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Abstract. The paper concerns the star mappings understood as topological em-
bedding of Rn into itself preserving the class of bodies which are star shaped at
point 0. The main result is full characterization of star mappings (Theorem 2.8).
At the end we give a solution of some related problem.
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1. Introduction

This paper consists of two different parts, both related to [1]. Moszyńska in [1] defined
a set GS (n) of transformations called “generalized star mappings”. They are positively
homogeneous homeomorphisms of Rn onto itself. That class of mappings is suitable for the
notion of quotient star body (comp. [1], Prop. 2.6), however (in contrary to the statement
in [1], p. 47) it is not the largest possible family of maps preserving the class Sn of star
bodies under consideration. Section 2 concerns the structure of the largest family Ωn of
maps preserving Sn. In Section 3 we give a solution of Problem 1 in [1].
We use the following terminology and notation: By R+ we denote the set {r ∈ R; r ≥ 0},

by Σ the set of topological embeddings of R+ into R+ preserving 0. For affine independent
points x1, . . . , xn in Rn the simplex with vertices x1, . . . , xn is denoted by ∆ (x1, . . . , xn). As
usually, Bn and Sn−1 are the unit ball and the unit sphere. Let A be a nonempty compact
subset of Rn; then A is a body if and only if A = cl (int (A)); the set A is called star shaped
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156 G. Sójka: On Mappings Preserving a Family of Star Bodies

at 0 if ∆ (a, 0) ⊂ A for every a ∈ A. The radial function ρA : Rn \ {0} → R+ of a set A star
shaped at 0 is defined by the formula

ρA(x) = sup {λ ≥ 0; λx ∈ A} . (1)

A set A ⊂ Rn will be called a star body whenever A is star shaped at 0 and its radial function
restricted to Sn−1 is continuous. The set of all star bodies in Rn is denoted by Sn. The set
of all halflines in Rn starting at 0 will be denoted by Ln. To every x ∈ Rn such that x 6= 0
we assign the halfline pos (x) ∈ Ln defined by the formula

pos(x) =
{
y ∈ Rn; ∃λ∈R+ y = λx

}
. (2)

2. Star mappings

In this section we shall describe the structure of the family Ωn of generalized star mappings
defined as follows:

Definition 2.1. Ωn is the family of all topological embeddings of Rn into itself, preserving
the point 0 and the class Sn.

Lemma 2.2. Let ω ∈ Ωn. Then

(i) for every B ∈ Ln there exists C ∈ Ln with ω (B) ⊂ C;

(ii) for every B,B′, C ∈ Ln if ω (B) ⊂ C and ω (B′) ⊂ C, then B = B′.

Proof. First we prove that the image of every closed segment starting at 0 is again a closed
segment starting at 0. Let g ∈ Rn, g 6= 0 and h = ω (g). Let G = ∆(0, g) and H = ∆(0, h).
Since, evidently, for every ε > 0 the set Gε belongs to Sn, it follows that ω (Gε) ∈ Sn.
Further, since h = ω (g) ∈ ω (G) ⊂ ω (Gε), we get:

∀ε>0 H ⊂ ω (Gε) . (3)

Let {εk}
∞
k=0 be a sequence convergent to 0 such that εk > 0 for every k. The set G is compact;

thus G =
⋂∞
k=0Gεk . The mapping ω is a topological embedding; thus

ω (G) =
∞⋂

k=0

ω (Gεk) . (4)

From (3) and (4) we obtain:
H ⊂ ω (G) . (5)

Since the arc ω (G) and the segment H have common ends, if follows that

H = ω (G) . (6)

If the second part of the lemma is false, then there exist points g, h 6= 0 such that ω (g), ω (h)
belong to one halfline from Ln thought g, h do not belong to such a halfline. We may assume
that ‖ω (g)‖ ≥ ‖ω (h)‖. Using the first part of lemma, we get ω (h) ∈ ω(∆ (0, g)). So there



G. Sójka: On Mappings Preserving a Family of Star Bodies 157

exists c ∈ ∆(0, g) such that ω (h) = ω (c). Since ω is a topological embedding, it follows that
c = h. Hence g, h belong to one halfline. �

Corollary 2.3. Let ω ∈ Ωn then for all x, y ∈ Rn

x

‖x‖
=

y

‖y‖
⇔

ω (x)

‖ω (x)‖
=

ω (y)

‖ω (y)‖
.

