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Abstract. The paper concerns the star mappings understood as topological em-
bedding of R™ into itself preserving the class of bodies which are star shaped at
point 0. The main result is full characterization of star mappings (Theorem 2.8).
At the end we give a solution of some related problem.
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1. Introduction

This paper consists of two different parts, both related to [1]. Moszynska in [1] defined
a set GS(n) of transformations called “generalized star mappings”. They are positively
homogeneous homeomorphisms of R™ onto itself. That class of mappings is suitable for the
notion of quotient star body (comp. [1], Prop. 2.6), however (in contrary to the statement
in [1], p. 47) it is not the largest possible family of maps preserving the class S™ of star
bodies under consideration. Section 2 concerns the structure of the largest family 2" of
maps preserving S™. In Section 3 we give a solution of Problem 1 in [1].

We use the following terminology and notation: By R, we denote the set {r € R; r > 0},
by ¥ the set of topological embeddings of R, into R, preserving 0. For affine independent
points zi,...,z, in R™ the simplex with vertices z1,...,z, is denoted by A (z1,...,x,). As
usually, B® and S™ ! are the unit ball and the unit sphere. Let A be a nonempty compact
subset of R™; then A is a body if and only if A = cl (int (A4)); the set A is called star shaped
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at 0 if A (a,0) C A for every a € A. The radial function p4 : R™ \ {0} — R, of a set A star
shaped at 0 is defined by the formula

pa(xz) =sup{A >0; \z € A}. (1)

A set A C R will be called a star body whenever A is star shaped at 0 and its radial function
restricted to S™~! is continuous. The set of all star bodies in R™ is denoted by S™. The set
of all halflines in R™ starting at 0 will be denoted by L". To every x € R™ such that z # 0
we assign the halfline pos (z) € L™ defined by the formula

pos(z) = {y € R"; dyer, ¥y = )\:c} ) (2)

2. Star mappings

In this section we shall describe the structure of the family Q" of generalized star mappings
defined as follows:

Definition 2.1. Q" is the family of all topological embeddings of R™ into itself, preserving
the point O and the class S™.

Lemma 2.2. Let w € Q". Then
(i) for every B € L™ there exists C' € L™ with w (B) C C;
(ii) for every B,B',C € L" ifw(B) C C and w(B') C C, then B = B'.

Proof. First we prove that the image of every closed segment starting at 0 is again a closed
segment starting at 0. Let g € R", g #0 and h = w (g). Let G = A(0,g) and H = A (0, h).
Since, evidently, for every ¢ > 0 the set G. belongs to §", it follows that w (G.) € S™.
Further, since h = w (g9) € w (G) C w(Ge), we get:

v€>0 HCuw (Ga) . (3)

Let {ex},-, be a sequence convergent to 0 such that ¢, > 0 for every k. The set G is compact;
thus G = oy Ge,- The mapping w is a topological embedding; thus

w (@) =(Nw(Gs). (4)

k=0

From (3) and (4) we obtain:
HcCcw(qG). (5)

Since the arc w (G) and the segment H have common ends, if follows that
H=w(G). (6)

If the second part of the lemma is false, then there exist points g, h # 0 such that w (g), w (h)
belong to one halfline from £" thought g, h do not belong to such a halfline. We may assume
that |Jw (¢)|| > [Jw (h)||. Using the first part of lemma, we get w (h) € w(A (0,g)). So there
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exists ¢ € A (0, g) such that w (h) = w (¢). Since w is a topological embedding, it follows that
¢ = h. Hence g, h belong to one halfline. O

Corollary 2.3. Let w € Q" then for all x,y € R”

x oy wx)  w)
<~ = .
Izl Tl ™ o @I~ Jlw )
Proof. (=) Let us assume that Tl = ” ;- That means that = and y belong to one element
of £™. Using Lemma 2.2(i) we infer that also w (z) and w (y) belong to one element of L£".
This is equivalent to the condition ||ng§|| = ng%”
(<) If we assume now that a1 # Ty then in similar way, using Lemma 2.2(ii), we get
w 33) _w(y)
17 Tutol =

It is now clear that we can look at R™ as the union of halflines starting at 0, which will be
called “hairs”. What w € Q0" can do with a hair? First, it can move any point different from
0 along the hair. It can even map a hair on a subset of some hair of a finite length. The way
the points are moved along the hair will be described in terms of mappings from the family
®" defined as follows:

w(y)ll*

Definition 2.4. ®" = {¢: S"™' = ; V,er, Vi wesn-1 ux — u = (¢ (ug)) (r) = (¢ () (r)}.

