On Mappings Preserving a Family of Star Bodies

Grzegorz Sójka
Wydziat Matematyki i nauk Informacyjnych, Politechnika Warszawska Plac Politechniki 1, 00-668 Warszawa, Polska
e-mail: grzegorz.sojka@prioris.mini.pw.edu.pl

Abstract

The paper concerns the star mappings understood as topological embedding of \mathbb{R}^{n} into itself preserving the class of bodies which are star shaped at point 0 . The main result is full characterization of star mappings (Theorem 2.8). At the end we give a solution of some related problem.

MSC 2000: 52A30, 54C99, 54C05
Keywords: star set, star body, star mapping

1. Introduction

This paper consists of two different parts, both related to [1]. Moszyńska in [1] defined a set $G S(n)$ of transformations called "generalized star mappings". They are positively homogeneous homeomorphisms of \mathbb{R}^{n} onto itself. That class of mappings is suitable for the notion of quotient star body (comp. [1], Prop. 2.6), however (in contrary to the statement in [1], p. 47) it is not the largest possible family of maps preserving the class \mathcal{S}^{n} of star bodies under consideration. Section 2 concerns the structure of the largest family Ω^{n} of maps preserving \mathcal{S}^{n}. In Section 3 we give a solution of Problem 1 in [1].

We use the following terminology and notation: By \mathbb{R}_{+}we denote the set $\{r \in \mathbb{R} ; r \geq 0\}$, by Σ the set of topological embeddings of \mathbb{R}_{+}into \mathbb{R}_{+}preserving 0 . For affine independent points x_{1}, \ldots, x_{n} in \mathbb{R}^{n} the simplex with vertices x_{1}, \ldots, x_{n} is denoted by $\Delta\left(x_{1}, \ldots, x_{n}\right)$. As usually, \mathbb{B}^{n} and S^{n-1} are the unit ball and the unit sphere. Let A be a nonempty compact subset of \mathbb{R}^{n}; then A is a body if and only if $A=\mathrm{cl}(\operatorname{int}(A))$; the set A is called star shaped
at 0 if $\Delta(a, 0) \subset A$ for every $a \in A$. The radial function $\rho_{A}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}_{+}$of a set A star shaped at 0 is defined by the formula

$$
\begin{equation*}
\rho_{A}(x)=\sup \{\lambda \geq 0 ; \lambda x \in A\} \tag{1}
\end{equation*}
$$

A set $A \subset \mathbb{R}^{n}$ will be called a star body whenever A is star shaped at 0 and its radial function restricted to S^{n-1} is continuous. The set of all star bodies in \mathbb{R}^{n} is denoted by \mathcal{S}^{n}. The set of all halflines in \mathbb{R}^{n} starting at 0 will be denoted by \mathcal{L}^{n}. To every $x \in \mathbb{R}^{n}$ such that $x \neq 0$ we assign the halfline $\operatorname{pos}(x) \in \mathcal{L}^{n}$ defined by the formula

$$
\begin{equation*}
\operatorname{pos}(x)=\left\{y \in \mathbb{R}^{n} ; \exists_{\lambda \in \mathbb{R}_{+}} y=\lambda x\right\} . \tag{2}
\end{equation*}
$$

2. Star mappings

In this section we shall describe the structure of the family Ω^{n} of generalized star mappings defined as follows:

Definition 2.1. Ω^{n} is the family of all topological embeddings of \mathbb{R}^{n} into itself, preserving the point 0 and the class \mathcal{S}^{n}.

Lemma 2.2. Let $\omega \in \Omega^{n}$. Then
(i) for every $B \in \mathcal{L}^{n}$ there exists $C \in \mathcal{L}^{n}$ with $\omega(B) \subset C$;
(ii) for every $B, B^{\prime}, C \in \mathcal{L}^{n}$ if $\omega(B) \subset C$ and $\omega\left(B^{\prime}\right) \subset C$, then $B=B^{\prime}$.

