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Abstract. Based on the work of Pinkall, characterizations of spherical curves
are given whose corresponding Hopf cylinders are isothermic surfaces in the three-
dimensional sphere. Comparing these characterizations with results of Langer and
Singer about elastic spherical curves we determine all isothermic Willmore Hopf
tori.
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1. Introduction

In 1985, U. Pinkall [5] introduced Hopf cylinders in the three-dimensional unit sphere S3 ⊂ R4
which are inverse images of spherical curves in the two-dimensional sphere S2 ⊂ R3 by means
of the Hopf map. Based on the work of J. Langer and D. A. Singer [4] about elastic curves
in S2, Pinkall further determined all Willmore Hopf tori in S3. An example of a Willmore
Hopf torus is the minimal Clifford torus in S3. This torus is an isothermic surface: a suitable
stereographic projection of it yields a torus of revolution in R3 with a ratio of its radii equal
to 1 :

√
2. We can now ask whether there are any more isothermic Willmore Hopf tori. Or

more general:
Which Hopf cylinders are isothermic?
In the next section we introduce isothermic surfaces and in Section 3 we consider Hopf

cylinders, which can be described via quaternions (see [5]).
The answer to the above question is given in Section 4. There we characterize curves in

the unit sphere S2 which belong to isothermic Hopf cylinders. Namely, the geodesic curvature
of the spherical curves which correspond to isothermic Hopf cylinders is the tangent function

0138-4821/93 $ 2.50 c© 2003 Heldermann Verlag



2 G. Preissler: Isothermic Surfaces and Hopf Cylinders

of a linear function of their arc length. Furthermore, these curves are also characterized by
a constant torsion in R3.
Finally in Section 5, we apply the results to Willmore Hopf tori to determine all Willmore

Hopf tori which are isothermic. These are solely the minimal Clifford tori.

2. Isothermic surfaces

In the following, all considered objects are assumed to be sufficiently differentiable, e.g. in
Section 4 we need differentiability class C4 for the spherical curve.

Definition 1. A parametrization of a local surface is called isothermic if the components of
the first fundamental form have the form

g11 = g22 = λ, g12 = 0

with a positive function λ. An umbilicfree local surface is called an isothermic surface if there
exists a parametrization of curvature lines on the surface which is isothermic.

If the surface is second order differentiable, there always exists an isothermic parametrization
(cf. [2]). Further properties and examples of isothermic surfaces can be found e.g. in the books
of Blaschke ([1], p. 325 ff) and Eisenhart ([3], p. 107f, p. 226ff). A well-known lemma giving
an analytical criterion for an isothermic parametrization is

Lemma 1. On a surface there is an isothermic parametrization if and only if there are
parameters (u, v) on the surface with

∂2

∂u∂v
ln
(g11
g22

)
= 0 and g12 = 0. (1)

3. Hopf cylinders

Here we cite some notations and results from [5] in short.
The unit sphere S3 is to be considered as a set of unit quaternions S3 = {q ∈ H | ‖q‖ = 1}.
S2 can be described as the section of S3 with a real three-dimensional linear subspace, here
we take S2 = S3 ∩ lin{1, j, k}.
From [5] we know that the Hopf map π : S3 → S2 is then given by π(q) = q̃q , with

π(eiϕq) = π(q) for all ϕ ∈ R, q ∈ S3, where q = q0+ q1i+ q2j + q3k, q̃ = q0− q1i+ q2j + q3k,
qm ∈ R, m = 0, . . . , 3.
Let p : [a, b] → S2, t 7→ p(t), be a regular spherical curve, [a, b] ⊆ R. We choose a curve

y : [a, b]→ S3, t 7→ y(t), with π ◦ y = p.

Definition 2. The mapping x : [a, b] × S1 → S3 with (t, ϕ) 7→ eiϕy(t) is called the Hopf
cylinder of p in S3. If the spherical curve p is C2-closed, the Hopf cylinder of p is called Hopf
torus of p. Especially, if p is a circle, we call the Hopf torus of p a Clifford torus.
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Later, for a geometrical interpretation we require

Lemma 2. Let p be a spherical curve with geodesic curvature
κg, let k(t) be the circle of curvature of p at t. Then for the
semi-vertex angle δ(t) of the cone touching S2 in the circle k(t)
the equation

tan δ(t) = κg(t)

holds.

.

.

S2

1

k

1
1√
κ2
g+1

δ

Figures 1 and 2 show a closed spherical curve p and a stereographic projection of its Hopf
torus in two different views. The parameter t can now be chosen as the arc length parameter

Figure 1. A closed spherical curve p with 6 periods

Figure 2. Stereographic image of the Hopf torus of p from Fig. 1

of y. For the arc length parameter s of p : [0, l]→ S2 we get s = 2t.
According to [5], the metric components and the components of the second fundamental

form and the Weingarten map of a Hopf cylinder are then given by

G = (gik) =

(
1 0
0 1

)
, (hik) = (h

k
i ) =

(
2κg 1
1 0

)
,

where κg is the geodesic curvature of p.
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For the principal curvatures we obtain λ1,2 = κg ±
√
κ2g + 1 = κg ± κ, and we have

v1,2 = xt + (−κg ± κ)xϕ for the principal directions v1,2 and H = κg for the mean curvature
H.
So a Hopf cylinder has no umbilics, and there exists a parametrization of curvature lines on
it.

