On Mappings Preserving a Family of Star Bodies

Grzegorz Sójka

Wydział Matematyki i nauk Informacyjnych, Politechnika Warszawska Plac Politechniki 1, 00-668 Warszawa, Polska e-mail: grzegorz.sojka@prioris.mini.pw.edu.pl

Abstract. The paper concerns the star mappings understood as topological embedding of \mathbb{R}^n into itself preserving the class of bodies which are star shaped at point 0. The main result is full characterization of star mappings (Theorem 2.8). At the end we give a solution of some related problem.

MSC 2000: 52A30, 54C99, 54C05 Keywords: star set, star body, star mapping

1. Introduction

This paper consists of two different parts, both related to [1]. Moszyńska in [1] defined a set GS(n) of transformations called "generalized star mappings". They are positively homogeneous homeomorphisms of \mathbb{R}^n onto itself. That class of mappings is suitable for the notion of quotient star body (comp. [1], Prop. 2.6), however (in contrary to the statement in [1], p. 47) it is not the largest possible family of maps preserving the class S^n of star bodies under consideration. Section 2 concerns the structure of the largest family Ω^n of maps preserving S^n . In Section 3 we give a solution of Problem 1 in [1].

We use the following terminology and notation: By \mathbb{R}_+ we denote the set $\{r \in \mathbb{R}; r \geq 0\}$, by Σ the set of topological embeddings of \mathbb{R}_+ into \mathbb{R}_+ preserving 0. For affine independent points x_1, \ldots, x_n in \mathbb{R}^n the simplex with vertices x_1, \ldots, x_n is denoted by $\Delta(x_1, \ldots, x_n)$. As usually, \mathbb{B}^n and S^{n-1} are the unit ball and the unit sphere. Let A be a nonempty compact subset of \mathbb{R}^n ; then A is a body if and only if A = cl(int(A)); the set A is called star shaped

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag

at 0 if $\Delta(a,0) \subset A$ for every $a \in A$. The radial function $\rho_A : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}_+$ of a set A star shaped at 0 is defined by the formula

$$\rho_A(x) = \sup\left\{\lambda \ge 0; \ \lambda x \in A\right\}. \tag{1}$$

A set $A \subset \mathbb{R}^n$ will be called a star body whenever A is star shaped at 0 and its radial function restricted to S^{n-1} is continuous. The set of all star bodies in \mathbb{R}^n is denoted by S^n . The set of all halflines in \mathbb{R}^n starting at 0 will be denoted by \mathcal{L}^n . To every $x \in \mathbb{R}^n$ such that $x \neq 0$ we assign the halfline pos $(x) \in \mathcal{L}^n$ defined by the formula

$$pos(x) = \left\{ y \in \mathbb{R}^n; \ \exists_{\lambda \in \mathbb{R}_+} \ y = \lambda x \right\}.$$
(2)

2. Star mappings

In this section we shall describe the structure of the family Ω^n of generalized star mappings defined as follows:

Definition 2.1. Ω^n is the family of all topological embeddings of \mathbb{R}^n into itself, preserving the point 0 and the class S^n .

Lemma 2.2. Let $\omega \in \Omega^n$. Then

- (i) for every $B \in \mathcal{L}^n$ there exists $C \in \mathcal{L}^n$ with $\omega(B) \subset C$;
- (ii) for every $B, B', C \in \mathcal{L}^n$ if $\omega(B) \subset C$ and $\omega(B') \subset C$, then B = B'.