Proof. (⇒) Let us assume that x
‖x‖ =

y
‖y‖ . That means that x and y belong to one element

of Ln. Using Lemma 2.2(i) we infer that also ω (x) and ω (y) belong to one element of Ln.
This is equivalent to the condition ω(x)

‖ω(x)‖ =
ω(y)
‖ω(y)‖ .

(⇐) If we assume now that x
‖x‖ 6=

y
‖y‖ , then in similar way, using Lemma 2.2(ii), we get

ω(x)
‖ω(x)‖ 6=

ω(y)
‖ω(y)‖ . �

It is now clear that we can look at Rn as the union of halflines starting at 0, which will be
called “hairs”. What ω ∈ Ωn can do with a hair? First, it can move any point different from
0 along the hair. It can even map a hair on a subset of some hair of a finite length. The way
the points are moved along the hair will be described in terms of mappings from the family
Φn defined as follows:

Definition 2.4. Φn =
{
φ : Sn−1 → Σ; ∀r∈R+∀uk,u∈Sn−1 uk → u⇒ (φ (uk)) (r)→ (φ (u)) (r)

}
.

The arguments of Φ are points in Sn−1, which determine the hair. Each value is a topological
embedding of Rn into itself; it gives us full information about ‖x‖ and ‖ω (x)‖ for any x ∈ Rn.
A hair can also change its direction. To describe it we shall use mappings from the class Ψn

defined as follows:

Definition 2.5. Let Ψn be the class of homeomorphisms of Sn−1 onto itself.

The information stored in such mappings is direction of a hair and its image under ω. To
every mapping from Φn and Ψn we shall assign mappings of Rn into itself.

Definition 2.6. To every φ ∈ Φn we assign the mapping φ̂ : Rn → Rn satisfying the
condition

∀u∈Sn−1∀r∈R+φ̂ (ru) = (φ (u)) (r)u. (7)

Similarly, for every ψ ∈ Ψn the mapping ψ̃ : Rn → Rn is defined by the condition

∀u∈Sn−1∀r∈R+ψ̃ (ru) = rψ (u) . (8)

It seems to be clear that

∀φ∈Ψn∀ψ∈Ψn∀u∈Sn−1 (φ (u)) (0)u = 0 = 0ψ (u) ; (9)

so we do not have to worry about the choice of u when x = 0 in Definition 2.6. These
mappings have a property which is very useful for us:
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Lemma 2.7. For every φ ∈ Φn and ψ ∈ Ψn the mappings φ̂, ψ̃ defined in 2.6 are in the class
Ωn.

Proof. First we prove that φ̂, ψ̃ are topological embeddings. We begin with φ̂ proving that

∀xk,x∈Rn xk → x⇔ φ̂ (xk)→ φ̂ (x) . (10)

Case 1. Let x = 0 then φ̂(x) = 0.

(⇒)For every ε > 0 let us consider the function hε : Sn−1 → R+ defined as follows:

hε (v) = φ (v) (ε) .