4. Isothermic Hopf cylinders

Now we want to apply Pinkall’s calculus for Hopf cylinders to isothermic surfaces.
Let the Hopf cylinder be parametrized by means of curvature line parameters (u, v), i.e.

we have a curvature line parametrization x̃(u, v) = x(t(u, v), ϕ(u, v)) with partial derivatives
proportional to the principal curvature directions v1, v2

x̃u = α(u, v)v1 =
∂t

∂u
xt +

∂ϕ

∂u
xϕ

x̃v = β(u, v)v2 =
∂t

∂v
xt +

∂ϕ

∂v
xϕ ,

where the proportionality factors α, β do not vanish. Here xt, xϕ denote the derivative of x
with respect to t, ϕ. After comparison of coefficients we obtain

∂t

∂u
= α ,

∂t

∂v
= β (2)

and

∂ϕ

∂u
= α(−κg + κ) ,

∂ϕ

∂v
= −β(κg + κ) . (3)

As we know that there locally exists a curvature line parametrization, the following integra-
bility conditions must hold

∂

∂v

(
∂t

∂u

)
=
∂

∂u

(
∂t

∂v

)
and

∂

∂u

(
∂ϕ

∂v

)
=
∂

∂v

(
∂ϕ

∂u

)
.

Inserting (2) and (3), the conditions are equivalent to (κ′g :=
dκg
dt
, κ′ := dκ

dt
) αv = βu and

βu(κg + κ) + (κ
′
g + κ

′)αβ + αv(−κg + κ) + (−κ
′
g + κ

′)αβ = 0 .

The second equation can be transformed by the first one and we get

αv = βu and αvκ+ κ
′αβ = 0 . (4)

The matrix of metric components, now in curvature line parametrization, has the form

G̃ = (g̃ik) = 2κ

(
α2(κ− κg) 0

0 β2(κ+ κg)

)
(5)

where κg = κg(t), κ = κ(t) and t = t(u, v).
If we differentiate the second equation of (4) partially with respect to v, we obtain

αvvκ+ 2αvβκ
′ + αβvκ

′ + αβ2κ′′ = 0 . (6)

Now we can show
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Proposition 1. Exactly those Hopf cylinders are isothermic whose image under the Hopf
map π is a spherical curve p : [0, l]→ S2 with geodesic curvature

κg(s) = tan
( c
2
s+ d

)

where c, d ∈ R are suitable constants and s is the arc length parameter of p. Especially, the
Clifford tori (c = 0) are the only isothermic Hopf tori.

Proof. If κ′ vanishes everywhere, then κ =const and hence we have |κg| =
√
κ2 − 1 = const.

The curve p is then a part of a circle and the assertion holds with c = 0.
So we can assume that we can find an interval with non-vanishing κ′. We insert G̃ in

condition (1) for an isothermic surface and we get

0 =
∂2

∂u∂v
ln

(
g̃11

g̃22

)

=
∂2

∂u∂v
(2 lnα− 2 ln β + ln(κ− κg)− ln(κ+ κg)) (with (5))

=
∂

∂u

(
2
αv

α
− 2
βv

β
+
(κ− κg)′β

κ− κg
−
(κ+ κg)

′β

κ+ κg

)

=
∂

∂u

(
β(−2

κ′

κ
+ 2(κgκ

′ − κ′gκ))− 2
βv

β

)

using κ2 − κ2g = 1 and (4). Furthermore,

0 = 2

(
βu(−

κ′

κ
+ κgκ

′ − κ′gκ) + βα(−
κ′

κ
+ κgκ

′ − κ′gκ)
′ −
βuvβ − βuβv

β2

)

= 2

(
αv(−

κ′

κ
+ κgκ

′ − κ′gκ)− αv
κ

κ′
(−
κ′

κ
+ κgκ

′ − κ′gκ)
′ −
αvvβ − αvβv

β2

)

(with (4))

=
2

β2κ

(
αvβ

2κ(−
κ′

κ
+ κgκ

′ − κ′gκ)− αvβ
2κ
2

κ′
(−
κ′

κ
+ κgκ

′ − κ′gκ)
′+

+ β(2αvβκ
′ + αβvκ

′ + αβ2κ′′) + αvβvκ

)
(with (4) and (6))

=
2

β2κ

(
αvβ

2κ(
κ′

κ
+ κgκ

′ − κ′gκ)− αvβ
2κ
2

κ′
(−
κ′

κ
+ κgκ

′ − κ′gκ)
′ +

+ (−αvβ
2 κ

κ′
)κ′′
)

(with (4))

=
2αv
κκ′

(
κκ′(
κ′

κ
+ κgκ

′ − κ′gκ)− κ
2(−
κ′

κ
+ κgκ

′ − κ′gκ)
′ − κκ′′

)
. (7)