Proof. First we prove that the image of every closed segment starting at 0 is again a closed segment starting at 0. Let $g \in \mathbb{R}^n$, $g \neq 0$ and $h = \omega(g)$. Let $G = \Delta(0, g)$ and $H = \Delta(0, h)$. Since, evidently, for every $\varepsilon > 0$ the set G_{ε} belongs to \mathcal{S}^n , it follows that $\omega(G_{\varepsilon}) \in \mathcal{S}^n$. Further, since $h = \omega(g) \in \omega(G) \subset \omega(G_{\varepsilon})$, we get:

$$\forall_{\varepsilon>0} \ H \subset \omega \left(G_{\varepsilon} \right). \tag{3}$$

Let $\{\varepsilon_k\}_{k=0}^{\infty}$ be a sequence convergent to 0 such that $\varepsilon_k > 0$ for every k. The set G is compact; thus $G = \bigcap_{k=0}^{\infty} G_{\varepsilon_k}$. The mapping ω is a topological embedding; thus

$$\omega\left(G\right) = \bigcap_{k=0}^{\infty} \omega\left(G_{\varepsilon_k}\right). \tag{4}$$

From (3) and (4) we obtain:

$$H \subset \omega\left(G\right). \tag{5}$$

Since the arc $\omega(G)$ and the segment H have common ends, if follows that

$$H = \omega\left(G\right).\tag{6}$$

If the second part of the lemma is false, then there exist points $g, h \neq 0$ such that $\omega(g), \omega(h)$ belong to one halfline from \mathcal{L}^n thought g, h do not belong to such a halfline. We may assume that $\|\omega(g)\| \geq \|\omega(h)\|$. Using the first part of lemma, we get $\omega(h) \in \omega(\Delta(0,g))$. So there exists $c \in \Delta(0, q)$ such that $\omega(h) = \omega(c)$. Since ω is a topological embedding, it follows that c = h. Hence q, h belong to one halfline.

Corollary 2.3. Let $\omega \in \Omega^n$ then for all $x, y \in \mathbb{R}^n$

$$\frac{x}{\left\|x\right\|} = \frac{y}{\left\|y\right\|} \Leftrightarrow \frac{\omega\left(x\right)}{\left\|\omega\left(x\right)\right\|} = \frac{\omega\left(y\right)}{\left\|\omega\left(y\right)\right\|}$$

Proof. (\Rightarrow) Let us assume that $\frac{x}{\|x\|} = \frac{y}{\|y\|}$. That means that x and y belong to one element of \mathcal{L}^{n} . Using Lemma 2.2(i) we infer that also $\omega(x)$ and $\omega(y)$ belong to one element of \mathcal{L}^{n} . This is equivalent to the condition $\frac{\omega(x)}{\|\omega(x)\|} = \frac{\omega(y)}{\|\omega(y)\|}$. (\Leftarrow) If we assume now that $\frac{x}{\|x\|} \neq \frac{y}{\|y\|}$, then in similar way, using Lemma 2.2(ii), we get

 $\frac{\omega(x)}{\|\omega(x)\|} \neq \frac{\omega(y)}{\|\omega(y)\|}.$

It is now clear that we can look at \mathbb{R}^n as the union of halflines starting at 0, which will be called "hairs". What $\omega \in \Omega^n$ can do with a hair? First, it can move any point different from 0 along the hair. It can even map a hair on a subset of some hair of a finite length. The way the points are moved along the hair will be described in terms of mappings from the family Φ^n defined as follows:

$\textbf{Definition 2.4. } \Phi^{n} = \big\{ \phi: S^{n-1} \to \Sigma; \ \forall_{r \in \mathbb{R}_{+}} \forall_{u_{k}, u \in S^{n-1}} u_{k} \to u \Rightarrow \left(\phi\left(u_{k}\right) \right)(r) \to \left(\phi\left(u\right) \right)(r) \big\}.$

The arguments of Φ are points in S^{n-1} , which determine the hair. Each value is a topological embedding of \mathbb{R}^n into itself; it gives us full information about ||x|| and $||\omega(x)||$ for any $x \in \mathbb{R}^n$. A hair can also change its direction. To describe it we shall use mappings from the class Ψ^n defined as follows:

Definition 2.5. Let Ψ^n be the class of homeomorphisms of S^{n-1} onto itself.