Evidently, hε (v) =
∥∥∥φ̂ (εv)

∥∥∥. By Definition 2.4 the function hε is positive and continuous.
Moreover

∀v∈Sn−1∀α,β>0 α ≥ β ⇔ hα (v) ≥ hβ (v) , (11)

∀v∈Sn−1 lim
α↘0

hα (v) = 0. (12)

So limε↘0 h
ε = 0 pointwise; by (11), since Sn−1 is compact, the convergence is uniform. We

get:
∀δ>0∃µ>0∀0≤ε<µ∀v∈Sn−1h

ε (v) < δ. (13)

Since hε (v) =
∥∥∥φ̂ (εv)

∥∥∥, the previous condition can be reformulated as follows:

∀δ>0∃µ>0∀z∈Rn ‖z‖ < µ⇒
∥∥∥φ̂ (z)

∥∥∥ < δ. (14)

(⇐)Let δ > 0 and µ = minv∈Sn−1 h
δ (v) = minv∈Sn−1

∥∥∥φ̂ (δv)
∥∥∥. By Definition 2.4 mapping

v 7→
∥∥∥φ̂ (δv)

∥∥∥ = φ (v) (δ) is continuous, moreover the set Sn−1 is compact so µ > 0. Let

z ∈ Rn, u ∈ Sn−1, r ∈ R+ be such that z = ru and
∥∥∥φ̂ (z)

∥∥∥ < µ. Since
∥∥∥φ̂ (δu)

∥∥∥ > µ, it

follows that ‖ϕ̂ (δu)‖ > ‖ϕ̂ (z)‖. Using (11) we obtain ‖z‖ < ‖δu‖ = δ. Thus

∀z∈Rn
∥∥∥φ̂ (z)

∥∥∥ < µ⇒ ‖z‖ < δ, (15)

which completes the proof of (10) for x = 0.

Case 2. Let x 6= 0; then φ̂(x) 6= 0.

(⇐) We may assume that xk 6= 0 which implies φ̂ (xk) 6= 0. By Definition 2.5

∀y∈Rn\{0}
y

‖y‖
=

φ̂ (y)∥∥∥φ̂ (y)
∥∥∥
. (16)

Thus
xk

‖xk‖
→

x

‖x‖
⇔

φ̂(xk)∥∥∥φ̂ (xk)
∥∥∥
→

φ̂ (x)∥∥∥φ̂ (x)
∥∥∥
. (17)
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It remains to prove that

‖xk‖ → ‖x‖ ⇔
∥∥∥φ̂ (xk)

∥∥∥→
∥∥∥φ̂ (x)

∥∥∥ . (18)

Let r = ‖x‖ and u ∈ Sn−1 be such that x = ru. For every ε ∈ (0; r) we consider the functions
hε1, h

ε
2 : S

n−1 → R+ defined as follows:

hε1 (v) = φ (v) (r + ε)− φ (v) (r) , (19)

hε1 (v) = φ (v) (r)− φ (v) (r − ε) . (20)

Like the mapping hε, both hε1, h
ε
2 are positive, continuous and uniformly convergent to 0 when

ε ↘ 0. For every δ > 0 there exists µ > 0 such that ε < µ ⇒ hεi <
δ
2
for i ∈ {1, 2}. This

means that

∀y∈Rn 0 ≤ ‖y‖ − r < µ⇒

∣∣∣∣
∥∥∥φ̂ (y)

∥∥∥−
∥∥∥∥φ̂
(
r
y

‖y‖

)∥∥∥∥

∣∣∣∣ = h
‖y‖−r
1

(
y

‖y‖

)
<
δ

2
, (21)

∀y∈Rn 0 ≤ r − ‖y‖ < µ⇒

∣∣∣∣
∥∥∥φ̂ (y)

∥∥∥−
∥∥∥∥φ̂
(
r
y

‖y‖

)∥∥∥∥

∣∣∣∣ = h
r−‖y‖
2

(
y

‖y‖

)
<
δ

2
. (22)

So

∀y∈Rn |‖y‖ − r| < µ⇒

∣∣∣∣
∥∥∥φ̂ (y)

∥∥∥−
∥∥∥∥φ̂
(
r
y

‖y‖

)∥∥∥∥

∣∣∣∣ <
δ

2
, (23)

First we prove (⇒) in (18). Since the mapping φ (•) (r) is continuous, it follows that there
exists U ⊂ Sn−1, an open neighborhood of u, satisfying

