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Abstract. In an earlier paper [1], the author introduced the notion of convolution
of Riemannian manifolds. In [1] he also provided some examples and applications
of convolution manifolds. In this paper we use tensor product to construct more
examples of convolution manifolds and investigate fundamental properties of con-
volution manifolds. In particular, we study the relationship between convolution
manifolds and the gradient of their scale functions. Moreover, we obtain a neces-
sary and sufficient condition for a factor of a convolution Riemannian manifold
to be totally geodesic. We also completely classify flat convolution Riemannian
surfaces.
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1. Convolution of Riemannian manifolds

Let N1 and N2 be two Riemannian manifolds with Riemannian metrics g1 and g2, re-
spectively, and let f be a positive differentiable function on N1. The well-known notion of
warped product manifold N1 ×f N2 is defined as the product manifold N1 ×N2 equipped
with the Riemannian metric given by g1+f

2g2. It is well-known that the notion of warped
product plays some important roles in differential geometry as well as in physics (cf. [4]).
The new notion of convolution of Riemannian manifolds introduced in [1] can be regarded
as a natural extension of warped products.

0138-4821/93 $ 2.50 c©2003 Heldermann Verlag



10 Bang-Yen Chen: More on Convolution of Riemannian Manifolds

The notion of convolution products is defined as follows: Let N1 and N2 be two Rie-
mannian manifolds equipped with metrics g1 and g2, respectively. Consider the symmetric
tensor field gf,h of type (0,2) on the product manifold N1 ×N2 defined by

gf,h = h
2g1 + f

2g2 + 2fhdf ⊗ dh (1.1)

for some positive differentiable functions f and h on N1 and N2, respectively. We denote
the symmetric tensor gf,h by hg1 ∗f g2, which is called the convolution of g1 and g2 (via
h and f). The product manifold N1 ×N2 equipped with hg1 ∗f g2 is called a convolution
manifold, which is denoted by hN1F fN2. When the scale functions f, h are irrelevant, we
simply denote hN1F fN2 and hg1 ∗f g2 by N1FN2 and g1 ∗ g2, respectively.
When hg1 ∗f g2 is a nondegenerate symmetric tensor, it defines a pseudo-Riemannian

metric on N1×N2 with index ≤ 1. In this case, hg1∗f g2 is called a convolution metric and
the convolution manifold hN1FfN2 is called a convolution pseudo-Riemannian manifold.
If the index of the pseudo-Riemannian metric is zero, hN1FfN2 is called a convolution
Riemannian manifold. The author provides in [1] examples and applications of convolution
manifolds.

In Section 2 of this paper we provide basic formulas and definitions. In Section 3
we apply tensor product of Euclidean submanifolds to construct more examples of con-
volution manifolds. In this section we also obtain a necessary and sufficient condition
for a convolution of two Riemannian metrics to be a Riemannian metric. Our condition
is expressed in terms of the length of gradient of the scale functions of the convolution
manifolds. In Sections 4 and 5 we construct examples of submanifolds in Euclidean and in
pseudo-Euclidean spaces whose distance function ρ satisfies |grad ρ| = c ∈ [0,∞). We also
investigate general properties of such submanifolds. In Section 6, we obtain a necessary
and sufficient condition for one of the factors of a convolution Riemannian manifold to be
totally geodesic. In the last section, we completely classify flat convolution Riemannian
surfaces.

2. Preliminaries

Let N be a Riemannian manifold equipped with a Riemannian metric g. The gradient
gradϕ of a function ϕ on N is defined by 〈gradϕ,X〉 = Xϕ for vector fields X tangent
to N .

If N is a submanifold of a Riemannian manifold M̃ , the formulas of Gauss and Wein-
garten are given respectively by

∇̃XY = ∇XY + σ(X,Y ), (2.1)

∇̃Xξ = −AξX +DXξ (2.2)

for vector fields X, Y tangent to N and ξ normal to N , where ∇̃ denotes the Rieman-
nian connection on M̃ , σ the second fundamental form, D the normal connection, and
A the shape operator of N in M̃ . The second fundamental form and the shape operator
are related by 〈AξX,Y 〉 = 〈σ(X,Y ), ξ〉 , where 〈 , 〉 denotes the inner product on M as

well as on M̃ . A submanifold in a Riemannian manifold is called totally geodesic if its
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second fundamental form vanishes identically, or equivalently, its shape operator vanishes
identically.