The information stored in such mappings is direction of a hair and its image under ω . To every mapping from Φ^n and Ψ^n we shall assign mappings of \mathbb{R}^n into itself.

Definition 2.6. To every $\phi \in \Phi^n$ we assign the mapping $\widehat{\phi} : \mathbb{R}^n \to \mathbb{R}^n$ satisfying the condition

$$\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_+} \widehat{\phi} \left(ru \right) = \left(\phi \left(u \right) \right) \left(r \right) u. \tag{7}$$

Similarly, for every $\psi \in \Psi^n$ the mapping $\widetilde{\psi} : \mathbb{R}^n \to \mathbb{R}^n$ is defined by the condition

$$\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_+} \widetilde{\psi} \left(ru \right) = r\psi \left(u \right).$$
(8)

It seems to be clear that

$$\forall_{\phi \in \Psi^n} \forall_{\psi \in \Psi^n} \forall_{u \in S^{n-1}} \left(\phi \left(u \right) \right) \left(0 \right) u = 0 = 0 \psi \left(u \right); \tag{9}$$

so we do not have to worry about the choice of u when x = 0 in Definition 2.6. These mappings have a property which is very useful for us:

Lemma 2.7. For every $\phi \in \Phi^n$ and $\psi \in \Psi^n$ the mappings $\widehat{\phi}, \widetilde{\psi}$ defined in 2.6 are in the class Ω^n .

Proof. First we prove that $\hat{\phi}, \tilde{\psi}$ are topological embeddings. We begin with $\hat{\phi}$ proving that

$$\forall_{x_k,x\in\mathbb{R}^n} x_k \to x \Leftrightarrow \widehat{\phi}(x_k) \to \widehat{\phi}(x) \,. \tag{10}$$

Case 1. Let x = 0 then $\widehat{\phi}(x) = 0$.

 (\Rightarrow) For every $\varepsilon > 0$ let us consider the function $h^{\varepsilon} : S^{n-1} \to \mathbb{R}_+$ defined as follows:

$$h^{\varepsilon}\left(v\right) = \phi\left(v\right)\left(\varepsilon\right)$$

Evidently, $h^{\varepsilon}(v) = \left\| \widehat{\phi}(\varepsilon v) \right\|$. By Definition 2.4 the function h^{ε} is positive and continuous. Moreover

 $\forall_{v \in S^{n-1}} \forall_{\alpha,\beta>0} \alpha \ge \beta \Leftrightarrow h^{\alpha}(v) \ge h^{\beta}(v), \qquad (11)$

$$\forall_{v \in S^{n-1}} \lim_{\alpha \searrow 0} h^{\alpha}(v) = 0.$$
(12)

So $\lim_{\varepsilon \searrow 0} h^{\varepsilon} = 0$ pointwise; by (11), since S^{n-1} is compact, the convergence is uniform. We get:

$$\forall_{\delta>0} \exists_{\mu>0} \forall_{0 \le \varepsilon < \mu} \forall_{v \in S^{n-1}} h^{\varepsilon}(v) < \delta.$$
(13)

Since $h^{\varepsilon}(v) = \left\| \widehat{\phi}(\varepsilon v) \right\|$, the previous condition can be reformulated as follows:

$$\forall_{\delta>0} \exists_{\mu>0} \forall_{z \in \mathbb{R}^n} \|z\| < \mu \Rightarrow \left\| \widehat{\phi} \left(z \right) \right\| < \delta.$$
(14)