∀v∈U |φ (u) (r)− φ (v) (r)| <
δ

2
. (24)

Since x = lim xk, there exists l such that

∀k≥l
xk

‖xk‖
∈ U & |‖xk‖ − r| < µ (25)

and for any k ≥ l

∣∣∣
∥∥∥φ̂(xk)

∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣ ≤
∣∣∣∣
∥∥∥φ̂ (xk)

∥∥∥−
∥∥∥∥φ̂
(
r
xk

‖xk‖

)∥∥∥∥

∣∣∣∣+
∣∣∣∣

∥∥∥∥φ̂
(
r
xk

‖xk‖

)∥∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣∣ ≤

≤
δ

2
+

∣∣∣∣φ
(

xk

‖xk‖

)
(r)− φ (u) (r)

∣∣∣∣ ≤ δ. (26)

This proves (⇒) in (18).
Let now δ ∈ (0; r). Let µ = 1

2
min
{
minv∈Sn−1 h

δ
1 (v) ,minv∈Sn−1 h

δ
2 (v)
}
and U ⊂ Sn−1 be

an open neighborhood of u such that

∀v∈U |φ (u) (r)− φ (v) (r)| < µ. (27)
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We get:

∀v∈U∀t≥r+δ
∣∣∣
∥∥∥φ̂ (tv)

∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣ = |φ (v) (t)− φ (u) (r)| ≥

≥ |φ (v) (t)− φ (v) (r)|− |φ (v) (r)− φ (u) (r)| ≥ |φ (v) (r + δ)− φ (u) (r)|−µ ≥ (2µ)−µ = µ
(28)

and
∀v∈U∀t≤r−δ

∣∣∣
∥∥∥φ̂ (tv)

∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣ = |φ (v) (t)− φ (u) (r)| ≥

≥ |φ (v) (t)− φ (v) (r)| − |φ (v) (r)− φ (u) (r) |≥ |φ( v) (r − δ)− φ (u) (r)| −µ ≥ (2µ)−µ = µ
(29)

By (28) and (29) we obtain:

∀v∈U∀t>0 |t− r| ≥ δ ⇒
∣∣∣
∥∥∥φ̂ (tv)

∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣ ≥ µ. (30)

In other words

φ̂ (xk)∥∥∥φ̂ (xk)
∥∥∥
∈ U &

∣∣∣
∥∥∥φ̂ (xk)

∥∥∥−
∥∥∥φ̂ (x)

∥∥∥
∣∣∣ < µ⇒ |‖xk‖ − ‖x‖| < δ. (31)

This proves (18); thus the proof of (10) is complete. Now we look at the mapping ψ̃. We are
going to show that:

∀xk,x∈Rn xk → x⇔ ψ̃ (xk)→ ψ̃ (x) . (32)

From (8) we get

∀y∈Rn
∥∥∥ψ̃ (y)

∥∥∥ = ‖y‖ , (33)

which implies (32) for x = 0 (i.e. for ψ̃ (x) = 0). Let x 6= 0. From (8) we get

∀y∈Rn\{0}
ψ̃ (y)∥∥∥ψ̃ (y)

∥∥∥
= ψ

(
y

‖y‖

)
. (34)

By 2.5, (8), and (34) we obtain

xk

‖xk‖
→

x

‖x‖
⇔

ψ̃ (xk)∥∥∥ψ̃ (xk)
∥∥∥
→

ψ̃ (x)∥∥∥ψ̃ (x)
∥∥∥
. (35)

Combining (33) and (35), we get (32) for x 6= 0.