Proof. First we prove that the image of every closed segment starting at 0 is again a closed segment starting at 0 . Let $g \in \mathbb{R}^{n}, g \neq 0$ and $h=\omega(g)$. Let $G=\Delta(0, g)$ and $H=\Delta(0, h)$. Since, evidently, for every $\varepsilon>0$ the set G_{ε} belongs to \mathcal{S}^{n}, it follows that $\omega\left(G_{\varepsilon}\right) \in \mathcal{S}^{n}$. Further, since $h=\omega(g) \in \omega(G) \subset \omega\left(G_{\varepsilon}\right)$, we get:

$$
\begin{equation*}
\forall_{\varepsilon>0} H \subset \omega\left(G_{\varepsilon}\right) . \tag{3}
\end{equation*}
$$

Let $\left\{\varepsilon_{k}\right\}_{k=0}^{\infty}$ be a sequence convergent to 0 such that $\varepsilon_{k}>0$ for every k. The set G is compact; thus $G=\bigcap_{k=0}^{\infty} G_{\varepsilon_{k}}$. The mapping ω is a topological embedding; thus

$$
\begin{equation*}
\omega(G)=\bigcap_{k=0}^{\infty} \omega\left(G_{\varepsilon_{k}}\right) . \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain:

$$
\begin{equation*}
H \subset \omega(G) \tag{5}
\end{equation*}
$$

Since the $\operatorname{arc} \omega(G)$ and the segment H have common ends, if follows that

$$
\begin{equation*}
H=\omega(G) . \tag{6}
\end{equation*}
$$

If the second part of the lemma is false, then there exist points $g, h \neq 0$ such that $\omega(g), \omega(h)$ belong to one halfline from \mathcal{L}^{n} thought g, h do not belong to such a halfline. We may assume that $\|\omega(g)\| \geq\|\omega(h)\|$. Using the first part of lemma, we get $\omega(h) \in \omega(\Delta(0, g))$. So there
exists $c \in \Delta(0, g)$ such that $\omega(h)=\omega(c)$. Since ω is a topological embedding, it follows that $c=h$. Hence g, h belong to one halfline.

Corollary 2.3. Let $\omega \in \Omega^{n}$ then for all $x, y \in \mathbb{R}^{n}$

$$
\frac{x}{\|x\|}=\frac{y}{\|y\|} \Leftrightarrow \frac{\omega(x)}{\|\omega(x)\|}=\frac{\omega(y)}{\|\omega(y)\|} .
$$

Proof. (\Rightarrow) Let us assume that $\frac{x}{\|x\|}=\frac{y}{\|y\|}$. That means that x and y belong to one element of \mathcal{L}^{n}. Using Lemma $2.2(\mathrm{i})$ we infer that also $\omega(x)$ and $\omega(y)$ belong to one element of \mathcal{L}^{n}. This is equivalent to the condition $\frac{\omega(x)}{\|\omega(x)\|}=\frac{\omega(y)}{\|\omega(y)\|}$.
(\Leftarrow) If we assume now that $\frac{x}{\|x\|} \neq \frac{y}{\|y\|}$, then in similar way, using Lemma 2.2(ii), we get $\frac{\omega(x)}{\|\omega(x)\|} \neq \frac{\omega(y)}{\|\omega(y)\|}$.

It is now clear that we can look at \mathbb{R}^{n} as the union of halflines starting at 0 , which will be called "hairs". What $\omega \in \Omega^{n}$ can do with a hair? First, it can move any point different from 0 along the hair. It can even map a hair on a subset of some hair of a finite length. The way the points are moved along the hair will be described in terms of mappings from the family Φ^{n} defined as follows:

Definition 2.4. $\Phi^{n}=\left\{\phi: S^{n-1} \rightarrow \Sigma ; \forall_{r \in \mathbb{R}_{+}} \forall_{u_{k}, u \in S^{n-1}} u_{k} \rightarrow u \Rightarrow\left(\phi\left(u_{k}\right)\right)(r) \rightarrow(\phi(u))(r)\right\}$.
The arguments of Φ are points in S^{n-1}, which determine the hair. Each value is a topological embedding of \mathbb{R}^{n} into itself; it gives us full information about $\|x\|$ and $\|\omega(x)\|$ for any $x \in \mathbb{R}^{n}$. A hair can also change its direction. To describe it we shall use mappings from the class Ψ^{n} defined as follows:

Definition 2.5. Let Ψ^{n} be the class of homeomorphisms of S^{n-1} onto itself.
The information stored in such mappings is direction of a hair and its image under ω. To every mapping from Φ^{n} and Ψ^{n} we shall assign mappings of \mathbb{R}^{n} into itself.