 $(\Leftarrow) \text{Let } \delta > 0 \text{ and } \mu = \min_{v \in S^{n-1}} h^{\delta}(v) = \min_{v \in S^{n-1}} \left\| \widehat{\phi}(\delta v) \right\|. \text{ By Definition 2.4 mapping} \\ v \mapsto \left\| \widehat{\phi}(\delta v) \right\| = \phi(v)(\delta) \text{ is continuous, moreover the set } S^{n-1} \text{ is compact so } \mu > 0. \text{ Let} \\ z \in \mathbb{R}^n, u \in S^{n-1}, r \in \mathbb{R}_+ \text{ be such that } z = ru \text{ and } \left\| \widehat{\phi}(z) \right\| < \mu. \text{ Since } \left\| \widehat{\phi}(\delta u) \right\| > \mu, \text{ it} \\ \text{follows that } \left\| \widehat{\varphi}(\delta u) \right\| > \left\| \widehat{\varphi}(z) \right\|. \text{ Using (11) we obtain } \left\| z \right\| < \left\| \delta u \right\| = \delta. \text{ Thus}$

$$\forall_{z \in \mathbb{R}^n} \left\| \widehat{\phi} \left(z \right) \right\| < \mu \Rightarrow \| z \| < \delta, \tag{15}$$

which completes the proof of (10) for x = 0.

Case 2. Let $x \neq 0$; then $\widehat{\phi}(x) \neq 0$.

(\Leftarrow) We may assume that $x_k \neq 0$ which implies $\widehat{\phi}(x_k) \neq 0$. By Definition 2.5

$$\forall_{y \in \mathbb{R}^n \setminus \{0\}} \frac{y}{\|y\|} = \frac{\widehat{\phi}(y)}{\left\|\widehat{\phi}(y)\right\|}.$$
(16)

Thus

$$\frac{x_k}{\|x_k\|} \to \frac{x}{\|x\|} \Leftrightarrow \frac{\widehat{\phi}(x_k)}{\left\|\widehat{\phi}(x_k)\right\|} \to \frac{\widehat{\phi}(x)}{\left\|\widehat{\phi}(x)\right\|}.$$
(17)

It remains to prove that

$$||x_k|| \to ||x|| \Leftrightarrow \left\| \widehat{\phi}(x_k) \right\| \to \left\| \widehat{\phi}(x) \right\|.$$
 (18)

Let r = ||x|| and $u \in S^{n-1}$ be such that x = ru. For every $\varepsilon \in (0; r)$ we consider the functions $h_1^{\varepsilon}, h_2^{\varepsilon} : S^{n-1} \to \mathbb{R}_+$ defined as follows:

$$h_{1}^{\varepsilon}(v) = \phi(v)(r+\varepsilon) - \phi(v)(r), \qquad (19)$$

$$h_{1}^{\varepsilon}(v) = \phi(v)(r) - \phi(v)(r - \varepsilon).$$
(20)

Like the mapping h^{ε} , both h_1^{ε} , h_2^{ε} are positive, continuous and uniformly convergent to 0 when $\varepsilon \searrow 0$. For every $\delta > 0$ there exists $\mu > 0$ such that $\varepsilon < \mu \Rightarrow h_i^{\varepsilon} < \frac{\delta}{2}$ for $i \in \{1, 2\}$. This means that

$$\forall_{y \in \mathbb{R}^n} \ 0 \le \|y\| - r < \mu \Rightarrow \left\| \left\| \widehat{\phi} \left(y \right) \right\| - \left\| \widehat{\phi} \left(r \frac{y}{\|y\|} \right) \right\| \right\| = h_1^{\|y\| - r} \left(\frac{y}{\|y\|} \right) < \frac{\delta}{2}, \tag{21}$$

$$\forall_{y \in \mathbb{R}^n} \ 0 \le r - \|y\| < \mu \Rightarrow \left| \left\| \widehat{\phi} \left(y \right) \right\| - \left\| \widehat{\phi} \left(r \frac{y}{\|y\|} \right) \right\| \right| = h_2^{r - \|y\|} \left(\frac{y}{\|y\|} \right) < \frac{\delta}{2}.$$
(22)

 So

$$\forall_{y \in \mathbb{R}^n} |||y|| - r| < \mu \Rightarrow \left| \left\| \widehat{\phi} \left(y \right) \right\| - \left\| \widehat{\phi} \left(r \frac{y}{\|y\|} \right) \right\| \right| < \frac{\delta}{2}, \tag{23}$$