We proved that both φ̂ and ψ̃ are topological embeddings. So if A = cl (int (A)), then

φ̂ (A) = cl
(
int
(
φ̂ (A)

))
and ψ̃ (A) = cl

(
int
(
ψ̃ (A)

))
. Moreover, it is easy to show that

both φ̂ and ψ̃ take every segment starting at 0 to segment starting at 0 too. Hence if A is
star shaped at 0 then φ̂ (A) and ψ̃ (A) are star shaped at 0 too. Finally, it can be proved
that for every v ∈ Sn−1:

ρφ̂(A) (v) = φ (v) (ρA (v)) (36)
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and
ρψ̃(A) (v) = ρA

(
ψ−1 (v)

)
. (37)

So if A is a star body and ρA|Sn−1 is continuous, then ρφ̂(A)|Sn−1 and ρψ̃(A)|Sn−1 are continu-
ous. �

Now we are ready to prove the main result:

Theorem 2.8. The mapping (φ, ψ) 7→
(
ψ̃ ◦ φ̂

)
is a biunique correspondence between the

sets (Φn ×Ψn) and Ωn.

Proof. Let ω ∈ Ωn. The mappings φ and ψ will be defined as follows:

φ (v) (r) = ‖ω (rv)‖ , (38)

ψ (v) =
ω (v)

‖ω (v)‖
(39)

for any v ∈ Sn−1 and r ∈ R+. At the beginning we shall prove that φ ∈ Φn. Let u ∈ Sn−1; let
B = pos (u) and C = pos (ω (u)). The mapping φ (u) (•) can be expressed as the composition
of three mappings. The first of them goes from R+ to B. It is given by the formula t 7→ tu.
The second is the restriction of ω to B. The third one x 7→ ‖x‖ goes from C to R+. The first
and the last one are homeomorphisms. The second is a topological embedding. That means
that φ (u) (•) ∈ Σ. Let uk ∈ Sn−1; r > 0. We know that

uk → u⇔ ruk → ru⇔ ω (ruk)→ ω (ru)⇒ ‖ω (ruk)‖ → ‖ω (ru)‖ ⇔ φ (r) (uk)→ φ (r) (u) .

So φ ∈ Φn.
Now it is time to prove that ψ ∈ Ψn. We know that 0 = ω (0) ∈ ω (int (Bn)) and ω (Bn)

is bounded. So for every halfline C starting at 0 the set C ∩ bd (ω (Bn)) is not empty. Since
bd (ω (Bn)) = ω (Sn−1) then ψ is surjective. By Corollary 2.3, ψ is injective. By (39), ψ is
continuous. Let λ > 0 be such that 2λBn ⊂ ω (Rn) and mapping h : Sn−1 → Sn−1 satisfies
the condition

h (v) =
ω−1 (λv)

‖ω−1 (λv)‖
. (40)

The mapping h is continuous. Moreover:

ψh (v) =
ω
(

ω−1(λv)
‖ω−1(λv)‖

)

∥∥∥ω
(

ω−1(λv)
‖ω−1(λv)‖

)∥∥∥
. (41)

By Corollary 2.3

ω
(

1
‖ω−1(λv)‖ω

−1 (λv)
)

∥∥∥ω
(

1
‖ω−1(λv)‖ω

−1 (λv)
)∥∥∥
=

ω (ω−1 (λv))

‖ω (ω−1 (λv))‖
=

λv

‖λv‖
= v; (42)
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so ψ−1 is continuous. That means that ψ ∈ Ψn. Let us notice that

ψ̃ ◦ ϕ̂ (ru) = ψ̃ (ϕ̂ (ru)) = ψ̃ (ϕ (u) (r)u) = ϕ (u) (r)ψ (u) =

= ‖ω (ru)‖
ω (u)

‖ω (u)‖
= ‖ω (ru)‖

ω (ru)

‖ω (ru)‖
= ω (ru) . (43)

We proved that the mapping (ϕ, ψ) 7→ ψ̃ ◦ φ̂ is surjective. It remains to show that it is
injective. Let φ1, φ2 ∈ Φn, ψ1, ψ2 ∈ Ψn, and

ψ̃1 ◦ φ̂1 = ψ̃2 ◦ φ̂2. (44)