The arguments of ® are points in S~ !, which determine the hair. Each value is a topological
embedding of R" into itself; it gives us full information about ||z|| and ||w (z)]| for any x € R™.
A hair can also change its direction. To describe it we shall use mappings from the class W™
defined as follows:

Definition 2.5. Let U" be the class of homeomorphisms of S"~1 onto itself.

The information stored in such mappings is direction of a hair and its image under w. To
every mapping from ®" and U" we shall assign mappings of R" into itself.

Definition 2.6. 7o every ¢ € ®" we assign the mapping gg : R* — R” satisfying the
condition

Vuesn1Vrem, & (ru) = (¢ (u)) (1) u. (7)
Similarly, for every ¢ € U™ the mapping J : R™ — R" is defined by the condition
vuesnflvreRJZ(TU) =7y (u) . (8)

It seems to be clear that

VoewnVypcunVyesn—1 (¢ (1)) (0)u =0 = 0 (u); 9)

so we do not have to worry about the choice of u when = 0 in Definition 2.6. These
mappings have a property which is very useful for us:
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Lemma 2.7. For every ¢ € ®" and ) € V" the mappings &5\, 7:5 defined in 2.6 are in the class
Q.

Proof. First we prove that &E, {Z; are topological embeddings. We begin with &5 proving that

Case 1. Let = = 0 then ¢(z) = 0.
(=)For every e > 0 let us consider the function h° : S"~1 — R, defined as follows:

Evidently, A (v) = Hg/g (ev)|[. By Definition 2.4 the function h° is positive and continuous.

Moreover
vUES"—l\V/ct,ﬁ>0 o> 6 & h ('U) > hﬂ (U) ; (11)
Voegn-1 E{‘% h* (v) = 0. (12)

So lim.\ o h° = 0 pointwise; by (11), since S"~! is compact, the convergence is uniform. We
get:

V5>03#>0V0§5<#Vv65n—1h5 (U) < 0. (13)
Since h* (v) = H(E (ev) H, the previous condition can be reformulated as follows:
Vo503u>0Veern || 2] < = Hgg(z)H < 4. (14)

~

¢ (6v)

= ¢ (v) () is continuous, moreover the set S"~! is compact so u > 0. Let

(«<)Let § > 0 and g = min,egn—1 h° (v) = Min,egn—1

® (6v)
z€R" ue S ! reR, besuch that 2 = ru and H(E(Z)H < p. Since Hgg(éu)H >, it
follows that ||@ (du)|| > ||@ (2)]|. Using (11) we obtain ||z|| < ||du|| = 6. Thus

‘. By Definition 2.4 mapping

vV =

szR"

()| <=1zl <o (15)

which completes the proof of (10) for z = 0.
Case 2. Let x # 0; then a(m) £ 0.
(<) We may assume that z; # 0 which implies q/g(mk) # 0. By Definition 2.5

()
¥,k o) ||§|| _ HEE(;H. (16)
o BT b(xx) R ¢ () ' (17)
ekl Nl Ha(xk)u Ha(x)H
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It remains to prove that
lall = llz]| |8 @) | = ||# @) (18)

Let r = ||z|| and w € S"! be such that x = ru. For every € € (0;7) we consider the functions
hs, hs 0 S™! — R, defined as follows:

hi(v) =¢ ) (r+e)—¢(v)(r), (19)
hi(v) =¢ () (r) = (v)(r—e). (20)