First we prove (\Rightarrow) in (18). Since the mapping $\phi(\bullet)(r)$ is continuous, it follows that there exists $U \subset S^{n-1}$, an open neighborhood of u, satisfying

$$\forall_{v \in U} |\phi(u)(r) - \phi(v)(r)| < \frac{\delta}{2}.$$
(24)

Since $x = \lim x_k$, there exists l such that

$$\forall_{k \ge l} \, \frac{x_k}{\|x_k\|} \in U \, \& \, |||x_k\| - r| < \mu \tag{25}$$

and for any $k \ge l$

$$\left| \left\| \widehat{\phi}(x_k) \right\| - \left\| \widehat{\phi}(x) \right\| \right| \leq \left| \left\| \widehat{\phi}(x_k) \right\| - \left\| \widehat{\phi}\left(r \frac{x_k}{\|x_k\|} \right) \right\| + \left\| \left\| \widehat{\phi}\left(r \frac{x_k}{\|x_k\|} \right) \right\| - \left\| \widehat{\phi}(x) \right\| \right| \leq \frac{\delta}{2} + \left| \phi\left(\frac{x_k}{\|x_k\|} \right) (r) - \phi(u)(r) \right| \leq \delta.$$
(26)

This proves (\Rightarrow) in (18).

Let now $\delta \in (0; r)$. Let $\mu = \frac{1}{2} \min \left\{ \min_{v \in S^{n-1}} h_1^{\delta}(v), \min_{v \in S^{n-1}} h_2^{\delta}(v) \right\}$ and $U \subset S^{n-1}$ be an open neighborhood of u such that

$$\forall_{v \in U} |\phi(u)(r) - \phi(v)(r)| < \mu.$$

$$(27)$$

We get:

$$\forall_{v \in U} \forall_{t \ge r+\delta} \left\| \left\| \widehat{\phi} (tv) \right\| - \left\| \widehat{\phi} (x) \right\| \right\| = |\phi (v) (t) - \phi (u) (r)| \ge \\ \ge |\phi (v) (t) - \phi (v) (r)| - |\phi (v) (r) - \phi (u) (r)| \ge |\phi (v) (r+\delta) - \phi (u) (r)| - \mu \ge (2\mu) - \mu = \mu$$
(28)

and

$$\forall_{v \in U} \forall_{t \leq r-\delta} \left\| \left\| \widehat{\phi} \left(tv \right) \right\| - \left\| \widehat{\phi} \left(x \right) \right\| \right\| = \left| \phi \left(v \right) \left(t \right) - \phi \left(u \right) \left(r \right) \right| \ge \left| \phi \left(v \right) \left(r - \delta \right) - \phi \left(u \right) \left(r \right) \right| = \left| v \right|^{2}$$

$$\geq |\phi(v)(t) - \phi(v)(r)| - |\phi(v)(r) - \phi(u)(r)| \geq |\phi(v)(r - \delta) - \phi(u)(r)| - \mu \geq (2\mu) - \mu = \mu$$
(29)

By (28) and (29) we obtain:

$$\forall_{v \in U} \forall_{t>0} |t-r| \ge \delta \Rightarrow \left| \left\| \widehat{\phi} (tv) \right\| - \left\| \widehat{\phi} (x) \right\| \right| \ge \mu.$$
(30)

In other words

$$\frac{\widehat{\phi}(x_k)}{\left\|\widehat{\phi}(x_k)\right\|} \in U \& \left\|\left\|\widehat{\phi}(x_k)\right\| - \left\|\widehat{\phi}(x)\right\|\right\| < \mu \Rightarrow \left|\left\|x_k\right\| - \left\|x\right\|\right\| < \delta.$$
(31)