The equation of Gauss of N in M̃ is given by

R̃(X,Y ;Z,W ) =R(X,Y ;Z,W ) + 〈σ(X,Z), σ(Y,W )〉

− 〈σ(X,W ), σ(Y, Z)〉 ,
(2.3)

for X,Y, Z,W tangent to M , where R and R̃ denote the curvature tensors of N and M̃ ,
respectively.
The covariant derivative ∇̄σ of σ with respect to the connection on TM ⊕ T⊥M is

defined by
(∇̄Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY,Z)− σ(Y,∇XZ). (2.4)

The equation of Codazzi is

(R̃(X,Y )Z)⊥ = (∇̄Xσ)(Y,Z)− (∇̄Y σ)(X,Z), (2.5)

where (R̃(X,Y )Z)⊥ denotes the normal component of R̃(X,Y )Z.
Let Em ⊗ En denote the tensor product of two Euclidean spaces Em and En. Then

Em ⊗En is isometric to Emn. The Euclidean inner product 〈 , 〉 on Em ⊗En is given by

〈α⊗ β, γ ⊗ δ〉 = 〈α, γ〉 〈β, δ〉 , (2.6)

where 〈α, γ〉 denotes the Euclidean inner product of α, γ ∈ Em and 〈β, δ〉 the Euclidean
inner product of β, δ ∈ En.
We denote En − {0} by En∗ . Let E

n
t denote the pseudo-Euclidean n-space equipped

with a pseudo-Euclidean metric with index t. A pseudo-Euclidean space with index one is
known as a Minkowski space-time.

3. Convolution manifolds

The tensor product of two Euclidean submanifolds have been investigated by F. Decruye-
naere, F. Dillen, L. Verstraelen and L. Vrancken in [3]. The following result shows that the
notion of convolution manifolds arises very naturally. It also provides us ample examples
of convolution manifolds.

Proposition 3.1. Let x : (N1, g1)→ E
n
∗ ⊂ E

n and y : (N2, g2)→ E
m
∗ ⊂ E

m be isometric
immersions of Riemannian manifolds (N1, g1) and (N2, g2) into E

n
∗ and E

m
∗ , respectively.

Then the map

ψ : N1 ×N2 → E
n ⊗Em = Enm; (u, v) 7→ x(u)⊗ y(v), u ∈ N1, v ∈ N2, (3.1)

gives rise to a convolution manifold N1FN2 equipped with

ρ2g1 ∗ρ1 g2 = ρ
2
2g1 + ρ

2
1g2 + 2ρ1ρ2dρ1 ⊗ dρ2, (3.2)
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where ρ1 =
√∑n

j=1 x
2
j and ρ2 =

√∑m
α=1 y

2
α denote the distance functions of x and y, and

x = (x1, . . . , xn) and y = (y1, . . . , ym) are Euclidean coordinate systems of E
n and Em,

respectively.

Proof. For vector fields X,Y tangent to N1 and Z,W tangent to N2, we have

dψ(X) = Xψ = X ⊗ x, dψ(Z) = Zψ = z ⊗ Z. (3.3)

Also, it follows from the definitions of gradient of ρ1 = |x| that

〈X,x〉 =
1

2
X 〈x, x〉 = ρ1(Xρ1) = ρ1dρ1(X). (3.4)

Similarly, we have
ρ2dρ2(Z) = 〈Z, y〉 . (3.5)

From (2.6), (3.3), (3.4) and (3.5), we obtain Proposition 3.1. �

Example 3.1. If y : (N2, g2) → E
m
∗ ⊂ E

m is an isometric immersion such that y(N2) is
contained in the unit hypersphere Sm−1 of Em centered at the origin. Then the convolution
g1 ∗ g2 of g1 and g2 on the convolution manifold N1FN2 defined by (3.2) is nothing but
the warped product metric: g1 + |x|2g2.

Definition 3.1. A convolution hg1 ∗ fg2 of two Riemannian metrics g1 and g2 is called
degenerate if det(hg1 ∗f g2) = 0 holds identically.

For X ∈ T (N1) we denote by |X|1 the length of X with respect to metric g1 on N1.
Similarly, we denote by |Z|2 for Z ∈ T (N2) with respect to metric g2 on N2.

Proposition 3.2. Let hN1F fN2 be the convolution of Riemannian manifolds (N1, g1)
and (N2, g2) via h and f . Then hg1 ∗f g2 is degenerate if and only if we have
(1) the length |grad f |1 of the gradient of f on (N1, g1) is a nonzero constant, say c, and
(2) the length |gradh|2 of the gradient of h on (N2, g2) is the constant given by 1/c, i.e.,
the reciprocal of c.

Proof. By a direct computation we have

det(hg1 ∗f g2) = f
2n1h2n2

(
1− |grad f |21 |gradh|

2
2

)
, (3.6)

where n1 and n2 are the dimensions of N1 and N2, respectively. Thus the convolution

hg1∗ fg2 of g1 and g2 is degenerate if and only if |grad f |21 |gradh|
2
2 = 1. Since |grad f |1 and

|gradh|2 depend only on N1 and N2, respectively, we conclude that |grad f |21 |gradh|
2
2 = 1

holds identically if and only if both statements (1) and (2) of Proposition 3.2 hold. �

The following proposition provides a necessary and sufficient condition for a convolution

hg1 ∗f g2 of two Riemannian metrics to be a Riemannian metric.
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Proposition 3.3. Let hN1F fN2 be the convolution of Riemannian manifolds (N1, g1)
and (N2, g2) via h and f . Then hg1 ∗ fg2 is a Riemannian metric on hN1F fN2 if and
only if we have |grad f |1 |gradh|2 < 1.

