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1. Introduction

Let B be an irreducible, spherical Moufang building of rank ` ≥ 2, A an apartment of B and
Φ the set of roots (half-apartments) of A with corresponding root-subgroups Ar, r ∈ Φ in the
sense of Tits. Then we call G = 〈Ar | r ∈ Φ〉 ≤ Aut(B) the group of Lie-type B. The notion
of a group of Lie-type B is very general, since it includes:

- simple classical groups over division rings of finite Witt-index ` ≥ 2,

- simple algebraic groups over arbitrary fields of relative rank ` ≥ 2,

- the finite simple groups of Lie-type of rank ` ≥ 2.

The theory of such groups of Lie-type B was developed in [8], see also [3, I §4 and II §5]. In
particular it was shown that one can enlarge Φ to some possibly nonreduced root-system Φ̃
(Φ 6= Φ̃ only if Φ is of type B` and Φ̃ of type BC` or Φ is of type I2(8) and Φ̃ of type 2F4;
for the latter see [9, (5.4)]) such that the Ar, r ∈ Φ̃, satisfy:

(1) Xr = 〈Ar, A−r〉 is a rank one group with unipotent subgroups Ar and A−r for r ∈ Φ̃.
(For definition of a rank one group see [3, I].). Further A2r ≤ Ar if also 2r ∈ Φ̃.

(2) If r, s ∈ Φ̃ with s 6= −r and −2r, then

[Ar, As] ≤ 〈Aλr+µs | λr + µs ∈ Φ̃ and λ, µ ∈ N〉

(We use the convention 〈∅〉 = 1. Hence (2) implies A′r = 1 if 2r 6∈ Φ̃ and A
′
r ≤ A2r ≤

Z(Ar) if 2r ∈ Φ̃!)

Now it would be desirable to prove the converse. That is to show that, if G is a group
generated by nonidentity subgroups Ar, r ∈ Φ̃ and Φ̃ as above, satisfying (1) and (2), then
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either G has a proper central factor (also of Lie-type) or G is a perfect central extension of

a group of Lie-type B (with same Φ̃). Notice that the first possibility always occurs. If for
example [Ar, As] = 1 for all r, s in (2), then G is a central product of the rank one groups
Xr, r ∈ Φ (which will be considered as groups of Lie-type of rank one).

Now this problem has been solved already to a large extent. First it was shown in [4], that
if always equality holds in (2), then indeed G is a perfect central extension of a group of
Lie-type B. Next in [5] the special case, when Φ has only single bonds (i.e. Φ of type A`, D`
or E`) was considered. Finally in [6] we treated the case when Φ = Φ̃ is of type B`, C` or F4
and the “characteristic” is different from 2. (The special case Φ = Φ̃ = B2 = C2 has been

treated in [2]. So apart from the special cases Φ = Φ̃ = G2 and Φ = I2(8) and Φ̃ =
2F4, it

just remains to treat the case Φ̃ = BC`, which corresponds to unitary groups which are not
of maximal Witt-Index, of the above problem, which will be the purpose of this paper. (For
a survey of these results and also Curtis-Tits type presentations of Lie-type groups see [7].)

To state our Main-theorem we need some notation:
If Ψ is a root-system as above (i.e. Ψ is of type A`, B`, C`, BC`, D`, E`, G2, F4 or

2F4) and G
is a group generated by subgroups Ar 6= 1, r ∈ Ψ, satisfying (1) and (2), then we say that
G is of type Ψ, if there exists a surjective homomorphism ϕ : G → G, where G is a group
of Lie-type B, with kerϕ ≤ Z(G) mapping the Ar, r ∈ Ψ with r 6= 2s for all s ∈ Ψ, onto
the root-subgroups corresponding to the roots of some apartment A of B. (The complication
r 6= 2s only plays a role if Ψ is of type BC` or 2F4. In the latter cases roots of the form 2s
are not roots (i. e. halfapartments) of A.) If ∆ ⊆ Ψ we set G(∆) := 〈Xr | r ∈ ∆〉. If ∆
carries the structure of a root-system (also denoted by ∆), then we say G(∆) is of type ∆ if
it satisfies the above conditions with respect to ∆. With this notation we have:

Main-theorem. Suppose Φ is a root-system of type BC`, ` ≥ 2 and G is a group generated
by subgroups Ar 6= 1, r ∈ Φ, satisfying (1) and (2). Then one of the following holds:

(a) Always equality holds in (2). In this case G is perfect and of type BC`.

(b) Ar = A2r for all r ∈ Φ with 2r ∈ Φ, Φ0 = {2r | r, 2r ∈ Φ} ∪ {s | s ∈ Φ, 2s 6∈ Φ} is a
root system of type C` and equality holds in (2) for all r, s ∈ Φ0 with s 6= −r. In this
case G is perfect and of type C`.

(c) Φ = J∪̇K with J 6= ∅ 6= K and either J = {±r} resp. J = {±r,±2r} or J carries the
structure of an irreducible root system Ψ of rank r ≥ 2. Moreover G = G(J) ∗ G(K)
and G(J) is of type Ψ resp. G(J) = Xr is a rank one group.

(d) J ′ = {r ∈ Φ | Ar is an elementary abelian 2-group } 6= ∅. Let J = J ′∪{s ∈ Φ | 2s ∈ J ′}
and K = Φ − J . Then G = G(J) ∗ G(K) and A2s = 〈a

2 | a ∈ As〉 ≤ A′s ≤ A2s for all
s ∈ J − J ′.

Notice that if Φ is a root-system of type BC` then in any case Φ0 = {2r | r, 2r ∈ Φ} ∪ {s |
s ∈ Φ, 2s 6∈ Φ} is a root-system of type C`. Now the proof of the above theorem proceeds by
discussing the possibilities obtained for G(Φ0) in §3 of [6].

Obviously the case of groups with root-system Φ0 of type C` is included in our Main-theorem,
since one can enlarge Φ0 to a root-system Φ of type BC` and then simply sets Ar = A2r, if
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r, 2r ∈ Φ. (But of course for the proof of the Main-theorem the treatment of groups with
root-system of type C` in [6] is used.) The case of groups with root-system of type B` is not
included in the statement of the Main-theorem, since we demand A2r 6= 1 if r, 2r ∈ Φ. (If
A2r = 1 for all r ∈ Φ with 2r ∈ Φ, then G has root-system of type B`, whence we can apply
[6].)

For definition of a root-system of type BC` see [1]. (We will give a short description in the
beginning of Section 3.)