This proves (18); thus the proof of (10) is complete. Now we look at the mapping $\tilde{\psi}$. We are going to show that:

$$\forall_{x_k, x \in \mathbb{R}^n} x_k \to x \Leftrightarrow \widetilde{\psi}(x_k) \to \widetilde{\psi}(x) .$$
(32)

From (8) we get

$$\forall_{y \in \mathbb{R}^n} \left\| \widetilde{\psi} \left(y \right) \right\| = \left\| y \right\|, \tag{33}$$

which implies (32) for x = 0 (i.e. for $\widetilde{\psi}(x) = 0$). Let $x \neq 0$. From (8) we get

$$\forall_{y \in \mathbb{R}^n \setminus \{0\}} \frac{\widetilde{\psi}(y)}{\left\|\widetilde{\psi}(y)\right\|} = \psi\left(\frac{y}{\|y\|}\right).$$
(34)

By 2.5, (8), and (34) we obtain

$$\frac{x_k}{\|x_k\|} \to \frac{x}{\|x\|} \Leftrightarrow \frac{\widetilde{\psi}(x_k)}{\left\|\widetilde{\psi}(x_k)\right\|} \to \frac{\widetilde{\psi}(x)}{\left\|\widetilde{\psi}(x)\right\|}.$$
(35)

Combining (33) and (35), we get (32) for $x \neq 0$.

We proved that both $\widehat{\phi}$ and $\widetilde{\psi}$ are topological embeddings. So if $A = \operatorname{cl}(\operatorname{int}(A))$, then $\widehat{\phi}(A) = \operatorname{cl}\left(\operatorname{int}\left(\widehat{\phi}(A)\right)\right)$ and $\widetilde{\psi}(A) = \operatorname{cl}\left(\operatorname{int}\left(\widetilde{\psi}(A)\right)\right)$. Moreover, it is easy to show that both $\widehat{\phi}$ and $\widetilde{\psi}$ take every segment starting at 0 to segment starting at 0 too. Hence if A is star shaped at 0 then $\widehat{\phi}(A)$ and $\widetilde{\psi}(A)$ are star shaped at 0 too. Finally, it can be proved that for every $v \in S^{n-1}$:

$$\rho_{\widehat{\phi}(A)}\left(v\right) = \phi\left(v\right)\left(\rho_A\left(v\right)\right) \tag{36}$$

and

$$\rho_{\widetilde{\psi}(A)}\left(v\right) = \rho_A\left(\psi^{-1}\left(v\right)\right). \tag{37}$$

So if A is a star body and $\rho_A|_{S^{n-1}}$ is continuous, then $\rho_{\widehat{\phi}(A)}|_{S^{n-1}}$ and $\rho_{\widehat{\psi}(A)}|_{S^{n-1}}$ are continuous.

Now we are ready to prove the main result:

Theorem 2.8. The mapping $(\phi, \psi) \mapsto (\widetilde{\psi} \circ \widehat{\phi})$ is a biunique correspondence between the sets $(\Phi^n \times \Psi^n)$ and Ω^n .

Proof. Let $\omega \in \Omega^n$. The mappings ϕ and ψ will be defined as follows:

$$\phi(v)(r) = \|\omega(rv)\|, \qquad (38)$$

$$\psi\left(v\right) = \frac{\omega\left(v\right)}{\|\omega\left(v\right)\|}\tag{39}$$

for any $v \in S^{n-1}$ and $r \in \mathbb{R}_+$. At the beginning we shall prove that $\phi \in \Phi^n$. Let $u \in S^{n-1}$; let B = pos(u) and $C = \text{pos}(\omega(u))$. The mapping $\phi(u)(\bullet)$ can be expressed as the composition of three mappings. The first of them goes from \mathbb{R}_+ to B. It is given by the formula $t \mapsto tu$. The second is the restriction of ω to B. The third one $x \mapsto ||x||$ goes from C to \mathbb{R}_+ . The first and the last one are homeomorphisms. The second is a topological embedding. That means that $\phi(u)(\bullet) \in \Sigma$. Let $u_k \in S^{n-1}$; r > 0. We know that

$$u_{k} \to u \Leftrightarrow ru_{k} \to ru \Leftrightarrow \omega (ru_{k}) \to \omega (ru) \Rightarrow \|\omega (ru_{k})\| \to \|\omega (ru)\| \Leftrightarrow \phi (r) (u_{k}) \to \phi (r) (u).$$

So $\phi \in \Phi^n$.