Proof. Follows from equation (3.6) and the fact that the index of hg1 ∗ fg2 is at most one.
�

4. Examples of submanifolds satisfying |grad ρ| = c

In view of Propositions 3.2 and 3.3, we provide some examples of Riemannian manifolds
equipped with a positive function f satisfying |grad f | = c for some real number c ≥ 0.

Example 4.1. Let x : M → En be an isometric immersion such that x(M) is contained
in a hypersphere of En centered at the origin. Then the distance function ρ = |x| on
M satisfying |grad ρ| = 0. In fact, spherical submanifolds are the only submanifolds in
Euclidean space whose distance function has zero gradient.

There exist many submanifolds in Euclidean space whose distance function ρ satisfies
|grad ρ| = c for some real number c ∈ (0, 1). Here we provide some such examples.

Example 4.2. For any real numbers a, c with 0 ≤ a < c < 1, the curve

γ(s) =

(
√
c2 − a2 s sin

( √1− c2
√
c2 − a2

ln s
)
,
√
c2 − a2 s cos

( √1− c2
√
c2 − a2

ln s
)
, as

)

(4.1)

in E3 is a unit speed curve satisfying |grad ρ| = c. A direct computation shows that the
curvature function κ of the space curve γ is given by

κ(s) =

√
(1− a2)(1− c2)√
(c2 − a2) s

. (4.2)

When a = 0, (4.1) defines a planar curve which satisfies the condition |grad ρ| = c and
whose curvature κ equals to

√
(1− c2)/cs.

Example 4.3. Let γ(sj) : I → Eni , j = 1, . . . , k, be k unit speed curves in Euclidean
spaces which satisfy the condition: |grad ρj | = c, ρj = |γj |, for some constant c. Then the
product immersion

x : Ik → En1+···+nk ; (s1, . . . , sk) 7→ (γ1(s1), . . . , γk(sk)) (4.3)

is an isometric immersion satisfying the condition |grad ρ| = c, too.

There exist many space-like submanifolds in pseudo-Euclidean spaces whose distance func-
tion ρ satisfies the condition: |grad ρ| = c for some real number c > 1 or c < 1. Here we
provide some such examples.
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Example 4.4. Let a, c be two real numbers satisfying c > 1 and c > a ≥ 0. We put
b =
√
c2 − a2. Then the curve

γ(s) =

(
1

2
s1−

√
c2−1/b

(
s2
√
c2−1/b − b2

)
,
1

2
s1−

√
c2−1/b

(
s2
√
c2−1/b + b2

)
, as

)
(4.4)

in E31 is a unit speed space-like curve which satisfies the condition: |grad ρ| = c > 1, ρ = |γ|.
Here, the Minkowski metric on E31 is given by g = −dx

2
1 + dx

2
2 + dx

2
3.

Example 4.5. For any real numbers a and c with 0 < c < 1, the curve

γ(s) =

(

as,
√
a2 + c2 s sin

( √1− c2
√
a2 + c2

ln s
)
,
√
a2 + c2 s cos

( √1− c2
√
a2 + c2

ln s
))

in E31 is a unit speed space-like curve satisfying the condition: |grad ρ| = c < 1.

Example 4.6. Let γ(sj) : I → E
ni
ti
, j = 1, . . . , k be k unit speed space-like curves in

pseudo-Euclidean spaces which satisfy the condition: |grad ρj | = c > 1, ρj = |γj |. Then
the product immersion

x : Ik → En1+···+nkt1+···+tk ; (s1, . . . , sk) 7→ (γ1(s1), . . . , γk(sk)) (4.5)

is a space-like submanifold satisfying the condition |grad ρ| = c > 1, where the pseudo-
Euclidean space En1+···+nkt1+···+tk is given by E

n1
t1
⊕ · · · ⊕Enktk .

5. Convolution of Euclidean submanifolds

Let x :M → En∗ be an isometric immersion. We denote the position vector function of M
in En by also x. At each point onM , we decompose the position vector x into x = xT+x⊥,
where xT and x⊥ are the tangential and normal components of x at the point, respectively.
Hence we have |x|2 = |xT |2 + |x⊥|2.
In views of Propositions 3.2 and 3.3, we give the following.

Lemma 5.1. Let x : M → En be an isometric immersion. Then the distance function
ρ = |x| satisfies |grad ρ| = c for some constant c if and only if we have |xT | = c|x|. In
particular, if |grad ρ| = c holds, then c ∈ [0, 1].