2. BC2

Let in this section
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be a root system of type BC2 and

Φ0 = {±r,±2s,±(r + 2s),±(2r + 2s)} the subsystem of type C2.

Let G = G(Φ) = 〈Ar | r ∈ Φ〉 be a group, satisfying (1) and (2) of Section 1 and G0 = G(Φ0).
We fix the following notation:

For α ∈ Φ let Hα = NXα(Aα) ∩NXα(A−α) and pick nα ∈ Xα with A
nα
α = A−α and n

2
α ∈ Hα.

Then
Hαnα = {x ∈ Xα | A

x
α = A−α, A

x
−α = Aα}.

Further, if 2α ∈ Φ, then X2α ≤ Xα, H2α ≤ Hα and n2α ∈ Hαnα all by [3, I §1]. Hence in this
situation we may and will pick nα such that nα = n2α. Let Uα = 〈Aβ | β ∈ Φ is between α
and −α in clockwise sense 〉. (For example U−r = 〈As, Ar+2s, Ar+s〉 as A2s ≤ As)

If α ∈ Φ0 let:

Vα := 〈Aβ | β ∈ Φ0 is between α and − α in clockwise sense 〉.

Then V−r = 〈A2s, Ar+2s, A2r+2s〉 ≤ U−r. Notice that by [4, (2.1), (2.2)] we have:

2.0. The following hold:
(1) Xα normalizes Uα and U−α.

(2) AαUα and A−αUα are nilpotent.

(3) Aα ∩ Uα = 1 = A−α ∩ Uα.

(4) If α 6= 2β for all β ∈ Φ, then 〈Uα, U−α〉�G and G = 〈Uα, U−α〉Xα.
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For the convenience of the reader we state the main result of [2] and a corollary obtained in
[6, (2.8)] from it.

2.1 Proposition. For G0 = G(Φ0) one of the following holds:
(1) All Aα, α ∈ Φ0, are elementary abelian 2-groups.

(2) G0 = Xr ∗X2s ∗Xr+2s ∗X2r+2s.

(3) There exists a long root α ∈ Φ0, such that for ∆ = Φ0 − {±α} we have G0 =
Xα ∗ G(∆) and G(∆) is of type A2. I.e. ∆ = {±β,±γ,±(β + γ)} and for all
σ, τ ∈ ∆ with σ + τ ∈ ∆ we have

[Aσ, Aτ ] = Aσ+τ and A
nτ
σ = Aσ+τ = A

nσ
τ .

(4) For all α, β ∈ Φ0 with β 6= −α we have

[Aα, Aβ] = 〈Aλα+µβ | λα+ µβ ∈ Φ0;λ, µ ∈ N〉.

Moreover G0 is of type C2.

We now describe the possibilities for G over a series of Lemmata.

2.2 Lemma. Suppose [As, Ar+s] = 1 and possibility (4) of Proposition 2.1 holds for G0.
Suppose further that some Aα, α ∈ Φ0, is not an elementary abelian 2-group. Then we have
Aβ = A2β for all β ∈ Φ with 2β ∈ Φ. Moreover G = G0 is of type C2.

Proof. Since G0 is of type C2 clearly all Aα, α ∈ Φ0 are not elementary abelian 2-groups.

Consider the action of Xs on Ũs = Us/A2r+2s. Then [As, Ãr] ≤ Ãr+sÃr+2s ≤ CŨs(As). Hence

A′s ≤ CA2s(Ũs) = 1 by the 3-subgroup lemma and since G0 is of type C2. With the same
argument we also obtain A′r+s = 1. Hence

U ′−r ≤ A
′
s[As, Ar+s]A

′
r+s = 1,

since V−r ≤ Z(U−r) by the commutator relations of §1 (2).

Since A′−s = 1 we obtain similarly

U ′r+2s ≤ A
′
r+s[Ar+s, A−s]A

′
−s ≤ Ar.

But U ′r+2s is invariant under Xr+2s. Hence we obtain

U ′r+2s ≤ CAr(Xr+2s) ≤ Z(V2s).

But by [2, (3.12)] we have either [Ar, Ar+2s] = 1 or CAr(Ar+2s) = 1. Since the first possibility
contradicts our hypothesis that (4) of Proposition 2.1 holds, this shows U ′r+2s = 1. Now the
same arguments imply U ′r = 1 = U

′
−r−2s.

With a repeated application of (3) from Subsection 2.0 we obtain Ũs = Ãr+2s ⊕ Ãr+s ⊕ Ãr.

Moreover, by [2, (3.3)], CA2s(ã) = 1 = CA−2s (̃b) for all 1 6= ã ∈ Ãr, 1 6= b̃ ∈ Ãr+2s. This

implies Ar+s = CUs(Xs). Since [Ũs, As, As] = 1, [3, I(2.5)] shows that Xs is a special rank one
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group. Now for each a ∈ A#s pick b(a) ∈ A
#
−s such that a

b(a) = b(a)−a and let by [3, I(5.6)]
Xs(a) = 〈As(a), A−s(b(a))〉 ≤ Xs such that Xs(a) is a perfect central extension of PSL2(k),
k a primefield and As(a) ≤ As and A−s(b(a)) ≤ A−s are unipotent subgroups of Xs(a). Set
n = n(a) = ab(a)−1a. Then the proof of [3, I(3.5)] shows that n2 ∈ Z(Xs(a)) and n2 inverts
Ũs/Ãr+s. In particular, since by the hypothesis of Lemma 2.2 Char k 6= 2, we have n2 6= 1.
Clearly n2 ∈ Hs by [3, I(2.7)]. Hence [n2, As] ≤ CAs(Ũs/Ãr+s) = 1, since we assume that (4)
of Proposition 2.1 holds. We obtain [n2, Xs] = 1 and thus n

2 normalizes Ãr = [Ũs, A−2s] and

Ãr+2s = [Ũs, A2s].

This shows that n2 centralizes Ãr+s and inverts Ãr+2sÃr = [Ũs, n
2]. In particular Ãr+2sÃr

is Xs-invariant, as Xs ≤ C(n2). Hence Xs ≤ N(Ar+2sArA2r+2s). The same argument also
shows that Xs ≤ N(A−rA−2r−2sA−r−2s). Now by Theorem 2 of [4] G0 is quasisimple and by
(4) of Proposition 2.1 〈V2s, V−2s〉 � G0. Hence G0 = 〈V2s, V−2s〉 is normalized by Xs. This
implies X2s ≤ G0 ∩Xs �Xs.