Now it is time to prove that $\psi \in \Psi^n$. We know that $0 = \omega(0) \in \omega(\operatorname{int}(\mathbb{B}^n))$ and $\omega(\mathbb{B}^n)$ is bounded. So for every halfline C starting at 0 the set $C \cap \operatorname{bd}(\omega(\mathbb{B}^n))$ is not empty. Since $\operatorname{bd}(\omega(\mathbb{B}^n)) = \omega(S^{n-1})$ then ψ is surjective. By Corollary 2.3, ψ is injective. By (39), ψ is continuous. Let $\lambda > 0$ be such that $2\lambda \mathbb{B}^n \subset \omega(\mathbb{R}^n)$ and mapping $h: S^{n-1} \to S^{n-1}$ satisfies the condition

$$h(v) = \frac{\omega^{-1}(\lambda v)}{\|\omega^{-1}(\lambda v)\|}.$$
(40)

The mapping h is continuous. Moreover:

$$\psi h\left(v\right) = \frac{\omega\left(\frac{\omega^{-1}(\lambda v)}{\|\omega^{-1}(\lambda v)\|}\right)}{\left\|\omega\left(\frac{\omega^{-1}(\lambda v)}{\|\omega^{-1}(\lambda v)\|}\right)\right\|}.$$
(41)

By Corollary 2.3

$$\frac{\omega\left(\frac{1}{\|\omega^{-1}(\lambda v)\|}\omega^{-1}(\lambda v)\right)}{\left\|\omega\left(\frac{1}{\|\omega^{-1}(\lambda v)\|}\omega^{-1}(\lambda v)\right)\right\|} = \frac{\omega\left(\omega^{-1}(\lambda v)\right)}{\left\|\omega\left(\omega^{-1}(\lambda v)\right)\right\|} = \frac{\lambda v}{\|\lambda v\|} = v;$$
(42)

so ψ^{-1} is continuous. That means that $\psi \in \Psi^n$. Let us notice that

$$\widetilde{\psi} \circ \widehat{\varphi} (ru) = \widetilde{\psi} (\widehat{\varphi} (ru)) = \widetilde{\psi} (\varphi (u) (r) u) = \varphi (u) (r) \psi (u) =$$
$$= \|\omega (ru)\| \frac{\omega (u)}{\|\omega (u)\|} = \|\omega (ru)\| \frac{\omega (ru)}{\|\omega (ru)\|} = \omega (ru).$$
(43)

We proved that the mapping $(\varphi, \psi) \mapsto \widetilde{\psi} \circ \widehat{\phi}$ is surjective. It remains to show that it is injective. Let $\phi_1, \phi_2 \in \Phi^n, \psi_1, \psi_2 \in \Psi^n$, and

$$\widetilde{\psi_1} \circ \widehat{\phi_1} = \widetilde{\psi_2} \circ \widehat{\phi_2}. \tag{44}$$

Then

$$\widetilde{\psi_2}^{-1} \circ \widetilde{\psi_1} \circ \widehat{\phi_1} = \widehat{\phi_2}. \tag{45}$$

Since $\widehat{\phi}_2$ preserves directions, it follows that so does $\widetilde{\psi}_2^{-1} \circ \widetilde{\psi}_1 \circ \widehat{\phi}_1$. So $\widetilde{\psi}_2^{-1} \circ \widetilde{\psi}_1 = id$; hence $\widehat{\phi}_1 = \widehat{\phi}_2$.