Like the mapping h®, both h{, hj are positive, continuous and uniformly convergent to 0 when
e \¢ 0. For every 6 > 0 there exists ;> 0 such that ¢ < p = hf < % for i € {1,2}. This

mmeans tha

el -m () <3 @
(@)t
()l <3

First we prove (=) in (18). Since the mapping ¢ (e) (r) is continuous, it follows that there
exists U C S"1, an open neighborhood of u, satisfying

e 0 <yl - <= |00 -

e 0 <= ol <= |30 -

So

Yyern [yl =l < 1= |6 w)]| - (23)

Veew 16(0) () — 6 () ()] < 5. (24)
Since z — lim 2y, there exists [ such that
Vst T— || || eU& |||lxk] — 7| < w (25)
and for any k > I
ol - (3ol = flB el - 3 (zep)| + e () - | <
<5l () 0 -owe)| <o (20

This proves (=) in (18).
Let now 8 € (0;7). Let g = 5 min {min,ega-1 A (v) , min,egn—1 A3 (v)} and U C S"7! be
an open neighborhood of u such that

Yoer |9 (u) (1) — & (v) ()] < p. (27)
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We get:
VoeoVezrea |6 00)| = [ @)} = 16 @) () =0 () ()]
R L e

and

Yocv¥isr-s |||8 )| = |6 @)|| = 16 ) ) = 6 (@) ()] =
> 16/(0) (1) = 6 () (1)] = 16 (0) (r) — 6 (u) (r) 2 16(v) (r = 6) = 6 (w) ()] — = (20) — . =

(29)
By (28) and (29) we obtain:
Voeo¥iso It =71 2 8= |6 )| - [6 @) | = (30)
In other words
00 e |30 - [3@)]| <= laall — el < 1)
oo

This proves (18); thus the proof of (10) is complete. Now we look at the mapping 1Z We are
going to show that:

From (8) we get
Ve @) = Iyl (33)
which implies (32) for z = 0 (i.e. for ¢ (z) = 0). Let & # 0. From (8) we get
vy _ ( y )
Voemmior e (L) 34
S T AN .

By 2.5, (8), and (34) we obtain

Il " T ] [P

Combining (33) and (35), we get (32) for z # 0.

We proved that both ¢ and ¢ are topological embeddings. So if A = cl(int (A4)), then
E(A) =l (int (q/g(A))) and QZ(A) =cl (int (J (A))) Moreover, it is easy to show that
both q/b\ and QZ take every segment starting at 0 to segment starting at 0 too. Hence if A is

star shaped at 0 then ¢ (A) and ¢ (A) are star shaped at 0 too. Finally, it can be proved
that for every v € S"1:

Poay (V) = ¢ (v) (pa (v)) (36)
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and

Pga) (v) = pa (Wl (U)) : (37)
So if A is a star body and p4|,, , is continuous, then pgg(A)|gn71 and p{g(A)|S%1 are continu-
ous. U

Now we are ready to prove the main result:

Theorem 2.8. The mapping (¢,v) — (QZO Zs) s a biunique correspondence between the
sets (O™ x U™) and Q™.

Proof. Let w € Q™. The mappings ¢ and ¢ will be defined as follows:

6(0) (1) = o ()] (38)
el
N PTOT )

for any v € S ! and r € R,. At the beginning we shall prove that ¢ € ®". Let u € S"!; let
B = pos (u) and C = pos (w (u)). The mapping ¢ (u) () can be expressed as the composition
of three mappings. The first of them goes from R, to B. It is given by the formula t — tu.
The second is the restriction of w to B. The third one x +— ||z|| goes from C to R.. The first
and the last one are homeomorphisms. The second is a topological embedding. That means
that ¢ (u) (e) € X. Let uy, € S"'; r > 0. We know that

Up = u S rUE — U S w(rug) — w (ru) = ||w (rug) || = |lw (re)|| < o () (ug) = ¢ (1) (u) .

So ¢ € P".