Definition 2.6. To every $\phi \in \Phi^{n}$ we assign the mapping $\widehat{\phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying the condition

$$
\begin{equation*}
\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_{+}} \widehat{\phi}(r u)=(\phi(u))(r) u . \tag{7}
\end{equation*}
$$

Similarly, for every $\psi \in \Psi^{n}$ the mapping $\tilde{\psi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by the condition

$$
\begin{equation*}
\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_{+}} \widetilde{\psi}(r u)=r \psi(u) . \tag{8}
\end{equation*}
$$

It seems to be clear that

$$
\begin{equation*}
\forall_{\phi \in \Psi^{n}} \forall_{\psi \in \Psi^{n}} \forall_{u \in S^{n-1}}(\phi(u))(0) u=0=0 \psi(u) ; \tag{9}
\end{equation*}
$$

so we do not have to worry about the choice of u when $x=0$ in Definition 2.6. These mappings have a property which is very useful for us:

Lemma 2.7. For every $\phi \in \Phi^{n}$ and $\psi \in \Psi^{n}$ the mappings $\widehat{\phi}, \widetilde{\psi}$ defined in 2.6 are in the class Ω^{n}.

Proof. First we prove that $\widehat{\phi}, \widetilde{\psi}$ are topological embeddings. We begin with $\widehat{\phi}$ proving that

$$
\begin{equation*}
\forall_{x_{k}, x \in \mathbb{R}^{n}} x_{k} \rightarrow x \Leftrightarrow \widehat{\phi}\left(x_{k}\right) \rightarrow \widehat{\phi}(x) . \tag{10}
\end{equation*}
$$

Case 1. Let $x=0$ then $\widehat{\phi}(x)=0$.
(\Rightarrow) For every $\varepsilon>0$ let us consider the function $h^{\varepsilon}: S^{n-1} \rightarrow \mathbb{R}_{+}$defined as follows:

$$
h^{\varepsilon}(v)=\phi(v)(\varepsilon) .
$$

Evidently, $h^{\varepsilon}(v)=\|\widehat{\phi}(\varepsilon v)\|$. By Definition 2.4 the function h^{ε} is positive and continuous. Moreover

$$
\begin{gather*}
\forall_{v \in S^{n-1}} \forall_{\alpha, \beta>0} \alpha \geq \beta \Leftrightarrow h^{\alpha}(v) \geq h^{\beta}(v), \tag{11}\\
\forall_{v \in S^{n-1}} \lim _{\alpha \searrow 0} h^{\alpha}(v)=0 . \tag{12}
\end{gather*}
$$

So $\lim _{\varepsilon \searrow 0} h^{\varepsilon}=0$ pointwise; by (11), since S^{n-1} is compact, the convergence is uniform. We get:

$$
\begin{equation*}
\forall_{\delta>0} \exists_{\mu>0} \forall_{0 \leq \varepsilon<\mu} \forall_{v \in S^{n-1}} h^{\varepsilon}(v)<\delta . \tag{13}
\end{equation*}
$$

Since $h^{\varepsilon}(v)=\|\widehat{\phi}(\varepsilon v)\|$, the previous condition can be reformulated as follows:

$$
\begin{equation*}
\forall_{\delta>0} \exists_{\mu>0} \forall_{z \in \mathbb{R}^{n}}\|z\|<\mu \Rightarrow\|\widehat{\phi}(z)\|<\delta \tag{14}
\end{equation*}
$$

(\Leftarrow) Let $\delta>0$ and $\mu=\min _{v \in S^{n-1}} h^{\delta}(v)=\min _{v \in S^{n-1}}\|\widehat{\phi}(\delta v)\|$. By Definition 2.4 mapping $v \mapsto\|\widehat{\phi}(\delta v)\|=\phi(v)(\delta)$ is continuous, moreover the set S^{n-1} is compact so $\mu>0$. Let $z \in \mathbb{R}^{n}, u \in S^{n-1}, r \in \mathbb{R}_{+}$be such that $z=r u$ and $\|\widehat{\phi}(z)\|<\mu$. Since $\|\widehat{\phi}(\delta u)\|>\mu$, it follows that $\|\widehat{\varphi}(\delta u)\|>\|\widehat{\varphi}(z)\|$. Using (11) we obtain $\|z\|<\|\delta u\|=\delta$. Thus

