for all lines of S4(C).

Proof. If the conic c is a planar section of S4(C), it does not contain parallel points, so the
fiber subspaces of c’s points do not intersect. We choose three points P1, P2, P3 ∈ c. Consider

their fiber subspaces U1, U2, U3. For all
[
a1
b1

]
C ∈ U1, there is a unique line L

[
a1
b1

]
which

meets Ui in a point
[
ai
bi

]
C. The correspondences

[
ai
bi

]
↔
[
aj
bj

]
are linear and one-to-one, so

we can avoid
[
ai
bi

]
∈ ψ̃−1(0). We let let c̃ = L

[
a1
b1

]
. The image ϕ̃(c̃) is linear or quadratic

and contains P1, P2, P3, which shows that actually ψ̃(c̃) = c.
If P2, P3 are parallel, but P1 is not parallel to P2, P3, this procedure must fail because

there is no line or conic in S4(C) which connects P1, P2, P3, and so U2 and U3 must have a
point in common. As Lemma 10 shows, there is a line c̃ ⊂ H̃2 such that ϕ̃(c̃) = P2 ∨ P3. 2

It is not difficult to generalize Lemma 2 to the case of H̃. The group PGL(S4(C)) of projective
automorphisms of S4(C) equals the set {AC | A ∈ C6×6, ATA = λ · E6, λ ∈ C}. Because
Ā = ±(1/

√
λ)A has the property that A

T
A = E6, we have PGL(S

4(C)) = O6(C)/{±1}.
The two connected components of O6(C) are distinguished by the determinant. Further,
det(A/±

√
λ) = det(A)/λ3. Thus we have

Lemma 12. PGL(S4(C)) = {AC | ATA = E6, λ 6= 0} has two connected components distin-
guished by the value of det(A)/λ3.

The component containing the identity is denoted by PGL+(S4(C)). Obviously

PGL+(S4(C)) ∼= SO6(C)/{±1}.

Lemma 13. The group GL(2, H̃) of invertible right H̃-linear endomorphisms of the right
H̃-module H̃2 operates transitively on H̃2 \ ψ−1(0) and is connected.

Proof. We use the fact that the complement of the quadric N(x) = 0 in H̃ is arcwise con-
nected, as it is of real codimension two.

The symbol Gc,da,b denotes the set of elements L ∈ GL(2, H̃) such that L
[
a
b

]
=
[
c
d

]
.

Obviously the stabilizer G0,10,1 of
[
1
0

]
consists of the matrices

[
1 0
c d

]
with N(d) 6= 0, and is

connected. We show that for N(a) 6= 0 there is a path Lt in GL(2, H̃) beginning in G1,01,0 and
ending in Ga,b1,0: If a(t) is a path with a(0) = 1, a(1) = a, then we let

Lt =

[
a(t) 0
t · b 1

]
. (31)
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If N(b) 6= 0, we analogously find a path L′t which begins in G
0,1
0,1 and ends in G

a,b
0,1.

If both norms N(a) and N(b) are zero, consider the paths Sc,t as defined by equation
(20). Obviously Sc,0 = id for all c, and the proof of Theorem 1 implies that we can choose c

such that Sc,π/4
[
a
b

]
=
[
a′

b′

]
with either N(a′) 6= 0 or N(b′) 6= 0. This shows that either there

is a path in GL(2, H̃) beginning in G1,01,0 and ending in G
a,b
1,0, or the same for

[
0
1

]
instead of

[
1
0

]
.

As G1,00,1 is nonempty, this shows that GL(2, H̃) acts transitively. If L ∈ G
c,d
0,1, L

′ ∈ Ga,b0,1,

then G0,10,1 = L
−1 ·Gc,da,b · L

′, so all sets Gc,da,b are homeomorphic. One of them has already been
shown to be connected, so all of them are contained in the same and only arc component of
GL(2, H̃). 2

Theorem 2. The Hopf mapping ϕ̃ provides an isomorphism of the groups GL(2, H̃)/C× ∼=
PGL+(S4(C)) ∼= SO6(C)/{±1}.