Now, since G0 is of type C2, P0 = NG0(V2s) = V2sX2sH0, H0 = 〈Hα | α ∈ Φ0〉 is a maximal
parabolic subgroup of G0 and Xs ≤ N(P0). Hence As normalizes V2sX2s = 〈(V2sA2s)P0〉 and
also A−s ≤ N(V2sX2s). This implies Xs ≤ N(V2sX2s).

Now
X2s ≤ Xs ∩ V2sX2s = X2s(V2s ∩Xs)�Xs and V2s ∩Xs �Xs.

Hence by [3, I(1.10)] V2s ∩Xs ≤ Z(Xs). Thus

V2s ∩Xs ≤ CV2s(Xs) ≤ A2r+2s,

since we assume that (4) of Proposition 2.1 holds for G0. Suppose V2s ∩Xs 6= 1. Then also
V−2s ∩ Xs 6= 1, since V

ns
2s = V−2s. Now [Xs, X2r+2s] = 1 and thus also V−2s ∩ Xs ≤ A2r+2s,

which is obviously impossible since A2r+2s ∩ A−2r−2s = 1 and

V−2s ∩Xs = (V2s ∩Xs)
ns ≤ CV2s(Xs)

ns = CV−2s(Xs) ≤ A−2r−2s.

This shows V2s ∩Xs = 1 and thus X2s �Xs. Hence by [3, I(1.10)] Xs = X2sAs. We obtain

AXs2s = A
AsX2s
2s = AX2s2s = A2s ∪ {A

A2s
−2s}

and also AXs−2s = A2s ∪ {A
A2s
−2s}. Now pick a ∈ As − A2s. Then there exists an y ∈ A2s with

Aa−2s = A
y
−2s. Hence ay

−1 ∈ NAs(A−2s) = NAs(A−s) = 1 and a = y ∈ A2s.

This shows As = A2s. Since we have shown that U
′
r+2s = U

′
r = U

′
−r−2s = 1, the same

argument implies Aα = A2α for all α ∈ Φ with 2α ∈ Φ0, which proves Lemma 2.2. 2

2.3 Lemma. Suppose that all Aα, α ∈ Φ0, are elementary abelian 2-groups. Then one of
the following holds:

(1) Xs �G and G = Xs ∗ C(Xs) with Xβ ≤ C(Xs) for all β ∈ Φ− {±s,±2s}.

(2) A2s ≤ A
′
s ≤ A2s. In particular As is a 2-group.

Proof. Suppose (1) does not hold. Let Ũs = Us/A2r+2s. Then by [4, (2.6)] [Ṽ2s, X2s] = Ṽ2s.
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Now, because of [Ar+s, As, As] ≤ [Ar+2s, As] = 1, we have [Ar+s, A2s] ≤ A
2
r+2s = 1. Let

1 6= v ∈ Ar. Then for each a ∈ A2s we have

[ṽ, a2] = [ṽ, a]2 = [ṽ2, a] = 1.

Hence (A2s)
2 centralizes Ũs. Suppose there exists an element 1 6= a ∈ (A2s)

2. Let Y = 〈aXs〉.
Then by [3, I(2.13)(10) and (1.10)] Xs = Y As and thus [Ũs, Xs] ≤ [Ũs, As] ≤ Ãr+sÃr+2s, a
contradiction to Ṽs ≤ [Ũs, X2s].

This shows (A2s)
2 = 1. Hence A2s and As/A

2
s are elementary abelian 2-groups and thus (2)

holds. 2

2.4 Lemma. Suppose (4) of Proposition 2.1 holds and some Aα, α ∈ Φ0, is not an elementary
abelian 2-group. Then the following are equivalent:

(1) [As, Ar+s] 6= 1

(2) A′s 6= 1 (resp. A
′
r+s 6= 1)

(3) U ′−r = A2sAr+2sA2r+2s.

Proof. Because of A2sAr+2sA2r+2s ≤ Z(U−s) we have U ′−r = A
′
s[As, Ar+s]A

′
r+s.

Suppose that (1) holds. Then U ′−r 6= 1. Assume U
′
−r ≤ Ar+2s. Then [U

′
−r, Ar] ≤ [Ar+2s, Ar]∩

U ′−r ≤ A2r+2s ∩ U
′
−r = 1. By [2, (3.12)] applied to G0 this implies [Ar+2s, Ar] = 1, a

contradiction to our hypothesis that (4) of Proposition 2.1 holds.

This shows that U ′−r 6≤ Ar+2s and thus, since U
′
−r is invariant under Xr, also U

′
−r 6≤

Ar+2sA2r+2s. (Otherwise U
′
−r ≤ Ar+sA2r+2s∩ (Ar+sA2r+2s)

nr = Ar+sA2r+2s∩Ar+sA2s = Ar+s
since G0 is of type C2 and thus A

nr
β = Aβwr for all β ∈ Φ0.) Now pick x ∈ U

′
−r−Ar+2sA2r+2s.

Then by [4, (2.4)] [x,Ar]A2r+2s = Ar+2sA2r+2s and thus Ar+2sA2r+2s ≤ U ′−rA2r+2s. Because
of

A2r+2s = [Ar+2s, Ar] ≤ [U
′
−r, Ar] ≤ U

′
−r

by (4) of Proposition 2.1 we obtain Ar+2sA2r+2s ≤ U ′−r. Now applying nr to this inequality
this shows that (3) holds.

If now 1 6= A′s ≤ U
′
−r ∩A2s, then picking 1 6= x ∈ A

′
s it follows as above that (3) holds. Since

of course (3) implies (2) and (1) this proves Lemma 2.4. 2

2.5 Corollary. Suppose that (4) of Proposition 2.1 holds and some Aα, α ∈ Φ0, is not an
elementary abelian 2-group. Then one of the following holds:

(1) Aβ = A2β for all β ∈ Φ with 2β ∈ Φ. Further G = G0 is of type C2.

(2) A′β = A2β for all β ∈ Φ with 2β ∈ Φ. Further U
′
α = Vα for all short roots α ∈ Φ0.

Proof. If [Aεs, Aµ(r+s)] = 1 for some ε = ±1 and µ = ±1, then Lemma 2.2 shows that (1) holds.
So we may assume that [Aεs, Aµ(r+s)] 6= 1 for all choices of ε = ±1 and µ = ±1. Hence by
Lemma 2.4 we obtain U ′εr = Vεr and U

′
ε(r+2s) = Vε(r+2s) for ε = ±1. As U

′
−r = A

′
s[Ar, Ar+s]A

′
r+s

again Lemma 2.4 shows that A′s = A2s. With symmetry this shows that (2) holds. 2

Now we are able to show:
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2.6 Proposition. One of the following holds:

(1) There exists an α ∈ Φ with 2α ∈ Φ0 such that Xα � G and Xβ ≤ C(Xα) for all
β ∈ Φ− {±α,±2α}.