Proof. Let e1, . . . , en1 be a local orthonormal frame field on M . Then the gradient of ρ is

given by grad ρ =
∑n−1
j=1 (ejρ)ej . Since ejρ = 〈ej , x〉 /|x|, we find

|grad ρ|2 =
n1∑

j=1

〈ej , x〉
2

|x|2
. (5.1)

Therefore, the condition |grad ρ| = c holds for some constant c if and only if we have
|xT | = c|x|.
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In particular, since |xT | ≤ |x|, the condition |grad ρ| = c implies c ≤ 1. �

Definition 5.1. By a cone in En with vertex at the origin we mean a ruled submanifold
generated by a family of lines passing through the origin. A submanifold of En is called a
conic submanifold with vertex at the origin if it is contained in a cone with vertex at the
origin.

The following result provides a very simple geometric characterization of conic submani-
folds.

Proposition 5.2. Let x : M → En∗ ⊂ E
n be an isometric immersion. Then x is a conic

submanifold with vertex at the origin if and only if the distance function ρ = |x| satisfies
the condition: |grad ρ| = 1.

Proof. Assume that x : M → En satisfies |grad ρ| = 1. Then we have xT = x. Hence
e1 = x/|x| is a unit vector field tangent to M . Thus, we obtain ∇̃e1x = e1 and ∇̃e1x =
∇̃e1(ρe1) = (e1ρ)e1+ρ∇̃e1e1. Therefore , we find ∇̃e1e1 = 0. Hence, the integral curves of
e1 are lines in E

n. Moreover, from the fact that the position vector is always tangent to
the submanifold, we also know that the lines given by the integral curves of e1 must pass
through the origin. Consequently, x is a conic submanifold with vertex at the origin.
The converse follows from Lemma 5.1. �

The following result provides us a necessary and sufficient condition for the convolution of
two Euclidean submanifolds to be degenerate.

Proposition 5.3. Let x : (N1, g1)→ E
n
∗ ⊂ E

n and y : (N2, g2)→ E
m
∗ ⊂ E

m be isometric
immersions of Riemannian manifolds (N1, g1) and (N2, g2) into E

n
∗ and E

m
∗ , respectively,

and let ρ1 = |x| and ρ2 = |y| be the distance functions of x and y. Then the convolution

ρ2g1 ∗ρ1 g2 is degenerate if and only if both x and y are conic submanifolds with vertex at
origin.

Proof. Let x : (N1, g1)→ E
n
∗ ⊂ E

n and y : (N2, g2)→ E
m
∗ ⊂ E

m be isometric immersions
of Riemannian manifolds (N1, g1) and (N2, g2) into E

n
∗ and E

m
∗ , respectively. If ρ2g1 ∗ρ1 g2

is degenerate, then Proposition 3.2 implies that both |grad ρ1|1 and |grad ρ2|2 are nonzero
constants satisfying |grad ρ1|1 |grad ρ2|2 = 1. Hence, by applying Lemma 5.1, we obtain
|grad ρ1|1 = |grad ρ2|2 = 1. Thus, we get xT = x and yT = y. Therefore, by applying
Proposition 5.2, we conclude that x and y are both conic submanifolds with vertex at the
origin.
The converse follows from Proposition 3.2 and Proposition 5.2. �

Definition 5.2. An immersion x : M → En is said to be transversal at a point p ∈ M if
and only if the position vector x(p) is not tangent to M at p, that is x(p) /∈ dx(TpM). If
x is transversal at every point of M , then the immersion x is said to be transversal.

Corollary 5.4. [3] Let x : (N1, g1)→ E
n
∗ ⊂ E

n and y : (N2, g2)→ E
m
∗ ⊂ E

m be isometric
immersions of Riemannian manifolds (N1, g1) and (N2, g2) into E

n
∗ and E

m
∗ , respectively.

If either x or y is transversal, then x⊗ y : N1 ×N2 → E
n ⊗Em is an immersion.
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Proof. Follows from Proposition 5.2 and Proposition 5.3. �

For curves in a Euclidean space, we have the following.

Lemma 5.5. Let γ : I → En be a unit speed curve and c ∈ (0, 1). Then, up to translations
of the arclength function s, we have
(a) |grad ρ| = c ⇐⇒ |γ(s)| = cs.
(b) If n = 2 and |grad ρ| = c, then the curvature function κ of γ satisfies κ2(s) =
(1− c2)/c2(s2 + b) for some constant b.

Proof. Let γ : I → En be a unit speed curve and let ρ(s) = |γ(s)| be the distance function
of γ. Then

grad ρ =
dρ

ds
γ′(s) =

〈γ(s), γ′(s)〉

|γ(s)|
γ′(s) =

〈γ(s), γ(s)〉′

2|γ(s)|
γ′(s). (5.2)

Hence, we have |grad ρ| = c for some constant c ∈ (0, 1) if and only if we have 〈γ(s), γ(s)〉′ =

2c 〈γ, γ〉1/2. The later condition is equivalent to ρ′(s) = c. Thus the condition |grad ρ| =
c holds if and only if we have |γ(s)| = cs + b for some constant b. After a suitable
reparametrization of the arclength function s, we have b = 0. Hence we obtain |γ(s)| = cs.
This proves statement (a).