Then
ψ̃2
−1
◦ ψ̃1 ◦ φ̂1 = φ̂2. (45)

Since φ̂2 preserves directions, it follows that so does ψ̃2
−1
◦ ψ̃1 ◦ φ̂1. So ψ̃2

−1
◦ ψ̃1 = id; hence

φ̂1 = φ̂2. �

It may seem that the mappings from the classes Φn and Ψn are very simple. So we may think
that so are the mappings from Ωn. To help the reader to realize how complicated they are
we shall give two examples:

Example 2.9. Let φ (u) (r) = 1− exp (−r) and ω = φ̂. It is easy to see that

∀u∈Sn−1∀r∈R+ ‖ω (ru)‖ = φ (u) (r) < 1. (46)

So we cannot expect that ω (Rn) = Rn. I think that it is not very surprising because after
applying ω image of every hair has finite lengths. It seems to be more interesting that there
exists a generalized star mapping ω for which images of some hairs have finite lengths and
images of another hairs have infinite lengths.

Example 2.10. Let n = 2 and e1 = (1, 0). Let the µ (u) = ∠ (u, e1). Let mapping

φ (u) (r) = µ (u) r + (1− exp (−r)) and ω = φ̂. It is easy to see that if u 6= e1, then φ (u) (r)
can be arbitrarily large while φ (e1) (r) < 1 for every r.

3. A solution of Problem 1 in [1]

To every A ∈ Sn we assign the subset SA of the unit sphere:

SA =
{
u ∈ Sn−1; ρA (u) > 0

}
. (47)

M. Moszyńska proved that if A,B ∈ Sn and there exists ω ∈ GS (n) such that ω (A) = B,
then SA is homeomorphic to SB. She asked if the existence of a homeomorphism between SA
and SB suffices for A,B to be star equivalent in sense of [1].

Proposition 3.1. If A,B ∈ Sn and there exists ω ∈ Ωn such that ω (A) = B, then Sn−1 \SA
is homeomorphic to Sn−1 \ SB.
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Proof. By Theorem 1.8 there exist φ ∈ Φn and ψ ∈ Ψn such that ψ̃ ◦ φ̂ = ω. It can be easily
proved that if ω (A) = B then ψ (Sn−1 \ SA) = Sn−1 \ SB (and ψ (SA) = SB). The mapping
ψ is a homeomorphism; thus the restriction of ψ to Sn−1 \ SA is a homeomorphism as well.
This completes the proof. �

The following example shows that the answer to the above question is negative even for the
larger family Ωn.

Example 3.2. Let n = 2 and let A,B ∈ Sn be defined by the values of their radial functions
restricted to Sn−1:

ρA (u) = |〈u; e1〉| , (48)

ρB (u) = max

{
|〈u; e1〉| −

1

2
, 0

}
. (49)

The set Sn−1 \ SA consists of two points, while the set Sn−1 \ SB consists of two closed arcs.
In this case there is no star mapping ω ∈ Ωn such that ω (A) = B. On the other hand, each
of SA and SB consists of two open arcs. So they are homeomorphic.

This example can be generalized to any n ≥ 2 showing that the answer is no even if we look
in family Ωn. Moreover it can be proved that even if SA is homeomorphic to SB and S

n−1\SA
is homeomorphic to Sn−1 \ SB we cannot expect that A,B are star equivalent.
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[1] Moszyńska. M.: Quotient Star Bodies, Intersection Bodies, and Star Duality. Journal of
Mathematical Analysis and Applications 232 (1998), 45–60. Zbl 0928.54007−−−−−−−−−−−−

[2] Schneider, R.: Convex Bodies: The Brunn Minkowski Theory. Cambridge Univ. Press
1993. Zbl 0798.52001−−−−−−−−−−−−

Received July 30, 2001

http://www.emis.de/MATH-item?0928.54007
http://www.emis.de/;ATH-item?0798.52001