$$
\begin{equation*}
\forall_{z \in \mathbb{R}^{n}}\|\widehat{\phi}(z)\|<\mu \Rightarrow\|z\|<\delta \tag{15}
\end{equation*}
$$

which completes the proof of (10) for $x=0$.
Case 2. Let $x \neq 0$; then $\widehat{\phi}(x) \neq 0$.
(\Leftarrow) We may assume that $x_{k} \neq 0$ which implies $\widehat{\phi}\left(x_{k}\right) \neq 0$. By Definition 2.5

$$
\begin{equation*}
\forall_{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{y}{\|y\|}=\frac{\widehat{\phi}(y)}{\|\widehat{\phi}(y)\|} \tag{16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{x_{k}}{\left\|x_{k}\right\|} \rightarrow \frac{x}{\|x\|} \Leftrightarrow \frac{\widehat{\phi}\left(x_{k}\right)}{\left\|\widehat{\phi}\left(x_{k}\right)\right\|} \rightarrow \frac{\widehat{\phi}(x)}{\|\widehat{\phi}(x)\|} \tag{17}
\end{equation*}
$$

It remains to prove that

$$
\begin{equation*}
\left\|x_{k}\right\| \rightarrow\|x\| \Leftrightarrow\left\|\widehat{\phi}\left(x_{k}\right)\right\| \rightarrow\|\widehat{\phi}(x)\| \tag{18}
\end{equation*}
$$

Let $r=\|x\|$ and $u \in S^{n-1}$ be such that $x=r u$. For every $\varepsilon \in(0 ; r)$ we consider the functions $h_{1}^{\varepsilon}, h_{2}^{\varepsilon}: S^{n-1} \rightarrow \mathbb{R}_{+}$defined as follows:

$$
\begin{align*}
& h_{1}^{\varepsilon}(v)=\phi(v)(r+\varepsilon)-\phi(v)(r), \tag{19}\\
& h_{1}^{\varepsilon}(v)=\phi(v)(r)-\phi(v)(r-\varepsilon) . \tag{20}
\end{align*}
$$

Like the mapping h^{ε}, both $h_{1}^{\varepsilon}, h_{2}^{\varepsilon}$ are positive, continuous and uniformly convergent to 0 when $\varepsilon \searrow 0$. For every $\delta>0$ there exists $\mu>0$ such that $\varepsilon<\mu \Rightarrow h_{i}^{\varepsilon}<\frac{\delta}{2}$ for $i \in\{1,2\}$. This means that

$$
\begin{align*}
& \forall_{y \in \mathbb{R}^{n}} 0 \leq\|y\|-r<\mu \Rightarrow \left\lvert\,\|\widehat{\phi}(y)\|-\left\|\widehat{\phi}\left(r \frac{y}{\|y\|}\right)\right\|\right. \|=h_{1}^{\|y\|-r}\left(\frac{y}{\|y\|}\right)<\frac{\delta}{2}, \tag{21}\\
& \forall_{y \in \mathbb{R}^{n}} 0 \leq r-\|y\|<\mu \Rightarrow \left\lvert\,\|\widehat{\phi}(y)\|-\left\|\widehat{\phi}\left(r \frac{y}{\|y\|}\right)\right\|\right. \|=h_{2}^{r-\|y\|}\left(\frac{y}{\|y\|}\right)<\frac{\delta}{2} . \tag{22}
\end{align*}
$$

So

$$
\begin{equation*}
\forall_{y \in \mathbb{R}^{n}}|\|y\|-r|<\mu \Rightarrow\left|\|\widehat{\phi}(y)\|-\left\|\widehat{\phi}\left(r \frac{y}{\|y\|}\right)\right\|\right|<\frac{\delta}{2}, \tag{23}
\end{equation*}
$$

First we prove (\Rightarrow) in (18). Since the mapping $\phi(\bullet)(r)$ is continuous, it follows that there exists $U \subset S^{n-1}$, an open neighborhood of u, satisfying

$$
\begin{equation*}
\forall_{v \in U}|\phi(u)(r)-\phi(v)(r)|<\frac{\delta}{2} . \tag{24}
\end{equation*}
$$