(2) All Aα, α ∈ Φ0, are elementary abelian 2-groups and A2β ≤ A
′
β ≤ A2β for all

β ∈ Φ− Φ0.

(3) Aβ = A2β for all β ∈ Φ−Φ0. Moreover (4) of Proposition 2.1 holds and G = G0 is
of type C2.

(4) For all α, β ∈ Φ with β 6= −α, −2α we have

(∗) [Aα, Aβ] = 〈Aiα+jβ | iα+ jβ ∈ Φ; i, j ∈ N〉.

Moreover G is of type BC2.

Proof. G0 satisfies one of the cases of Proposition 2.1. If (1) of Proposition 2.1 holds, then by
Lemma 2.3 and symmetry either (1) or (2) of Proposition 2.6 holds. So we may assume that
some Aβ, β ∈ Φ0 is not an elementary abelian 2-group. If now X2α�G0 for some α ∈ Φ−Φ0,
then by [4, (2.6)] Xα �G and also (1) holds. So we may by Proposition 2.1 assume that G0
satisfies (4) of Proposition 2.1. Hence the hypothesis of Corollary 2.5 is satisfied. Now case
(1) of Corollary 2.5 is case (3) of Proposition 2.6. Thus we may, to prove Proposition 2.6,
assume that we are in case (2) of Corollary 2.5 and then show that (4)(∗) holds. (If this is
the case then G is of type BC2 by Theorem 2 of [4] as mentioned in the introduction.)

Now by case (2) of Corollary 2.5 it just remains to show that

[Ar, As] = Ar+sAr+2sA2r+2s

(and the symmetric equations, applying symmetries of Φ) hold. For this consider the action
of Xr on U−r = U−r/V−r. By (3) of Subsection 2.0 we have Ar+s∩AsAr+2s = 1. This implies
Ar+s ∩ AsAr+2sA2r+2s = A2r+2s. Whence multiplying this equation by V−r we obtain:

Ar+sV−r ∩ AsV−r = V−r,

since V−r ≤ AsAr+2sA2r+2s. This shows U−r = Ar+s ⊕ As.

Now [As, A−2r−2s] = 1 and thus also [A
nr
s , A−2s] = 1. (G0 is of type C2) Since by [3,

I(2.13)(10)] 〈x,A−2s〉Us/Us is not nilpotent for each 1 6= x ∈ AsUs − Us we obtain

Anrs ≤ U−r ∩ Us = U−r ∩ ArAr+sAr+2s = (U−r ∩ Ar)Ar+sAr+2s = Ar+sAr+2s,

by (3) of Subsection 2.0 and since Anrs ≤ U−r ≤ AsUs. Hence A
nr
s ≤ Ar+s and, by the same

argument, A
nr
r+s ≤ As for all nr ∈ Xr interchanging Ar and A−r. Applying n

−1
r we obtain

A
nr
s = Ar+s and A

nr
r+s = As.

On the other hand, clearly [As, Ar] ≤ Ar+s and As[As, Ar] is Xr invariant. Hence Ar+s ≤
As[As, Ar] and thus [As, Ar] = Ar+s.

We have shown [As, Ar]Ar+2sA2r+2s = Ar+sAr+2s. Since

Ar+2s = [As, Ar+s] = [Ar, As, As] ≤ [Ar, As]
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and
A2r+2s = A

′
r+s = (Ar+sAr+2s)

′ = ([As, Ar]A2r+2s)
′ = [As, Ar]

′,

it follows that [As, Ar] = Ar+sAr+2s. 2

2.7 Corollary. Suppose case (1) of Proposition (2.6) holds and no Ar, r ∈ Φ0, is an elemen-
tary abelian 2-group. Let Ψ = Φ − {±α,±2α}. Then we get the following possibilities for
G(Ψ).

(1) G(Ψ) is a central product of rank one groups.

(2) If without loss α = s, then Ar+s = A2r+2s and G(Ψ) = G(Ψ ∩ Φ0) is of type A2.

Proof. Assume without loss α = s. Then by Proposition 2.1 we have the following possibilities
for G0:

(a) G0 = X2s ∗Xr+2s ∗X2r+2s ∗Xr.

(b) Let Ψ0 = Ψ ∩ Φ0. Then G0 = X2s ∗G(Ψ0) and G(Ψ0) is of type A2.

We will show that in case (a) (1) and in case (b) (2) holds.

In case (a) we have Xr+s = 〈X2r+2s, Ar+s〉 = 〈X2r+2s, A−r−s〉 ≤ C(Ar+2s) ∩ C(A−r−2s) =
C(Xr+2s). Similarly Xr+s ≤ C(Xr). Thus we obtain:

G = Xs ∗ 〈Xβ | β ∈ Ψ〉 = Xs ∗ (Xr+2s ∗Xr+s ∗Xr).

In case (b) it suffices to show that Ar+s = A2r+2s. Now we have

[Ar+s, A−r−2s] ≤ A−sAr ∩ C(Xs) = Ar.

But since G(Ψ0) is of type A2

[a,A2r+2s] = [A−r−2s, b] = Ar for all a ∈ A
#
−r−2s and b ∈ A

#
2r+2s.

Suppose b ∈ Ar+s−A2r+2s and a ∈ A
#
−r−2s. Then there exists b ∈ A2r+2s with [a, b] = [a, b

−1],

whence [a, bb] = 1. This implies Xr+2s = 〈a,Ar+2s〉 ≤ C(bb). Since this holds for arbitrary
b ∈ Ar+s − A2r+2s it shows:

(∗) Ar+s = A2r+2sCAr+s(Xr+2s).

The same argument implies A−r−s = A−2r−2sCA−r−s(Xr+2s).

Now suppose that Ar+s 6= A2r+2s. Then we obtain:

Xr+s = 〈CA−r−s(Xr+2s), Ar+s〉 ≤ C(Ar+2s)

= 〈CAr+s(Xr+2s), A−r−s〉 ≤ C(A−r−2s).

Hence Xr+s ≤ C(Xr+2s), a contradiction to [A2r+2s, A−r−2s] = Ar since G(Ψ0) is of type
A2. 2
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3. BC`, ` ≥ 3

In this section we assume that Φ is a root-system of type BC`, ` ≥ 3. For the convenience of
the reader we give a short description of Φ. Let (ei, i = 1, . . . , `) be an orthonormal basis of
R`. Then the roots of Φ are

±ei,±2ei,±ei ± ej with i < j and 1 ≤ i, j ≤ `.