It may seem that the mappings from the classes Φ^n and Ψ^n are very simple. So we may think that so are the mappings from Ω^n . To help the reader to realize how complicated they are we shall give two examples:

Example 2.9. Let $\phi(u)(r) = 1 - \exp(-r)$ and $\omega = \widehat{\phi}$. It is easy to see that $\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_+} \|\omega(ru)\| = \phi(u)(r) < 1.$ (46)

So we cannot expect that $\omega(\mathbb{R}^n) = \mathbb{R}^n$. I think that it is not very surprising because after applying ω image of every hair has finite lengths. It seems to be more interesting that there exists a generalized star mapping ω for which images of some hairs have finite lengths and images of another hairs have infinite lengths.

Example 2.10. Let n = 2 and $e_1 = (1,0)$. Let the $\mu(u) = \angle (u, e_1)$. Let mapping $\phi(u)(r) = \mu(u)r + (1 - \exp(-r))$ and $\omega = \widehat{\phi}$. It is easy to see that if $u \neq e_1$, then $\phi(u)(r)$ can be arbitrarily large while $\phi(e_1)(r) < 1$ for every r.

3. A solution of Problem 1 in [1]

To every $A \in \mathcal{S}^n$ we assign the subset S_A of the unit sphere:

$$S_A = \left\{ u \in S^{n-1}; \ \rho_A(u) > 0 \right\}.$$
(47)

M. Moszyńska proved that if $A, B \in S^n$ and there exists $\omega \in GS(n)$ such that $\omega(A) = B$, then S_A is homeomorphic to S_B . She asked if the existence of a homeomorphism between S_A and S_B suffices for A, B to be star equivalent in sense of [1].

Proposition 3.1. If $A, B \in S^n$ and there exists $\omega \in \Omega^n$ such that $\omega(A) = B$, then $S^{n-1} \setminus S_A$ is homeomorphic to $S^{n-1} \setminus S_B$.

Proof. By Theorem 1.8 there exist $\phi \in \Phi^n$ and $\psi \in \Psi^n$ such that $\tilde{\psi} \circ \hat{\phi} = \omega$. It can be easily proved that if $\omega(A) = B$ then $\psi(S^{n-1} \setminus S_A) = S^{n-1} \setminus S_B$ (and $\psi(S_A) = S_B$). The mapping ψ is a homeomorphism; thus the restriction of ψ to $S^{n-1} \setminus S_A$ is a homeomorphism as well. This completes the proof.

The following example shows that the answer to the above question is negative even for the larger family Ω^n .

Example 3.2. Let n = 2 and let $A, B \in S^n$ be defined by the values of their radial functions restricted to S^{n-1} :

$$\rho_A\left(u\right) = \left|\langle u; e_1 \rangle\right|,\tag{48}$$

$$\rho_B\left(u\right) = \max\left\{\left|\langle u; e_1 \rangle\right| - \frac{1}{2}, 0\right\}.$$
(49)

The set $S^{n-1} \setminus S_A$ consists of two points, while the set $S^{n-1} \setminus S_B$ consists of two closed arcs. In this case there is no star mapping $\omega \in \Omega^n$ such that $\omega(A) = B$. On the other hand, each of S_A and S_B consists of two open arcs. So they are homeomorphic.

This example can be generalized to any $n \ge 2$ showing that the answer is no even if we look in family Ω^n . Moreover it can be proved that even if S_A is homeomorphic to S_B and $S^{n-1} \setminus S_A$ is homeomorphic to $S^{n-1} \setminus S_B$ we cannot expect that A, B are star equivalent.

References

- Moszyńska. M.: Quotient Star Bodies, Intersection Bodies, and Star Duality. Journal of Mathematical Analysis and Applications 232 (1998), 45–60.
- [2] Schneider, R.: Convex Bodies: The Brunn Minkowski Theory. Cambridge Univ. Press 1993. Zbl 0798.52001

Received July 30, 2001