Since $x=\lim x_{k}$, there exists l such that

$$
\begin{equation*}
\forall_{k \geq l} \frac{x_{k}}{\left\|x_{k}\right\|} \in U \&\left|\left\|x_{k}\right\|-r\right|<\mu \tag{25}
\end{equation*}
$$

and for any $k \geq l$

$$
\begin{align*}
\mid\left\|\widehat{\phi}\left(x_{k}\right)\right\|-\|\widehat{\phi}(x)\| \| & \leq\left|\left\|\widehat{\phi}\left(x_{k}\right)\right\|-\left\|\widehat{\phi}\left(r \frac{x_{k}}{\left\|x_{k}\right\|}\right)\right\|\left\|+\left|\left\|\widehat{\phi}\left(r \frac{x_{k}}{\left\|x_{k}\right\|}\right)\right\|-\|\widehat{\phi}(x)\|\right| \leq\right.\right. \\
& \leq \frac{\delta}{2}+\left|\phi\left(\frac{x_{k}}{\left\|x_{k}\right\|}\right)(r)-\phi(u)(r)\right| \leq \delta . \tag{26}
\end{align*}
$$

This proves (\Rightarrow) in (18).
Let now $\delta \in(0 ; r)$. Let $\mu=\frac{1}{2} \min \left\{\min _{v \in S^{n-1}} h_{1}^{\delta}(v), \min _{v \in S^{n-1}} h_{2}^{\delta}(v)\right\}$ and $U \subset S^{n-1}$ be an open neighborhood of u such that

$$
\begin{equation*}
\forall_{v \in U}|\phi(u)(r)-\phi(v)(r)|<\mu \tag{27}
\end{equation*}
$$

We get:

$$
\forall_{v \in U} \forall_{t \geq r+\delta}|\|\widehat{\phi}(t v)\|-\|\widehat{\phi}(x)\||=|\phi(v)(t)-\phi(u)(r)| \geq
$$

$\geq|\phi(v)(t)-\phi(v)(r)|-|\phi(v)(r)-\phi(u)(r)| \geq|\phi(v)(r+\delta)-\phi(u)(r)|-\mu \geq(2 \mu)-\mu=\mu$
and

$$
\begin{equation*}
\forall_{v \in U} \forall_{t \leq r-\delta}|\|\widehat{\phi}(t v)\|-\|\widehat{\phi}(x)\||=|\phi(v)(t)-\phi(u)(r)| \geq \tag{28}
\end{equation*}
$$

$\geq|\phi(v)(t)-\phi(v)(r)|-|\phi(v)(r)-\phi(u)(r)| \geq|\phi(v)(r-\delta)-\phi(u)(r)|-\mu \geq(2 \mu)-\mu=\mu$
By (28) and (29) we obtain:

$$
\begin{equation*}
\forall_{v \in U} \forall_{t>0}|t-r| \geq \delta \Rightarrow \mid\|\widehat{\phi}(t v)\|-\|\widehat{\phi}(x)\| \| \geq \mu \tag{30}
\end{equation*}
$$

In other words

$$
\begin{equation*}
\frac{\widehat{\phi}\left(x_{k}\right)}{\left\|\widehat{\phi}\left(x_{k}\right)\right\|} \in U \&\left|\left\|\widehat{\phi}\left(x_{k}\right)\right\|-\|\widehat{\phi}(x)\|\right|<\mu \Rightarrow\left|\left\|x_{k}\right\|-\|x\|\right|<\delta . \tag{31}
\end{equation*}
$$

This proves (18); thus the proof of (10) is complete. Now we look at the mapping $\widetilde{\psi}$. We are going to show that:

$$
\begin{equation*}
\forall_{x_{k}, x \in \mathbb{R}^{n}} x_{k} \rightarrow x \Leftrightarrow \widetilde{\psi}\left(x_{k}\right) \rightarrow \widetilde{\psi}(x) . \tag{32}
\end{equation*}
$$