Then Φ0 = {±2ei,±ei ± ej} is a root subsystem of type C` and Φ = Φ0 ∪ {r ∈ Φ | 2r ∈ Φ0}.
Let G = 〈Ar | r ∈ Φ〉 be a group satisfying the hypothesis of the Main-theorem. Then
G0 = 〈Ar | r ∈ Φ0〉 is a group satisfying the hypothesis of the Main-theorem of [6] for a root
system Φ0 of type C`. In particular the results of Section 3 of [6] hold for G0 on which our
proof is based. (Notice that Ψ = {±ei,±ei ± ej} is a root system of type B`, but it is not a
root subsystem of Φ, since 2ei = ei+ei 6∈ Ψ, although 2ei ∈ Φ. Hence we cannot apply [6] for
〈Ar | r ∈ Ψ〉) In addition we will assume in this section that no Ar, r ∈ Φ is an elementary
abelian 2-group. (We will see in the next section that case (d) of the Main-theorem holds, if
some Ar is an elementary abelian 2-group.)

For the rest of the section we fix the following notation:

Xr := 〈Ar, A−r〉 for r ∈ Φ. Then, as A2r ≤ Ar if 2r ∈ Φ, we have X2r = 〈A2r, A−2r〉 ≤ Xr.
Let Hr := NXr(Ar) ∩ NXr(A−r). Then by [3, I(1.4)] H2r ≤ Hr if 2r ∈ Φ. If r, s ∈ Φ

then 〈r, s〉 is the root subsystem of Φ spanned by r and s. Fix an element nr ∈ Xr with
Anrr = A−r, A

nr
−r = Ar. Then, again by [3, I(1.4)] we may and will choose nr such that

nr = n2r if 2r ∈ Φ. If ∆ is a subset of Φ let G(∆) := 〈Xr | r ∈ ∆〉. Then we have:

3.1 Lemma. The following hold for all r, s ∈ Φ with s 6= λr:

(1) Hr ≤ N(As)

(2) [Hr, Hs] ≤ Hr ∩Hs
(3) Hnrs ≤ HsHr
(4) Anrs = Air+js for some pair i, j ∈ N ∪ {0} with ir + js ∈ Φ.

Proof. If 〈r, s〉 is a subsystem of type A1 × A1, A2 or B2 = C2 Lemma 3.1 is a consequence
of (2.5)–(2.9) of [6]. So we may assume that 〈r, s〉 is of type BC2. Hence one of the cases
of Proposition 2.6 holds for G(〈r, s〉). If now G(〈r, s〉) is of type BC2 then it follows from

Theorem 2 of [6] that A
nβ
α = Aαwβ for all α, β ∈ 〈r, s〉 and all nβ ∈ Hβnβ, since Hβnβ is

the set of all elements of Xβ interchanging Aβ and A−β. As Hβ = 〈nβnβ | nβ ∈ Hβnβ〉, this
implies Hβ ≤ N(Aα) for all α, β ∈ 〈r, s〉. Hence (1) and (2) hold. Since Hβ also normalizes
〈Hαnα〉 = Hα〈nα〉 we also obtain [Hβ, nα] ≤ Hα, which proves (3).

So we may assume that G(〈r, s〉) is not of type BC2. If Aα = A2α for all α ∈ 〈r, s〉 with
2α ∈ 〈r, s〉, then by Proposition 2.6 G(〈r, s〉) is of type C2 and whence Lemma 3.1 holds by
(2.7)–(2.9) of [6]. So we may assume that Xα�G(〈r, s〉) for some α ∈ 〈r, s〉 with 2α ∈ 〈r, s〉.
Let ∆ = 〈r, s〉 − {±α,±2α}. Then by Corollary 2.7 either G(〈r, s〉) is a central product of
rank one groups or G(〈r, s〉) = Xα ∗G(∆) and G(∆) is of type A2.

In the first case obviously Lemma 3.1 holds. In the second case it easily follows from [6,
(2.6)]. 2
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In the next lemma we will see that Lemma 3.1 remains nearly true for s = 2r.

3.2 Lemma. Let r, 2r ∈ Φ. Then either Xr�G and Xα ≤ C(Xr) for all α ∈ Φ−{±r,±2r}

or we have:
(1) Hr ≤ N(A2r) (3) Anr2r = A−2r and H

nr
2r = H2r

(2) Hr ≤ N(H2r) (4) A′r = A2r or Ar = A2r

Proof. To prove Lemma 3.2 we may assume Ar 6= A2r. Let s ∈ Φ with 2s 6∈ Φ and
s 6= λr, λ ∈ Z. Then 〈r, s〉 is either of type A1 × A1 or of type BC2. In the second case we
may apply Proposition 2.6 to 〈r, s〉. Thus either A′r = A2r or there exists an α ∈ 〈r, s〉 with
2α ∈ Φ such that Xα �G(〈r, s〉). If now Xα 6= Xr, then by Corollary 2.7 either [Xr, Xs] = 1
or Ar = A2r, which we assume is not the case. Hence we obtain that either [Xr, Xs] = 1 or
A′r = A2r. But since clearly Lemma 3.2 holds in the second case since Hr = H−r and thus
Hr ≤ N(X2r), we may assume that [Xr, Xs] = 1 for all s ∈ Φ with 2s 6∈ Φ.

Next suppose s, 2s ∈ Φ with r, s linearly independent. Then by the description of the root
system of type BC`, 〈r, s〉 is of type BC2. But then we obtain again from Proposition 2.6
and Corollary 2.7 that either Ar = A2r, A

′
r = A2r or [Xr, Xs] = 1. This shows that either

(1)–(4) hold or [Xr, Xs] = 1 for all s ∈ Φ− {±r,±2r}. 2

3.3 Notation. We assume from now on for the rest of this section that no Xr with r, 2r ∈ Φ
is normal in G, since in case Xr �G case (c) of the Main-theorem holds. Thus from now on
we know that always (1)–(4) of Lemma 3.2 are satisfied, which in turn implies that (1)–(4)
of Lemma 3.1 hold for all r, s ∈ Φ. Now set

H := ΠHr, r ∈ Φ and N := 〈H,nr | r ∈ Φ〉.

Then by (3) of Lemma 3.1 H �N . Let N = N/H and nr be the image of nr. Then by (1)
and (4) of Lemma 3.1 the nr act on {As | s ∈ Φ} and thus they act on Φ by

Asnr := A
nr
s .