Suppose n = 2 and |grad ρ| = c ∈ (0, 1). Then, by applying Proposition 5.2, we obtain
〈γ, T 〉2 = c2 〈γ, γ〉, T = γ ′. Differentiating this equation with respect to arclength function
s yields

κ 〈γ,N〉 = c2 − 1, (5.3)

where N is a unit normal vector field of γ. Thus, by applying Frenet’s formula and (5.3),
we obtain

〈γ, T 〉 =
κ′

κ2
〈γ,N〉 =

κ′

κ3
(c2 − 1). (5.4)

Differentiating (5.4) with respect to s and applying (5.3) give

( κ′

κ3

)′
=

c2

c2 − 1
. (5.5)

Therefore, by solving (5.5), we get

1

κ2
=

c2

1− c2
(
(s+ a)2 + b

)
, (5.6)

where a and b are the integrating constants. Thus, we may obtain statement (b) after
applying a suitable translation in s. �

Theorem 5.6. Let γ : I → En be a unit speed curve in the Euclidean n-space. Then
|grad ρ| = c holds for a constant c if and only if one of the following three cases occurs:
(1) γ(I) is contained in a hypersphere centered at the origin.
(2) γ(I) is an open portion of a line through the origin.
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(3) γ(s) = csY (u), c ∈ (0, 1), where Y = Y (u) is a unit speed curve in the unit hypersphere
of En centered at the origin and u = (

√
1− c2/c) ln s.

Proof. If c = 0 or c = 1, we have case (1) or case (2), respectively. So, let us assume that
|grad ρ| = c holds for some c ∈ (0, 1). In this case, Lemma 5.5 implies that

γ(s) = csY (s) (5.7)

for some Y (s) with |Y (s)| = 1. From (5.7) we get

γ′(s) = cY (s) + csY ′(s) (5.8)

which implies 1 = |γ′(s)|2 = c2(1 + s2|Y ′(s)|2). Thus, |Y ′(s)| =
√
1− c2/(cs). Hence, if

we put u = (
√
1− c2/c) ln s, then Y (u) is a unit speed curve in the unit hypersphere of

En centered at the origin. Thus, we obtain case (3).
The converse can be verified easily. �

The same proof as for statement (a) of Lemma 5.5 also gives the following.

Lemma 5.7. Let γ : I → Ent be a unit speed space-like curve in a pseudo-Euclidean space
with index t. Then |grad ρ| = c holds for a constant c if and only if, up to translations of
the arclength function s, we have |γ(s)| = cs.

Theorem 5.8. Let γ : I → Ent be a unit speed space-like curve in a pseudo-Euclidean
n-space. Then |grad ρ| = c holds for a constant c if and only if one of the following three
cases occurs:
(1) γ(I) is contained in {w ∈ Ent : 〈w,w〉 = α}, for some real number α 6= 0,
(2) γ(I) is an open portion of a space-like line through the origin.
(3) γ(s) = csY (u) for some c 6= 0, 1, where Y = Y (u) is a unit speed curve in {w ∈ Ent :
〈w,w〉 = ε1}, (ε1 = 1 or −1), u = (

√
1− ε1ε2c2/c) ln s, and ε2 = 1 or −1, according

to Y (u) is a space-like or time-like unit speed curve.

This theorem can be proved in a way similar to the proof of Theorem 5.6.

Remark 5.1. (Added on August 29, 2001) Recently, the author has completely classified
Riemannian submanifolds in a pseudo-Euclidean space whose distance function ρ satisfies
the condition: |grad ρ| = c holds for a constant c. For the details, see [2].

6. Total geodesy of convolution Riemannian manifolds

Let us assume that (N1, g1) and (N2, g2) are Riemannian manifolds and f and h are positive
functions on N1 and N2 satisfying 0 < |grad f |1 |gradh|2 < 1. Then by Proposition 3.3,
we know that the convolution gf,h = hg1 ∗f g2 of g1, g2 via f and h is a Riemannian metric
on N1 ×N2; thus hN1F fN2 = (N1 ×N2, gf,h) is a convolution Riemannian manifold.
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If we put
D1 = T (N1), F1 = {X ∈ D1 : Xf = 0},

D2 = T (N2), F2 = {Z ∈ D2 : Zh = 0}.
(6.1)

then D1,D2,F1 and F2 can be regarded as distributions on hN1F fN2 in a natural way.
It follows from the definition of gf,h that the distribution F1 is a normal subbundle of

{u}×N2 in hN1F fN2 for u ∈ N1. Similarly, F2 is a normal subbundle of N1×{v}, v ∈ N2,
in hN1F fN2.