From (8) we get

$$
\begin{equation*}
\forall_{y \in \mathbb{R}^{n}}\|\widetilde{\psi}(y)\|=\|y\|, \tag{33}
\end{equation*}
$$

which implies (32) for $x=0$ (i.e. for $\widetilde{\psi}(x)=0$). Let $x \neq 0$. From (8) we get

$$
\begin{equation*}
\forall_{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{\widetilde{\psi}(y)}{\|\widetilde{\psi}(y)\|}=\psi\left(\frac{y}{\|y\|}\right) . \tag{34}
\end{equation*}
$$

By 2.5 , (8), and (34) we obtain

$$
\begin{equation*}
\frac{x_{k}}{\left\|x_{k}\right\|} \rightarrow \frac{x}{\|x\|} \Leftrightarrow \frac{\widetilde{\psi}\left(x_{k}\right)}{\left\|\widetilde{\psi}\left(x_{k}\right)\right\|} \rightarrow \frac{\widetilde{\psi}(x)}{\|\widetilde{\psi}(x)\|} \tag{35}
\end{equation*}
$$

Combining (33) and (35), we get (32) for $x \neq 0$.
We proved that both $\widehat{\phi}$ and $\widetilde{\psi}$ are topological embeddings. So if $A=\operatorname{cl}(\operatorname{int}(A))$, then $\widehat{\phi}(A)=\operatorname{cl}(\operatorname{int}(\widehat{\phi}(A)))$ and $\widetilde{\psi}(A)=\operatorname{cl}(\operatorname{int}(\widetilde{\psi}(A)))$. Moreover, it is easy to show that both $\widehat{\phi}$ and $\widetilde{\psi}$ take every segment starting at 0 to segment starting at 0 too. Hence if A is star shaped at 0 then $\widehat{\phi}(A)$ and $\widetilde{\psi}(A)$ are star shaped at 0 too. Finally, it can be proved that for every $v \in S^{n-1}$:

$$
\begin{equation*}
\rho_{\widehat{\phi}(A)}(v)=\phi(v)\left(\rho_{A}(v)\right) \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{\tilde{\psi}(A)}(v)=\rho_{A}\left(\psi^{-1}(v)\right) . \tag{37}
\end{equation*}
$$

So if A is a star body and $\left.\rho_{A}\right|_{S^{n-1}}$ is continuous, then $\left.\rho_{\widehat{\phi}(A)}\right|_{S^{n-1}}$ and $\left.\rho_{\tilde{\psi}(A)}\right|_{S^{n-1}}$ are continuous.

Now we are ready to prove the main result:
Theorem 2.8. The mapping $(\phi, \psi) \mapsto(\widetilde{\psi} \circ \widehat{\phi})$ is a biunique correspondence between the sets $\left(\Phi^{n} \times \Psi^{n}\right)$ and Ω^{n}.

Proof. Let $\omega \in \Omega^{n}$. The mappings ϕ and ψ will be defined as follows:

$$
\begin{align*}
\phi(v)(r) & =\|\omega(r v)\|, \tag{38}\\
\psi(v) & =\frac{\omega(v)}{\|\omega(v)\|} \tag{39}
\end{align*}
$$

for any $v \in S^{n-1}$ and $r \in \mathbb{R}_{+}$. At the beginning we shall prove that $\phi \in \Phi^{n}$. Let $u \in S^{n-1}$; let $B=\operatorname{pos}(u)$ and $C=\operatorname{pos}(\omega(u))$. The mapping $\phi(u)(\bullet)$ can be expressed as the composition of three mappings. The first of them goes from \mathbb{R}_{+}to B. It is given by the formula $t \mapsto t u$. The second is the restriction of ω to B. The third one $x \mapsto\|x\|$ goes from C to \mathbb{R}_{+}. The first and the last one are homeomorphisms. The second is a topological embedding. That means that $\phi(u)(\bullet) \in \Sigma$. Let $u_{k} \in S^{n-1} ; r>0$. We know that
$u_{k} \rightarrow u \Leftrightarrow r u_{k} \rightarrow r u \Leftrightarrow \omega\left(r u_{k}\right) \rightarrow \omega(r u) \Rightarrow\left\|\omega\left(r u_{k}\right)\right\| \rightarrow\|\omega(r u)\| \Leftrightarrow \phi(r)\left(u_{k}\right) \rightarrow \phi(r)(u)$.
So $\phi \in \Phi^{n}$.
Now it is time to prove that $\psi \in \Psi^{n}$. We know that $0=\omega(0) \in \omega\left(\operatorname{int}\left(\mathbb{B}^{n}\right)\right)$ and $\omega\left(\mathbb{B}^{n}\right)$ is bounded. So for every halfline C starting at 0 the set $C \cap \operatorname{bd}\left(\omega\left(\mathbb{B}^{n}\right)\right)$ is not empty. Since $\operatorname{bd}\left(\omega\left(\mathbb{B}^{n}\right)\right)=\omega\left(S^{n-1}\right)$ then ψ is surjective. By Corollary $2.3, \psi$ is injective. By (39), ψ is continuous. Let $\lambda>0$ be such that $2 \lambda \mathbb{B}^{n} \subset \omega\left(\mathbb{R}^{n}\right)$ and mapping $h: S^{n-1} \rightarrow S^{n-1}$ satisfies the condition