Finally let W = W (Φ) = 〈wr | r ∈ Φ〉 be the Weyl-group of Φ.

We show next:

3.4 Lemma. {nr | r ∈ Φ} is a set of {3, 4} transpositions of N . Moreover for r, s ∈ Φ
with s 6= λr and R = G(〈r, s〉) one of the cases (1)–(4) of [6, (2.11)] holds or we have up to
symmetry between r and s:
(5) 〈r, s〉 is of type BC2 and one of the following holds:

(i) 2r ∈ Φ, Ar = A2r, R is of type B2 and nnsr = nr±s.

(ii) R is of type BC2 and

nnsr =
{
nr±s if 2r ∈ Φ, 2s 6∈ Φ
nr±2s if 2r 6∈ Φ, 2s ∈ Φ

(iii) R is a central product of the Xα, α ∈ 〈r, s〉.
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(iv) There exists an α ∈ 〈r, s〉 with 2α ∈ 〈r, s〉 such that for ∆ = 〈r, s〉 − {±α,±2α}
we have R = Xα ∗G(∆) and G(∆) is of type A2. Moreover, if ±r 6= α 6= ±s, then
nnsr = n

nr
s = nr±2s resp. n2r±s if 2s ∈ Φ resp. 2r ∈ Φ.

Proof. We first show that one of the cases (1)–(4) of [6,(2.11)] or case (5) of Lemma 3.4 holds.

If 〈r, s〉 is not of type BC2 this follows from [6,(2.11)]. So assume 〈r, s〉 is of type BC2. Then
it follows from Proposition 2.6 and Corollary 2.7 that R satisfies one of the cases (5)(i)–(iv).
If R is of type B2 or BC2 then n

ns
r = nrws , whence (i) or (ii) holds. Finally, if R satisfies (iv)

then by Corollary 2.7 Aβ = A2β for β ∈ ∆ with 2β ∈ Φ. Hence if 2s ∈ Φ then nnsr = nr±2s.

Now D = {nr | r ∈ Φ} = {ns | s ∈ Φ0} since nr = n2r if r, 2r ∈ Φ. Hence it follows already
from [6,(2.11)] that D is a set of {3, 4} transpositions of N . (By Lemma 3.1 and Lemma 3.2
we have H0 = Πs∈Φ0Hs ≤ H and H0 �N) 2

As in Section 3 of [6] we choose now a root subsystem Ψ1 of Φ0 of type Ak consisting only of
short roots of Φ0 with k ≤ `− 1, satisfying:

(1) For all r, s ∈ Ψ1 with r + s ∈ Φ we have [Ar, As] = Ar+s.

(2) O2(W1) 6≤ O2(W ), where W1 = 〈wr | r ∈ Ψ1〉 (i.e. we cannot have W1 ' Σ4 and
O2(W1) ≤ O2(W ))

(3) If Ψ0 is a root subsystem of type A`−1 containing Ψ1 with O2(〈wr | r ∈ Ψ0〉) 6≤
O2(W ), then [Xr, Xs] = 1 for all r ∈ Ψ1 and s ∈ Ψ0 −Ψ1.

(4) k is maximal with (1)–(3).

(The existence of Ψ1 was discussed at the beginning of Section 3 of [6].)

Let Λ = Φ−Φ0. Then Λ0 = {2α | α ∈ Λ} is the set of long roots of Φ0. Set Ψ = Φ−(Λ∪Λ0).
As in [6] we first treat the case k = `− 1.

3.5 Theorem. Suppose k = `− 1. Then one of the following holds:

I o(nrnα) = 2 or 4 for all r ∈ Ψ1 and α ∈ Λ and one of the following holds:

(a) o(nrnα) = 4 for some r ∈ Ψ1 and α ∈ Λ. In this case we get the possibilities:

(i) G is of type BC` or

(ii) Aα = A2α for all α ∈ Λ and G is of type C`.

(b) o(nrnα) = 2 for all r ∈ Ψ1 and α ∈ Λ. In this case G = G(Ψ) ∗G(Λ) and one
of the following holds:

(i) G(Ψ) is of type D` (i.e. Ψ carries the structure of a root-system of type
D`) or

(ii) G(Ψ) = G(Ψ1) ∗ CG(Ψ)(G(Ψ1)) with Xs ≤ C(G(Ψ1)) for all s ∈ Ψ − Ψ1
and G(Ψ1) is of type A`−1.

II There exists an r ∈ Ψ1 and α ∈ Λ with o(nrnα) = 3. In this case ±α are the only
roots in Λ with o(nrnα) = 3 and the following holds:

(i) N0 = 〈nα, nt | t ∈ Ψ1〉 ' Σ`+1, ∆ = {(±2α)N0} carries the structure of a
root-system of type A` and Aα = A2α. Moreover G(∆) is of type A`.
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(ii) ±2α are the only long roots of Φ0 in ∆.

(iii) G = G(∆) ∗ C(G(∆)) with Xs ≤ C(G(∆)) for all s ∈ Φ− (∆ ∪ {±α}).

Proof. We may apply Theorem (3.1) of [6] to G(Φ0). Suppose first o(nrnα) = 2 for all r ∈ Ψ1
and α ∈ Λ. Then case I(b) holds for G(Φ0). Hence it remains to show that for all r ∈ Ψ
resp. Ψ1 and all α ∈ Λ we have [Xr, Xα] = 1.

If now 〈r, α〉 is of type A1×A1 this follows from condition (2) of the introduction. Hence we
may assume 〈r, α〉 is of type BC2. Since [Xr, X2α] = 1 by assumption (i.e. G(Φ0) satisfies
I(b)), case (1) of Proposition 2.6 holds for G(〈r, α〉). Hence by Corollary 2.7 [Xr, Xα] = 1,
which shows that I(b) holds for G.

Next assume o(nrnα) = 4 for some r ∈ Ψ1 and α ∈ Λ. Since nα = n2α Theorem (3.1) of [6]
implies that G(Φ0) is of type C` and

(∗) [Aβ, Aγ] = 〈Aiβ+jγ | i, j ∈ N, iβ + jγ ∈ Φ0〉 for all β, γ ∈ Φ0 with β 6= −γ.