Proof. We first show that all L ∈ GL(2, H̃) induce a projective automorphism of S4(C). To
avoid computations, we appeal to a more general theorem by showing that L induces an
automorphism of a circle geometry in the sense of [2]:
The set C of proper circles are those planar sections of S4(C) which are either conics or

pairs of lines. An automorphism of C is a bijection of S4(C) which maps C to C. Lemma 10
characterizes conics and lines as the ϕ̃-images of certain lines, and it distinguishes between
them in a GL(2, H̃)-invariant way. Thus L maps ϕ̃−1(C) onto itself. We can apply Th. 4.2.3
of [2], p. 992, to conclude that L induces a projective automorphism ϕ̃?(L) = ϕ̃Lϕ̃−1 ∈
PGL+(S4(C)).
To show that ϕ? is is onto, we note that its kernel is the subgroup of complex ho-

mothetical transformations, so dimR ker(ϕ?) = 2. From the dimensions dimR(GL(2, H̃)) =
32 and dimR(PGL

+(S4(C))) = 30 we conclude that ϕ?(GL(2, H̃)) is an open subgroup of
PGL+(S4(C)). Because the latter is connected, ϕ? is onto. 2

6. A Hopf mapping onto the Klein quadric

We consider the real subspace

Ĥ = [1⊗ 1, i⊗ 1, j ⊗ iC, k ⊗ iC]R (32)

of H ⊗R C = H̃. It is easily verified that Ĥ is a subring of H̃ and an R-subalgebra. Further
we consider the real vector space

R⊕ Ĥ⊕ R = {
[
r0
r
r5

]

| r0, r5 ∈ R, r ∈ Ĥ}. (33)

The set Q4,2 = S
4(C) ∩ R⊕ Ĥ⊕ R then has the equation

r20 + r
2
3 + r

2
4 = r

2
1 + r

2
2 + r

2
5, (34)
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which describes a real regular quadric of index two. There are the projective spaces P̂ 7 =
PR(Ĥ⊕ Ĥ), P̂ 5 = PR(R⊕ Ĥ⊕ R), and the Hopf mapping

ϕ̂ : P̂ 7 → P̂ 5,
[
a
b

]
R 7→

[ N(a) +N(b)
ba

N(b)−N(a)

]

R. (35)

Its representation ψ̂ in homogeneous coordinates with respect to the bases

[
1⊗ 1
0

]
, . . . ,

[
k ⊗ iC
0

]
,
[
0
1⊗ 1

]
, . . . ,

[
0

k ⊗ iC

]
(36)

and [
1
0
0

]

,

[
0
1⊗ 1
0

]

,

[
0
i⊗ 1
0

]

,

[
0

j ⊗ iC
0

]

,

[
0
0
1

]

, (37)

is given by

ψ̂




x0
...
x7



 =





x20 + x
2
1 − x

2
2 − x

2
3 + x

2
4 + x

2
5 − x

2
6 − x

2
7

2(+x0x4 + x1x5 − x2x6 − x3x7)

2(−x0x5 + x1x4 − x2x7 − x3x6)

2(−x0x6 + x1x7 + x2x4 − x3x5)

2(+x0x7 + x1x6 − x2x5 − x3x4)

x24 + x
2
5 − x

2
6 − x

2
7 − x

2
0 − x

2
1 + x

2
2 + x

2
3





(38)

The very definitions of ψ̂ and ϕ̂ imply that

[
a
b

]
∈ Ĥ2, ϕ̂(

[
a
b

]
R) =

[
y0
y
y5

]

R, ϕ̃(
[
a
b

]
C) =

[
y′0
y′

y′5

]

C (39)

=⇒

[
y0
y
y5

]

C =
[
y′0
y′

y′5

]

C.