$$
\begin{equation*}
h(v)=\frac{\omega^{-1}(\lambda v)}{\left\|\omega^{-1}(\lambda v)\right\|} . \tag{40}
\end{equation*}
$$

The mapping h is continuous. Moreover:

$$
\begin{equation*}
\psi h(v)=\frac{\omega\left(\frac{\omega^{-1}(\lambda v)}{\left\|\omega^{-1}(\lambda v)\right\|}\right)}{\left\|\omega\left(\frac{\omega^{-1}(\lambda v)}{\left\|\omega^{-1}(\lambda v)\right\|}\right)\right\|} . \tag{41}
\end{equation*}
$$

By Corollary 2.3

$$
\begin{equation*}
\frac{\omega\left(\frac{1}{\left\|\omega^{-1}(\lambda v)\right\|} \omega^{-1}(\lambda v)\right)}{\left\|\omega\left(\frac{1}{\left\|\omega^{-1}(\lambda v)\right\|} \omega^{-1}(\lambda v)\right)\right\|}=\frac{\omega\left(\omega^{-1}(\lambda v)\right)}{\left\|\omega\left(\omega^{-1}(\lambda v)\right)\right\|}=\frac{\lambda v}{\|\lambda v\|}=v \tag{42}
\end{equation*}
$$

so ψ^{-1} is continuous. That means that $\psi \in \Psi^{n}$. Let us notice that

$$
\begin{gather*}
\widetilde{\psi} \circ \widehat{\varphi}(r u)=\widetilde{\psi}(\widehat{\varphi}(r u))=\widetilde{\psi}(\varphi(u)(r) u)=\varphi(u)(r) \psi(u)= \\
=\|\omega(r u)\| \frac{\omega(u)}{\|\omega(u)\|}=\|\omega(r u)\| \frac{\omega(r u)}{\|\omega(r u)\|}=\omega(r u) . \tag{43}
\end{gather*}
$$

We proved that the mapping $(\varphi, \psi) \mapsto \widetilde{\psi} \circ \widehat{\phi}$ is surjective. It remains to show that it is injective. Let $\phi_{1}, \phi_{2} \in \Phi^{n}, \psi_{1}, \psi_{2} \in \Psi^{n}$, and

$$
\begin{equation*}
\widetilde{\psi_{1}} \circ \widehat{\phi_{1}}=\widetilde{\psi_{2}} \circ \widehat{\phi_{2}} . \tag{44}
\end{equation*}
$$

Then

$$
\begin{equation*}
{\widetilde{\psi_{2}}}^{-1} \circ \widetilde{\psi_{1}} \circ \widehat{\phi_{1}}=\widehat{\phi_{2}} \tag{45}
\end{equation*}
$$

Since $\widehat{\phi}_{2}$ preserves directions, it follows that so does ${\widetilde{\psi_{2}}}^{-1} \circ \widetilde{\psi_{1}} \circ \widehat{\phi_{1}}$. So ${\widetilde{\psi_{2}}}^{-1} \circ \widetilde{\psi_{1}}=$ id; hence $\widehat{\phi}_{1}=\phi_{2}$.