We must show that in this case either G = G(Φ0) or (∗) holds for all β, γ ∈ Φ with β 6=
−γ,−2γ, since in the latter case by Theorem 2 of [4] G is of type BC`. For this pick such a
pair β, γ with {β, γ} 6⊆ Φ0. Then, without loss, γ ∈ Λ. If β = γ, then by (4) of Lemma 3.2
either [Aβ, Aβ] = A2β and (∗) holds or Aβ = A2β. Now in the second case we obtain Aδ = A2δ
for all δ ∈ Λ, since, as G(Φ0) is of type C`, N acts transitively on Λ0. Hence G = G(Φ0) is
of type C`.

Thus we may assume β 6∈ 〈γ〉. If also β ∈ Λ, then β + γ ∈ Φ und 〈β, γ〉 is of type BC2.
Now, since G(Φ0) is of type C`, G(Φ0 ∩ 〈β, γ〉) must be of type C2. Hence either case (3) or
(4) of Corollary 2.7 holds for G(〈α, β〉). In case (3) we get Aδ = A2δ for all δ ∈ Λ as shown
and thus G = G(Φ0). Thus we may assume that (4) of Corollary 2.7 holds and whence (∗)
is satisfied for the pair β, γ.

So we may assume β ∈ Ψ. (If β ∈ Λ0, then [Aγ, Aβ] = 1 by condition (2) of Section 1 and (∗)
holds for the pair γ, β) If 〈β, γ〉 is of type A1×A1 clearly (∗) holds. Thus we may assume that
〈β, γ〉 is of type BC2. Then again, since we may assume Aβ 6= A2β and since G(Φ0 ∩ 〈β, γ〉)
is of type C2, we are in case (4) of Proposition 2.6. Hence (∗) holds for the pair β, γ.

We have shown that in case o(nrnα) = 4 either G = G(Φ0) or (∗) holds for all pairs β, γ ∈ Φ
with γ 6= −β,−2β. Hence in this case I(a) holds.

Finally assume o(nrnα) = 3 for some r ∈ Ψ1 and α ∈ Λ. Since nα = n2α in this case (3.1) II
of [6] holds. Hence N0 ' Σ`+1, ∆ carries the structure of a root-system of type A` and G(∆)
is of type A`. Moreover II(ii) of Theorem 3.5 holds. In particular G(∆) = 〈Xt | t ∈ Ψ ∩∆〉.

It remains to show that Xs ≤ C(G(∆)) for all s ∈ Φ −∆. If s ∈ Λ −∆, then 2s ∈ Λ0 and
{±2s} 6= {±2α}. Hence X2s ≤ C(G(∆)). Let t ∈ Ψ∩∆. Then either 〈t, s〉 is of type A1×A1
or of type BC2. But in the second case (1) of Proposition 2.6 holds, since [X2s, Xt] = 1.
Hence in any case [Xs, Xt] = 1 for all t ∈ Ψ∩∆ and thus Xs ≤ C(G(∆)). If now s ∈ Ψ−∆,
then s ∈ Φ0−∆ and thus Xs ≤ C(G(∆)) by [6, (3.1)]. Hence Xs ≤ C(G(∆)) for all s ∈ Φ−∆
and thus case II of Theorem 3.5 is satisfied. 2

Assume now k < ` − 1. Then we construct a root-subsystem Φ1 of type BCk+1 containing
Ψ1 such that for G(Φ1) one of the cases of Theorem 3.5 is satisfied.
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Let Λ0 = Λ1∪̇Λ2 such that W (Ψ) = 〈wα | α ∈ Ψ1〉 acts naturally on Λ1 and fixes all
roots in Λ2. Then |{wr | r ∈ Λ1}| = k + 1 and |M1| = 2k+1 for M1 = 〈wr | r ∈ Λ1〉.
Let M2 = 〈ws | s ∈ Λ2〉. Then O2(W ) = M1 × M2 and M1W (Ψ1) ' W (Ck+1). Let
Φ1 = {α ∈ Φ0 | wα ∈ M1W (Ψ1)}. Then Φ1 is a root subsystem of type Ck+1 of Φ0. Let
finally Φ1 = Φ

1 ∪ Λ1, where Λ1 = {β ∈ Λ | 2β ∈ Λ1}. Then we get:

3.6 Lemma. The following hold:
(1) Φ1 is a root subsystem of type BCk+1 of Φ containing Ψ1.

(2) G(Φ1) satisfies one of the cases of Theorem 3.5.

Proof. Without loss we may choose the enumeration of the orthonormal basis of R` such that
Ψ1 = {ei− ej | i 6= j, i, j ≤ k+1}. Then Λ1 = {±2ei | i ≤ k+1} and Λ1 = {±ei | i ≤ k+1}.
Hence Φ1 = {±ei,±2ei,±ei ± ej | i 6= j, i, j ≤ k + 1} is a root-system of type BCk+1 by the
description of a root system of type BC`. Now since Φ1 is a root-subsystem it is clear that
G(Φ1) satisfies the hypothesis of Theorem 3.5 with respect to the root system Φ1. 2

3.7 Proposition. G = G(Φ1) ∗ C(G(Φ1)) with Xs ≤ C(G(Φ1)) for all s ∈ Φ− Φ1.

Proof. Suppose first s ∈ Φ0 − Φ1. Then by (3.3) and (3.4) of [6] Xs ≤ C(G(Φ1)). Let
t ∈ Φ1 − Φ1. Then t ∈ Λ1 and 2t ∈ Λ1. Hence [Xs, X2t] = 1. Now 〈s, t〉 is either of type
A1×A1 or of type BC2 and, to show [Xs, Xt] = 1, we may assume that we are in the second
case. Then also s 6∈ Λ0, since 〈s, t〉 is not of type A1×A1 and we may assume that At 6= A2t.
Hence possibility (1) of Proposition 2.6 holds for G(〈s, t〉) and thus [Xs, Xt] = 1.

We have shown Xs ≤ C(G(Φ1)) for all s ∈ Φ0−Φ1. Finally assume s ∈ Φ− (Φ1 ∪Φ0). Then
s ∈ Λ and 2s ∈ Λ2. Suppose r ∈ Φ1 with [Xs, Xr] 6= 1. Then, since 〈s, r〉 is of type A1 × A1
for all r ∈ Ψ ∩ Φ1 and for all r ∈ Λ1, we obtain r ∈ Λ1. Now, using the description of Φ in
the beginning of this section and the description of Φ1 in Lemma 3.6 we obtain s = em with
k + 1 ≤ m ≤ ` and r = ei with 1 ≤ i ≤ k + 1. Hence r + s = ei + em ∈ Φ0 − Φ1 and thus
[Xr+s, Xr] = 1 as shown above. But by Proposition 2.6 and Corollary 2.7 G(〈r, s〉) is of type
BC2 since [Xs, Xr] 6= 1. (If G(〈r, s〉) is of type C2, then Xs = X2s and thus [Xs, Xr] = 1)
But then [Ar+s, A−r] ≥ Ar by (∗) in (4) of Proposition 2.6, a contradiction to [Xr+s, Xr] = 1.