This means that the mapping ϕ̂ becomes the restriction of ϕ̃ to P̂ 7 ⊂ P 7(C), if we embed
Q4,2 into complex projective space.
The group PGL(Q4,2) of projective automorphisms of Q4,2 is the set

{AR | ATJA = λJ} (40)

with

J =





1
−1
−1
1
1
−1



. (41)

Lemma 14. PGL(Q4,2) has four connected components. With the notations of equation (40),
they are distinguished by sgn(λ) and sgn(det(A)).
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Proof. Both sgn(λ) and sgn(det(A)) are homomorphisms of PGL(Q4,2). It is easy to find ex-
amples for all four possible cases, so PGL(Q4,2) has at least four connected components: They
are distinguished by whether or not they reverse orientation, and whether they interchange
the two families of generator planes or not. If det(A) > 0, λ > 0, then A/

√
λ preserves the

bilinear form α, so after a permutation of coordinates, A/
√
λ ∈ SO3,3. The group SO3,3 has

two connected components, distinguished by the sign of the upper left minor of order three
(cf. [1], p. 44). The factor SO3,3/{±1} however is connected, as this minor is of odd order. 2

The subgroup of PGL(Q4,2) consisting of orientation-preserving transformations which do
not interchange the two families of generator planes will be denoted by PGL+(Q4,2). It is
isomorphic to SO3,3/{±1} and is connected. The following results are closely related to the
respective results for H⊗ C:

Theorem 3. The image of ϕ̂ = Q4,2. If v1, . . . , v4 are defined as in Lemma 4 with scalars

1⊗ 1 and i⊗ 1 instead of 1 and i, then the preimage ψ̂−1
[
y0
y
y5

]

R of a point of Q4,2 contains

the vectors v1, . . . , v4. There is an r such that ϕ̂(vrR) =
[
y0
y
y5

]

R (r = 1, . . . , 4).

Proof. Clearly v1, . . . , v4 ∈ Ĥ2 if y0, y5 ∈ R and y ∈ Ĥ. As the proof of Theorem 1 shows, it
is sufficient to consider v1, . . . , v4 if one of y0, y5, y1, y2 6= 0. This is always the case, because[
y0
y
y5

]

∈ Q4,2 and y0 = y5 = y1 = y2 = 0 implies that y3 = y4 = 0. 2

Lemma 15. The complete ϕ̂-preimage of a point

[
y0
y
y5

]

R ∈ Q4,2 consists of ψ̂
−1(0) and a

three-dimensional projective subspace U ≤ P̂ 5. Assume that ψ̂
[
a
b

]
=

[
y0
y
y5

]

R. If y0 = y5 = 0,

then U =
[
a
0

]
Ĥ+

[
0
b

]
Ĥ, and U =

[
a
b

]
Ĥ otherwise.

Proof. This follows immediately from Lemma 9 by intersection of the ψ̃-preimage with the
subspace Ĥ2 ≤R H̃2. 2

Definition. The three-dimensional projective subspaces mentioned in this lemma are called
the fiber subspace of ϕ̂. Again we call points of Q4,2 parallel if their span is contained in Q4,2.

The following is an immediate consequence of the respective result for the complex case H̃.

Lemma 16. The fiber subspaces of non-parallel points are skew. The fiber subspaces of a
plane of parallel points intersect in a projective line. For all planar sections c of Q4,2 which

are conics, there is a line ĉ ⊂ P̂ 7, such that ϕ̂(ĉ) = c. The same is true for all lines of Q4,2.

The connected component of the identity in GL(2, Ĥ) is denoted by GL+(2, Ĥ). Analogously
to the case of GL(2, H̃) we have
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Lemma 17. The Hopf mapping ϕ̂ provides an isomorphism

GL+(2, Ĥ)/R× ∼= PGL+(Q4,2).

We can show a bit more by using Theorem 2: If κ̂ ∈ PGL(Q4,2), then there is a unique
projective automorphism κ̃ automorphic for S4(C) which extends κ̂ after embedding the real
projective space P̂ 5 into P 5(C). The coordinate matrices of κ̂ and κ̃ with respect to the
same basis are the same. This is not a basis where the complex unit sphere has the equation
vTEv = 1, however. It has the same equation as Q4,2, namely v

TJv = 1. We therefore
consider the matrix group

PGL(S4(C)) = {AC | ATJA = λJ, λ 6= 0}. (42)

It is of course isomorphic to PGL(S4(C)), and the equations det(A)/λ3 = ±1 define its two
connected components. The component containing the identity is denoted by PGL

+
(S4(C)).