Theorem 6.1. Let hN1F fN2 be a convolution Riemannian manifold. Then, for every
v ∈ N2, we have
(1) N1×{v} is F2-totally geodesic in hN1F fN2, that is, the shape operator A1Z of N1×{v}
in hN1F fN2 vanishes identically for every Z ∈ F2,

(2) N1 × {v} is a totally geodesic submanifold of hN1F fN2 if and only if

〈
∇XY, gradh

2
〉
= |gradh|22

〈
∇XY, grad f

2
〉

(6.2)

holds for any vector fields X,Y tangent to N1 × {v}.

Proof. Let X,Y be any two vector fields in D1 and Z be a vector field in F2. Then we
have

[X,Z] = ∇XZ −∇ZX = 0. (6.3)

Let 〈 , 〉 denote the inner product of hN1F fN2. Then

Z 〈X,Y 〉 = Z(h2g1(X,Y )) = 2
(Zh
h

)
〈X,Y 〉 = 0. (6.4)

On the other hand, from (6.3), we find

Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉

= 〈∇XZ, Y 〉+ 〈X,∇Y Z〉

= −〈Z,∇XY 〉 − 〈∇YX,Z〉

= −2
〈
Z, σ1(X,Y )

〉

= −2
〈
A1ZX,Y

〉
,

(6.5)

where σ1 is the second fundamental form of N1 × {v} in hN1F fN2. Combining (6.4)
and (6.5), we conclude that N1 × {v} is F2-totally geodesic in hN1F fN2. This proves
statement (1).
From (1.1) it follows that

V2 = gradh−
(f
h
|gradh|22

)
grad f (6.6)

is a normal vector field of N1×{v} in hN1F fN2, where grad f and gradh are regarded as
vector fields on hN1F fN2. The vector field V2 is perpendicular to the normal subbundle
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F2. Clearly, the normal bundle of N1×{v} in hN1F fN2 is spanned by F2 and V2. Hence,
by applying statement (1), we know that N1 × {v} is a totally geodesic submanifold of

hN1F fN2 if and only if we have

0 = 〈gradh,∇XY 〉 −
(f
h
|gradh|22

)
〈grad f,∇XY 〉 . (6.7)

for vector fields X,Y tangent to N1×{v}. Clearly, condition (6.7) is nothing but condition
(6.2). �

Similarly,

V1 = grad f −
(h
f
|grad f |22

)
gradh (6.8)

is a normal vector field of {u}×N2 in hN1F fN2. Moreover, V1 is orthogonal to the normal
subbundle F1 and the normal bundle of {u} ×N2 in hN1F fN2 is spanned by F1 and V1.
In general, V1 and V2 are not perpendicular to each other, since

〈V1, V2〉 = fh |grad f |
2
1 |gradh|

2
2

(
|grad f |21 |gradh|

2
2 − 1

)
. (6.9)

When the convolution hg1 ∗f g2 is a Riemannian metric, Proposition 3.3 implies
|grad f |21 |gradh|

2
2 < 1. In this case, V1 and V2 are orthogonal if and only if either f

or h is a constant function.

We may apply Theorem 6.1 to obtain the following.

Theorem 6.2. Let hIF fN be the convolution Riemannian manifold of an open interval
I of the real line and a Riemannian (n − 1)-manifold N via f and h. Then I × {v} is a
geodesic in hIF fN for every v ∈ N if and only if one of the following two cases occurs:
(1) h is a constant function on N .
(2) Up to translations of I, f(s) is given by

√
s2 + c for some constant c.

Proof. The proof of this theorem bases on Theorem 6.1 and the following.

Lemma 6.3. Let hIF fN be the convolution Riemannian manifold of an open interval I
and a Riemannian (n− 1)-manifold N via f and h. Denote by s an arclength function of
I. Then we have

〈 ∇ ∂
∂s

∂

∂s
, grad f2 〉 = 0, (6.10)

〈 ∇ ∂
∂s

∂

∂s
, gradh2 〉 = 2(f ′2 + ff ′′ − 1)h2 |gradh|2. (6.11)

Proof of Lemma 6.3. Let {u2, . . . , un} be a local coordinate system on N . Suppose g2 =∑n
j,k=2 g̃jkdujduk. Let (g

ab) be the inverse matrix of (gab), gab the coefficients of g. And
denote by (g̃jk) the inverse matrix of (g̃jk).
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The convolution metric on the hIF fN is given by

g = h2(u2, . . . , un)ds
2 + f2(s)

n∑

j=2

n∑

j,k=2

g̃jkdujduk + 2ff
′hds⊗

n∑

j=2

hjduj , (6.12)

where hj = ∂h/∂uj . Then, by a direct computation, we find

∇ ∂
∂s

∂

∂s
= (f ′2 + ff ′′ − 1)h






n∑

j=2

g1jhj
∂

∂s
+

n∑

`,t=2

g`th`
∂

∂ut




 , (6.13)

where
∆ = det(gab) = f

2n−2h2G
(
1− f ′2 |gradh|22

)
, G = det(g̃jk). (6.14)