This finally shows [Xs, Xr] = 1 for all s ∈ Φ − Φ1 and all r ∈ Φ1, which proves Proposition
3.7. 2

4. Proof of the Main-theorem

In this section we assume that the hypothesis of the Main-theorem holds. We carry on with
the notation introduced in Section 2 and 3. We first show how case (d) of the Main-theorem
can be split of.

4.1 Lemma. Suppose J ′ = {r ∈ Φ0 | Ar is an elementary abelian 2-group} 6= ∅. Let
K ′ = Φ0 − J ′,

J = {s ∈ Φ | 2s ∈ J ′} ∪ J ′ and K = {s ∈ Φ | 2s ∈ K ′} ∪K ′.

Then the following hold:
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(1) Φ = J∪̇K and G = G(J) ∗G(K).

(2) Let s ∈ J − J ′. Then either Xs �G or A2s ≤ A
′
s ≤ A2s.

Proof. By choice of J ′ and K ′ we have Φ0 = J
′∪̇K ′. Let s ∈ Φ−Φ0. Then 2s ∈ Φ0 and thus

s ∈ J ∪K. If now s ∈ J ∩K, then s ∈ Φ − Φ0 and thus 2s ∈ J ′ ∩K ′, which is impossible.
This shows Φ = J∪̇K.

Now by [6, (2.12)] G0 = G(J
′) ∗G(K ′). Let s ∈ J − J ′ and claim Xs ≤ C(G(K ′)). For this

pick r ∈ K ′. Then 〈s, r〉 is of type A1×A1 or BC2 and, to show [Xs, Xr] = 1, we may assume
that we are in the second case. Hence we may apply Proposition 2.6 and Corollary 2.7 to
G(〈s, r〉) = Y . If now r = 2α, α ∈ K −K ′, then [X2s, Xr] = 1 = [Xs, Xr] by condition (2) of
the Main-Theorem. So we may assume that r is not of this form, i.e. r is a short root of Φ0.
Now clearly case (3) and (4) of Proposition 2.6 can not hold, since [X2s, Xr] = 1.

Suppose (1) 0f proposition 2.6 holds. Then, if Xs�Y clearly [Xs, Xr] = 1. So we have Xα�Y
for some α 6= s with 2α ∈ Φ0. But then by Corollary 2.7 either Y is a central product of
rank one groups or Xs = X2s. Hence in any case [Xs, Xr] = 1. Finally, if (2) of Proposition
2.6 holds, then Ar is also an elementary abelian 2-group, a contradiction to r ∈ K ′.

This shows [Xs, Xr] = 1 and thus Xs ≤ C(G(K ′)) for each s ∈ J − J ′. The same argument
shows Xα ≤ C(G(J ′)) for each α ∈ K−K ′. Thus, to prove (1), it remains to show [Xs, Xα] =
1 for each s ∈ J − J ′, α ∈ K − K ′. Suppose this is not the case for some such pair s, α.
Then 〈s, α〉 is of type BC2 and [Xs, X2α] = 1 = [X2s, Xα]. Let again Y = G(〈s, α〉). Then
we may apply Proposition 2.6 to Y . Clearly (3) of Proposition 2.6 does not hold for Y . If
now Y is of type BC2, then s + α ∈ Φ0 and [A−s, As+α] 6= 1 6= [A−α, As+α], a contradiction
to Φ0 = J

′ ∪ K ′ and Xs ≤ C(G(K ′)), Xα ≤ C(G(J ′)). This shows that (4) of Proposition
2.6 does not hold. Clearly (2) of proposition 2.6 does not hold, since 2α ∈ K ′. So case (1) of
proposition 2.6 remains. But in this case either Xs � Y or Xα � Y and whence in any case
[Xs, Xα] = 1. This proves (1).

To prove (2) pick s ∈ J − J ′ and assume Xs is not normal in G. Then there exists by (1) an
r ∈ J with [Xs, Xr] 6= 1. Hence 〈s, r〉 is of type BC2 and we may apply Proposition 2.6 to
Y = G(〈s, r〉). Now in case (2) or (3) of Proposition 2.6 clearly (2) holds. So we may assume
that(1) or (4) of Proposition 2.6 are satisfied. If now Y is of type BC2, then as A2s and Ar
or A2r are elementary abelian, Proposition 2.1 shows that the hypothesis of Lemma 2.3 is
satisfied for 〈s, r〉 and Y . Hence A2s ≤ A

′
s ≤ A2s since [Xs, Xr] 6= 1. So we may finally assume

that (1) of Proposition 2.6 holds for Y . But then, since Xs is not normal in Y , Corollary 2.7
implies As = A2s, whence A

2
s = 1 = A

′
s and (2) holds. 2

4.2 Proof of the Main-theorem. Let Φ be a root system of type BC` and G = 〈Ar | r ∈ Φ〉
be a group satisfying (1) and (2) of Section 1. We show that G satisfies one of the cases
(a)–(d) of the Main-Theorem.

If ` = 2 then this follows from Proposition 2.6. So we may assume ` ≥ 3. Suppose next that
some Ar, r ∈ Φ0 is an elementary abelian 2-group. Then by Lemma 4.1 G = G(J)∗G(K) and,
to show that case (d) of the Main-theorem is satisfied, it remains to show that A2s ≤ A

′
s ≤ A2s

for each s ∈ J with 2s ∈ J ′. But if this is not the case for some such s then by (2) of Lemma
4.1 Xs�G and Xα ≤ C(Xs) for all α ∈ Φ−{±s,±2s} and thus case (c) of the Main-theorem
holds with J = {±s,±2s}.
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Hence we may assume that no Ar, r ∈ Φ0 and whence no Ar, r ∈ Φ is an elementary abelian
2-group. Hence the hypothesis of §3 is satisfied. Let now Ψ1 be a root subsystem of type Ak,
k ≤ ` − 1, satisfying conditions (1)–(4) next to the proof of Lemma 3.4. If now k = ` − 1
then Theorem 3.5 shows that one of the cases (a)–(c) of the Main-theorem holds. Hence we
may assume k < `− 1. But in this case it follows from Proposition 3.6 and Proposition 3.7
that the Main-theorem holds. 2
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