If κ̂ is in the subset ‘det(A)λ > 0’ of PGL(Q4,2) (which consists of two connected components),

then κ̃ is contained in PGL
+
(S4(C)), and vice versa.

Theorem 4. The Hopf mapping ϕ̂ provides an isomorphism

GL(2, Ĥ)/R× ∼= {AR | ATA = λJ, λ det(A) > 0} (43)

The right hand group consists of two of the four connected components of PGL(Q4,2).

Proof. An element L̃ ∈ GL(2, H̃) is uniquely determined by its values on the basis
[
1
0

]
and

[
0
1

]
, so for each L̂ ∈ GL(2, Ĥ) there is a unique L̃ ∈ GL(2, H̃) with L̃|Ĥ2 = L̂. Thus

the C-coordinate matrix of L̃ with respect to the basis (36) has real entries. Conversely, if
L̃ ∈ GL(2, H̃), and its (8× 8) C-coordinate matrix with respect to the basis (36) is real, then
L̃ actually is contained in GL(2, Ĥ).
First, we do the following: For the sake of brevity, we write G for the right hand group

in equation (43). As L̃ induces (via ϕ̃) a projective automorphism in PGL
+
(S4(C)) which

leaves Q4,2 invariant, L̂ induces (via ϕ̂) a projective automorphism of Q4,2. This shows that

ϕ̂(GL(2, Ĥ)) ⊂ G.
Second, we show the reverse inclusion: If κ̂ ∈ G, then there is a unique projective

automorphism κ̃ ∈ PGL
+
(S4(C)) extending κ̂. By Theorem 2, there exists L̃ ∈ GL(2, H̃)

with ϕ̃?(L̃) = κ̃. Whenever
[
a
b

]
∈ Ĥ2, and L̃

[
a
b

]
=
[
a′

b′

]
, then there are

[
a′′

b′′

]
∈ Ĥ2 such that

[
a′

b′

]
H̃ =

[
a′′

b′′

]
H̃.

As a C-linear mapping, L̃ permutes the set of subspaces of complex dimension 1 belonging
to to Ĥ2, which are spanned by vectors with real coefficients. As the coordinate matrix of
L̃ as a C-linear mapping can be recovered up to a complex factor from the images of nine
subspaces, eight of which are C-independent, there is a complex multiple αL̃ (α ∈ C) which
has a real coordinate matrix as a C-linear mapping with respect to the basis (36). This
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shows that αL̃ ∈ GL(2, Ĥ), and obviously αL̃, like L̃, induces (via ϕ̂) the original projective
automorphism of κ̂ ∈ Q4,2. Thus, ϕ̂(GL(2, Ĥ)) ⊃ G. From the first part of the proof we
know that this inclusion is actually an equality.

Third, we compute the kernel of the mapping ϕ̂?(L) = ϕ̂Lϕ̂
−1. The condition (L

[
q0
q1

]
)Ĥ =

[
q0
q1

]
Ĥ for all

[
q0
q1

]
quickly leads to L

[
q0
q1

]
= β
[
q0
q1

]
with β ∈ R. This shows the statement of

the theorem. 2

Lemma 18. The set Ĥ2 \ ψ̂−1(0) is connected.

Proof. The preimage of 0 is of dimension less than seven. 2

Lemma 19. The right translation Rx for x ∈ Ĥ is an R-linear endomorphism of the real
vector space Ĥ. We consider the linear mapping R = [RxRy] : Ĥ2 → Ĥ. As to the rank of
R, there are the following three cases:

(i) ψ
[
x
y

]
6= 0 : rk(R) = 4.

(ii) ψ
[
x
y

]
= 0, (x, y) 6= (0, 0) : rk(R) = 2.

(iii) x = y = 0 : rk(R) = 0.