Now it is time to prove that ¢ € U". We know that 0 = w (0) € w (int (B")) and w (B")
is bounded. So for every halfline C' starting at 0 the set C' N bd (w (B™)) is not empty. Since
bd (w (B")) = w (S™!) then ¢ is surjective. By Corollary 2.3, v is injective. By (39), v is
continuous. Let A > 0 be such that 2AB" C w (R") and mapping h : S"! — S"~! satisfies
the condition

w™ ()
h(v) = ———. (40)
lw=t (Av)]]
The mapping A is continuous. Moreover:
w™1(w)
v (le(Av)n)
vh (v) ) (41)

By Corollary 2.3

&

&
L
™

e
~
~

AU

)
= v (42)
)
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so 1~ ! is continuous. That means that ¢ € ™. Let us notice that

Yo @(ru) =¥ (@ (ru) =¥ (¢ () (N)u) = ¢ (u) ()¢ (w) =

w (u) w (ru)
= |w (ru)l| 7= = [lw (ru) | 7= — = w (ru). (43)
lw ()] lw (ru)
We proved that the mapping (p, 1) — @Z o g/g is surjective. It remains to show that it is
injective. Let ¢y, ¢y € O, 11,19 € ¥", and

Y10 ¢ =0 . (44)

Then - R
Yo oY10¢1 = P (45)
Since )0:5\2 preserves directions, it follows that so does %71 o ;Dvl o Q/S\l So %71 o % = id; hence
¢1 = ¢2. O

It may seem that the mappings from the classes ®" and U™ are very simple. So we may think
that so are the mappings from €2". To help the reader to realize how complicated they are
we shall give two examples:

Example 2.9. Let ¢ (u) (r) = 1 — exp (—r) and w = ¢. It is easy to see that

Vuesn1Vrer, [w (ru)ll = ¢ (u) (r) < 1. (46)

So we cannot expect that w (R™) = R™. I think that it is not very surprising because after
applying w image of every hair has finite lengths. It seems to be more interesting that there
exists a generalized star mapping w for which images of some hairs have finite lengths and
images of another hairs have infinite lengths.

Example 2.10. Let n = 2 and e; = (1,0). Let the u(u) = Z(u,e;). Let mapping
¢ (u)(r)=p(u)r+ (1 —exp(—r)) and w = ¢. It is easy to see that if u # e;, then ¢ (u) (r)
can be arbitrarily large while ¢ (e1) (1) < 1 for every r.

3. A solution of Problem 1 in [1]

To every A € S™ we assign the subset S4 of the unit sphere:
Sa={ue S pal(u)>0}. (47)

M. Moszyniska proved that if A, B € 8™ and there exists w € GS (n) such that w (A) = B,
then S, is homeomorphic to Sg. She asked if the existence of a homeomorphism between Sy
and Sp suffices for A, B to be star equivalent in sense of [1].

Proposition 3.1. If A, B € 8™ and there exists w € Q" such that w (A) = B, then S 1\ Sy
is homeomorphic to S"~1\ Sp.
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Proof. By Theorem 1.8 there exist ¢ € ®" and ¢ € ¥" such that {Z; o $ = w. It can be easily
proved that if w (A) = B then ¢ (S" 1\ S4) = S" 1\ Sp (and ¥ (S4) = Sp). The mapping
1 is a homeomorphism; thus the restriction of ¢ to S"~1\ S, is a homeomorphism as well.
This completes the proof. O

The following example shows that the answer to the above question is negative even for the
larger family Q.

Example 3.2. Let n =2 and let A, B € 8" be defined by the values of their radial functions
restricted to "1

pa () = (1) (18)
pi () = max{r<u; Nl - 3 o}' (49)

The set S™!'\ S4 consists of two points, while the set S"~!\ Sp consists of two closed arcs.
In this case there is no star mapping w € Q™ such that w (A) = B. On the other hand, each
of S5 and Sp consists of two open arcs. So they are homeomorphic.

This example can be generalized to any n > 2 showing that the answer is no even if we look
in family Q™. Moreover it can be proved that even if S, is homeomorphic to Sg and S™ 1\ Sy
is homeomorphic to S"!\ S we cannot expect that A, B are star equivalent.
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