From the equation κ′ =
κgκ

′
g

κ
(Derivation of κ =

√
κ2g + 1) as well as

κ′′ =
κgκ

′′
gκ
2 + (κ′g)

2

κ3
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it follows

(κ′)2κ =
κ2g(κ

′
g)
2

κ
and κ′κ2 = κgκ

′
gκ (8)

and after differentiation we get

(−
κ′

κ
+ κgκ

′ − κ′gκ)
′ = −

κ′′

κ
+
(κ′)2

κ2
+ κgκ

′′ − κ′′gκ . (9)

Inserting (9) in (7) and using (8) we obtain

0 = αv
(
(κ′)2κκg − κ

′
gκ
2κ′ − κgκ

′′κ2 + κ′′gκ
3
)

= αv

(
κ3g(κ

′
g)
2

κ
− κg(κ

′
g)
2κ−

κg

κ
(κgκ

′′
gκ
2 + (κ′g)

2) + κ′′gκ
3

)

=
αv

κ

(
κ3g(κ

′
g)
2 − κg(κ

′
g)
2κ2 − κ2gκ

′′
gκ
2 − κg(κ

′
g)
2 + κ′′gκ

4
)

=
αv

κ

(
−2κg(κ

′
g)
2 + κ′′g(1 + κ

2
g)
)

(with several applications of κ2 = 1 + κ2g)

=
αv(1 + κ

2
g)
2

κ

(
κ′g
1 + κ2g

)′
.

This equation is fulfilled iff α = α(u) is only dependent on u or
κ′g
1+κ2g

= c holds with c =

const.∈ R. In the first case, we have κg =const. because of (4), and p is again a part of a
circle. In the second case, we integrate once more and get

κg(t) = tan(ct+ d) ,

where c, d ∈ R are suitable integration constants with |ct+ d| < π
2
and s = 2t. �

4.1. Characterizations of p corresponding to an isothermic Hopf cylinder

Proposition 2. A spherical curve p corresponding to an isothermic Hopf cylinder is char-
acterized by a constant torsion τ as a space curve in R3. For its curvature κ we get

κ(s) =
1

cos(τs+ d)
.

Proof. The assertion immediately follows with 2τ = 2
dκg
ds

κ2g+1
=

κ′g
κ2g+1

= c and κ =
√
κ2g + 1

after inserting the equations of Proposition 1 with |τs+ d| < π
2
. �

Proposition 3. A spherical curve p corresponding to an isothermic Hopf cylinder is further
characterized by the fact that the semi-vertex angles of the cones touching S2 in curvature
circles of p are linear functions of its arc length.

Proof. A comparison of Proposition 1 with Lemma 2 yields δ(s) = c
2
s + d = τs + d with

c, d ∈ R suitably chosen. �

Figure 3 shows the shape of p in S2 for some values of c 6= 0 and d = 0 which is similar to a
clothoid. Figure 4 presents a stereographic projection of the Hopf cylinder of p, on the left
hand side the whole surface, on the right hand side a part of it.
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(a) c = 2 (b) c = 1
2 (c) c = 1

4

Figure 3. The spherical curve p from Proposition 1 with initial conditions: p touches the
equator for s = 0 and κg(0) = 0

Figure 4. Stereographic projection of the Hopf cylinder of the curve p from Fig. 3, (b)

5. Willmore Hopf tori

LetM be a closed orientiable two-dimensional manifold. Hence for simply C2-closed spherical
curves p we know from [5]:
f(M) is a Willmore Hopf torus iff p is a critical point of

∮
κ2(s)ds.

In 1987, such curves p called elastic curves were found by Langer and Singer [4]. They
got the following result:

Proposition 4. There are infinitely many simply C∞-closed elastic curves p in S2 with
geodesic curvature

κg(s) = k0 cn

(
k0s

2ω
, ω

)
,

where the maximal geodesic curvature k0 is given by k0 =
√
2ω√
1−2ω2

with a certain ω where

ω2 ∈ [0, 1
2
) and cn denotes the amplitude cosine (Jacobi’s elliptic cosine).

Figures 1 and 2 show a closed elastic spherical curve for ω ≈ 0.6894 (k0 ≈ 4.3838, 6 periods)
and a stereographic image of its Willmore Hopf torus.
A comparison of Propositions 1 and 4 yields for a C∞-closed p
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Corollary 1. In the class of Willmore Hopf tori the minimal Clifford tori are the only
isothermic surfaces.

Proof. Both formulas for κg in Proposition 1 and Proposition 4 must coincide, this is only
possible for κg = 0, i.e. for p is a great circle. The torus is therefore a minimal Clifford torus.

�

As the properties of being an isothermic surface and of being a Willmore surface are Möbius
invariants, we get

Corollary 2. Let f : S3 → S3 be a conformal transformation, M a Hopf torus and f(M)
an isothermic (Willmore) surface. Then M is a (minimal) Clifford torus.

Figures 1 to 4 were built with the computer algebra system Maple.
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