Proof. rk(Rx) equals four, or two, or zero, if N(x) 6= 0, or N(x) = 0, x 6= 0, or x = 0,

respectively. Thus, rk(R) equals four if N(x) 6= 0 or N(y) 6= 0. In this case also ψ
[
x
y

]
6= 0.

If N(x) = N(y) = 0, but x, y 6= 0, then rk(R) depends on the position of the planes RxĤ
and RyĤ. In projective space, these are two generator lines of the quadric N(·) = 0, which
are skew (i.e., rk(R) = 4) if and only if x 6∈ RyĤ. This is equivalent to xy 6= 0. We see that
then rk(R) = 4 if and only if ψ

[
x
y

]
6= 0.

If x = 0, then rk(R) = rk(Ry), and if y = 0, then rk(R) = rk(Rx). 2

We temporarily denote the connected component of the identity in GL(2, Ĥ) with G0, and
Ĥ2 \ ψ̂−1(0) with the letter X. Then there is the following lemma:

Lemma 20. G0 operates transitively on X.

Proof. The orbit of
[
x
y

]
is the image of the mapping G0 → X,

[
a b
c d

]
7→
[
a b
c d

][
x
y

]
. This

mapping is the restriction of an R-linear mapping to G0. In terms of right translations Rx
and Ry, we may write the first coordinate of the image in the form [Rx, Ry]

[
a
b

]
, with the

block matrix R = [Rx, Ry] already mentioned in Lemma 19. An analogous statement holds
for the second coordinate. Lemma 19 shows that rk(R) = 4, so the rank of the original

mapping equals eight. This implies that G0
[
x
y

]
is open in X.

If two orbits G0
[
x
y

]
and G0

[
x′

y′

]
intersect, then they coincide, because G0 is a group.

One orbit is the complement of all the others, whose union is open. So all orbits are closed.
As X is connected it follows that there is only one orbit. 2



Johannes Wallner: Hopf Mappings for Complex Quaternions 261

Theorem 5. The group GL(2, Ĥ) has two connected components.

Proof. GL(2, Ĥ) has at least two components, because factorization with respect to R× pro-
duces a group with two connected components. To show the reverse inequality, we use the

notation of the previous lemmas. The stabilizer g′ of
[
1
0

]
in GL(2, Ĥ) consists of the matrices

{
[ 1 b
0 d

]
| b, d ∈ Ĥ, N(d) 6= 0}. (44)

and has the two connected components N(d) > 0 and N(d) < 0. As G0 operates transitively

in X, all stabilizers are homeomorphic. If g ∈ GL(2, Ĥ), choose a h ∈ G0 with h
[
1
0

]
= g
[
1
0

]
.

Further, choose path ht in G0 with h0 = id and h1 = h. Then h
−1
t g is a path which connects

g with h−1g ∈ G′. It follows that GL(2, Ĥ) has not more connected components than G′, i.e.,
two. 2

The quadric Q4,2 is nothing but the Klein quadric or the Grassmann manifold G3,1 =
PR(Λ

2R4), which is a model for the lines of projective three-space: A line which spans the
points aR, bR with a, b ∈ R4 has the homogeneous Plücker coordinates

xij =

∣∣∣∣
ai aj
bi bj

∣∣∣∣ , (45)

which depend only on the span of aR, bR, and fulfill the relations

xii = 0, xij = −xji, x01x23 + x02x31 + x13x12 = 0. (46)

The substitution

y0 = x01 + x23, y3 = x02 + x31, y4 = x03 + x12,
y1 = x01 − x23, y2 = x02 − x31, y5 = x03 − x12

(47)

yields a projective isomorphism G3,1 ∼= Q4,2. The projective automorphisms of the Grass-
mannian are in one-to-one correspondence with the projective automorphisms of the dual
pair (P 3, P 3?), consisting of the four following connected components: As P 3 is orientable,
there are orientation-preserving and orientation-reversing projective automorphisms. Fur-
ther, there are projective automorphisms which map P 3 to P 3 and such ones which inter-
change P 3 and its dual P 3?.
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