From the definition of gradient, we have

grad f2 = 2ff ′
∂

∂s
, gradh2 = 2h

n∑

j,k=2

g̃jkhk
∂

∂uj
. (6.15)

From (6.12), (6.13) and (6.15), we obtain

〈 ∇ ∂
∂s

∂

∂s
, grad f2 〉

= 2ff ′(f ′2 + ff ′′ − 1)h2




h
n∑

j=2

hjg
1j + ff ′

n∑

j,k=2

gjkhjhk






(6.16)

and

〈 ∇ ∂
∂s

∂

∂s
, gradh2 〉 = 2(f ′2 + ff ′′ − 1)h2×






n∑

j,k,`=2

g1jg1`g̃
k`hjhk +

n∑

j,k,`,t=2

g̃jkg`tgtjhkh`




 .

(6.17)

Equation (6.11) now follows from(6.17) and
∑n
t=2 gtjg

`t = δ`j − g1jg
1`.

Since equation (6.10) is independent of the choice of coordinate system on N , we only
need to verify the equation at any arbitrary point v ∈ N . For simplicity, we choose a local
normal coordinate system {u2, . . . , un} on N about v. At v ∈ N we have

g11 =
f2n−2

∆
,

g1j = −
f2n−3f ′hhj

∆
,

gjj =
f2n−4h2

∆

(
1− f ′2

∑

k 6=j

h2k

)
,

gjk =
f2n−4f ′2h2hjhk

∆
, 2 ≤ j 6= k ≤ n,

(6.18)
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From (6.18) we find

h

n∑

j=2

hjg
1j + ff ′

n∑

j,k=2

gjkhjhk

= h
n∑

j=2

hjg
1j + ff ′

n∑

j=2

gjjh2j + ff
′
∑

j 6=k

gjkhjhk = 0

(6.19)

at v. Combining (6.16) and (6.19) gives equation (6.10). This proves Lemma 6.3.

By applying Theorem 6.1 and Lemma 6.3, we know that I × {v} is a geodesic in hIF fN
for every v ∈ N if and only if we have

(f ′2 + ff ′′ − 1) |gradh|2 = 0, (6.20)

which implies either h is constant on N or f(s) on I satisfies the following differential
equation:

1 = f ′2 + ff ′′. (6.21)

By solving (6.21) we obtain f(s) =
√
s2 + c1s+ c2 for some constants c1 and c2. Hence,

after applying a suitable translation on s, we have f(s) =
√
s2 + c for some real number c.

The converse is easy to verify. �

7. When hI1F fI2 is a flat surface?

Let α be a positive number and k a nonzero real number. We define functions Fk,α and
Hk,β of one variable by

Fk,α(u) =

∫ u

0

dx
√
1 + kx2/α

, (7.1)

Hk,α(u) =

∫ u

0

x1/αdx
√
k + x2/α

. (7.2)

Denote by F−1k,α and H
−1
k,α the inverse functions of Fk,α and Hk,α, respectively.

In this section, we completely classify flat convolution Riemannian surfaces.

Theorem 7.1. Let hI1F fI2 be a convolution Riemannian surface of two open intervals
of the real line. Then hI1F fI2 is a flat surface if and only if one of the following seven
cases occurs:
(1) f and h are positive constants.
(2) f is a positive constant and h = h(t) is a positive linear function or h is a positive
constant and f = f(s) is a positive linear function.

(3) f = s+b for some constant b and h(t) is a positive function with h′(t) 6= 1 or h = t+d
for some constant d and f(s) is a positive function with f ′(s) 6= 1.

(4) f = as+ b, h = ct+ d, where a, b, c, d are constants satisfying 0 < a2c2 < 1.
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(5) f(s) = F−1k,α(s) and h(t) = H−1m,−α−1(t) for some nonzero constants k,m and positive
number α.

(6) f(s) = H−1k,−α(s) and h(t) = F−1m,−α−1(t) for some nonzero constants k,m and real
number α < −1.

(7) f(s) = H−1k,−α(s) and h(t) = H
−1
m,−α−1(t) for some nonzero constants k,m and number

α satisfying 0 > α > −1.

Proof. Without loss of generality, we may assume that I1 and I2 contains the zero. Suppose
that hI1F fI2 is a flat convolution Riemannian surface. Then, according to Proposition
3.3, we have f ′2h′2 6= 1. Since the convolution metric on hI1F fI2 is given by

g = h2(t)ds2 + f2(s)dt2 + 2fhdf ⊗ dh, (7.3)

a direct computation gives

∇ ∂
∂s

∂

∂s
=
(1− f ′2 − ff ′′)h′

f2(1− f ′2h′2)

(
ff ′h′

∂

∂s
− h

∂

∂t

)
,

∇ ∂
∂s

∂

∂t
=
(1− f ′2)h′

(1− f ′2h′2)h

∂

∂s
+
(1− h′2)f ′

(1− f ′2h′2)f

∂

∂t

∇ ∂
∂t

∂

∂t
= −
(1− h′2 − hh′′)f ′

h2(1− f ′2h′2)

(
f
∂

∂s
− f ′hh′

∂

∂t

)
.