It may seem that the mappings from the classes Φ^{n} and Ψ^{n} are very simple. So we may think that so are the mappings from Ω^{n}. To help the reader to realize how complicated they are we shall give two examples:

Example 2.9. Let $\phi(u)(r)=1-\exp (-r)$ and $\omega=\widehat{\phi}$. It is easy to see that

$$
\begin{equation*}
\forall_{u \in S^{n-1}} \forall_{r \in \mathbb{R}_{+}}\|\omega(r u)\|=\phi(u)(r)<1 . \tag{46}
\end{equation*}
$$

So we cannot expect that $\omega\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$. I think that it is not very surprising because after applying ω image of every hair has finite lengths. It seems to be more interesting that there exists a generalized star mapping ω for which images of some hairs have finite lengths and images of another hairs have infinite lengths.

Example 2.10. Let $n=2$ and $e_{1}=(1,0)$. Let the $\mu(u)=\angle\left(u, e_{1}\right)$. Let mapping $\phi(u)(r)=\mu(u) r+(1-\exp (-r))$ and $\omega=\widehat{\phi}$. It is easy to see that if $u \neq e_{1}$, then $\phi(u)(r)$ can be arbitrarily large while $\phi\left(e_{1}\right)(r)<1$ for every r.

3. A solution of Problem 1 in [1]

To every $A \in \mathcal{S}^{n}$ we assign the subset S_{A} of the unit sphere:

$$
\begin{equation*}
S_{A}=\left\{u \in S^{n-1} ; \rho_{A}(u)>0\right\} . \tag{47}
\end{equation*}
$$

M. Moszyńska proved that if $A, B \in \mathcal{S}^{n}$ and there exists $\omega \in G S(n)$ such that $\omega(A)=B$, then S_{A} is homeomorphic to S_{B}. She asked if the existence of a homeomorphism between S_{A} and S_{B} suffices for A, B to be star equivalent in sense of [1].

Proposition 3.1. If $A, B \in \mathcal{S}^{n}$ and there exists $\omega \in \Omega^{n}$ such that $\omega(A)=B$, then $S^{n-1} \backslash S_{A}$ is homeomorphic to $S^{n-1} \backslash S_{B}$.

Proof. By Theorem 1.8 there exist $\phi \in \Phi^{n}$ and $\psi \in \Psi^{n}$ such that $\tilde{\psi} \circ \widehat{\phi}=\omega$. It can be easily proved that if $\omega(A)=B$ then $\psi\left(S^{n-1} \backslash S_{A}\right)=S^{n-1} \backslash S_{B}$ (and $\psi\left(S_{A}\right)=S_{B}$). The mapping ψ is a homeomorphism; thus the restriction of ψ to $S^{n-1} \backslash S_{A}$ is a homeomorphism as well. This completes the proof.

The following example shows that the answer to the above question is negative even for the larger family Ω^{n}.

Example 3.2. Let $n=2$ and let $A, B \in \mathcal{S}^{n}$ be defined by the values of their radial functions restricted to S^{n-1} :

$$
\begin{gather*}
\rho_{A}(u)=\left|\left\langle u ; e_{1}\right\rangle\right| \tag{48}\\
\rho_{B}(u)=\max \left\{\left|\left\langle u ; e_{1}\right\rangle\right|-\frac{1}{2}, 0\right\} . \tag{49}
\end{gather*}
$$

The set $S^{n-1} \backslash S_{A}$ consists of two points, while the set $S^{n-1} \backslash S_{B}$ consists of two closed arcs. In this case there is no star mapping $\omega \in \Omega^{n}$ such that $\omega(A)=B$. On the other hand, each of S_{A} and S_{B} consists of two open arcs. So they are homeomorphic.

This example can be generalized to any $n \geq 2$ showing that the answer is no even if we look in family Ω^{n}. Moreover it can be proved that even if S_{A} is homeomorphic to S_{B} and $S^{n-1} \backslash S_{A}$ is homeomorphic to $S^{n-1} \backslash S_{B}$ we cannot expect that A, B are star equivalent.

References

[1] Moszyńska. M.: Quotient Star Bodies, Intersection Bodies, and Star Duality. Journal of Mathematical Analysis and Applications 232 (1998), 45-60.

Zbl 0928.54007
[2] Schneider, R.: Convex Bodies: The Brunn Minkowski Theory. Cambridge Univ. Press 1993.

Zbl 0798.52001

Received July 30, 2001