(7.4)

The equations in (7.4) and a straightforward long computation imply that the Riemann
curvature tensor of hI1F fI2 satisfies

R
( ∂
∂s
,
∂

∂t

) ∂
∂s
= A(s, t)

∂

∂s
+B(s, t)

∂

∂t
, (7.5)

where

A = −f ′h′
(1− f ′2)hh′′ + (1− h′2 − hh′′)ff ′′

(1− f ′2h′2)2fh
,

B =
(1− f ′2)hh′′ + (1− h′2 − hh′′)ff ′′

(1− f ′2h′2)2f2
.

(7.6)

Thus hI1F fI2 is a flat convolution Riemannian manifold if and only if

(1− f ′2)hh′′ + (1− h′2 − hh′′)ff ′′ = 0 (7.7)

holds.

Case (1): h is constant. In this case, (7.7) reduces to f ′′ = 0. Thus, f = as+ b for some
constants a, b. Hence, f is either a nonzero constant or a linear function in s.

Case (2): f is constant and h is nonconstant. In this case, (7.7) reduces to h′′ = 0. Thus,
h(t) is a linear function in t.
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Case (3): f, h are non-constant and h′′ = 0. In this case, h = ct + d for some constants
c 6= 0, d. Hence, equation (7.7) implies (1− c2)f ′′ = 0. Therefore, either we have c2 = 1 or
f(s) is a linear function.

Case (3.i): If c2 = 1, then without loss of generality we may assume c = 1; and hence
h = t+ d. From (7.7) we know that f = f(s) can be any positive function with f ′ 6= 1.

Case (3.ii): If f(s) is a linear function, then we may put f = as + b and h = ct + d for
some constants a, b, c, d. Since f and h are nonconstant, a and c are nonzero. In order
that the convolution defines a Riemannian metric, we must have a2c2 < 1, according to
Proposition 3.3.

Case (4): f and h are non-constant and f ′′ = 0. In this case, we have either f = s+ b for
some constant b and h(t) any positive function with h′(t) 6= 1 or both f(s) and h(t) are
linear functions such that f ′2h′2 6= 1.

Case (5): f ′′ 6= 0 and h′′ 6= 0. In this case, (7.7) implies

f ′2 − 1

ff ′′
=
1− h′2 − hh′′

hh′′
= α, (7.8)

for some constant α. Hence, we find

αff ′′ − f ′2 + 1 = 0, (7.9)

βhh′′ − h′2 + 1 = 0, (7.10)

where α+ β = −1.
If α = 0, then (7.9) reduces to f ′2 = 1 which is a contradiction, since f ′′ 6= 0.

Therefore, we have α 6= 0. Similarly, (7.10) implies α 6= −1.
In order to solve equation (7.9). Let us put v = f ′(s). Then (7.9) can be written as

vdv

v2 − 1
=

df

αf
. (7.11)

So, after integrating both sides of (7.11) we find

df

ds
= ±

√
1 + kf2/α (7.12)

for some constant k 6= 0.

Case (5.i): α > 0. In this case, solving (7.12) yields Fk,α(f) = ±(s+ c1) for some constant
c1. Thus, we obtain f(s) = F−1k,α(±(s + c1)). Without loss of generality, we may assume

f(s) = F−1k,α(s), by applying a reparametrization of s if necessary.
Since α > 0, we have β = −1 − α < −1. So, after solving (7.10) for h′ in the same

was as f ′, we obtain
dh

dt
= ±

√
m+ h2/|β|

h1/|β|
, |β| = 1 + α, (7.13)
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for some constant m. Since h′′ 6= 0, we have m 6= 0. Thus, from (7.13), we find
Hm,1+α(h) = ±(t+ c2) for some constant c2. Therefore, we find h(t) = H

−1
m,1+α(±(t+c2)).

Without loss of generality, we may assume h(t) = H−1m,1+α(t), by applying a reparametriza-
tion of s if necessary.

Case (5.ii): α < −1. In this case, we have β > 0. Thus, we may solve (7.9) and (7.10) in a
way similar to Case (5.i) to obtain f(s) = H−1k,−α(s), h(t) = F−1m,−α−1(t) for some nonzero
constants k and m.

Case (5.iii): 0 > α > −1. In this case, β = −1 − α < 0. Thus, we may solve (7.9) and
(7.10) as solving h′ in Case (5.i) to obtain f(s) = H−1k,−α(s), h(t) = H−1m,−α−1(t) for some
nonzero constants k and m.
The converse follows from straightforward computation. �
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