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Abstract. In an earlier paper [1], the author introduced the notion of convolution
of Riemannian manifolds. In [1] he also provided some examples and applications
of convolution manifolds. In this paper we use tensor product to construct more
examples of convolution manifolds and investigate fundamental properties of con-
volution manifolds. In particular, we study the relationship between convolution
manifolds and the gradient of their scale functions. Moreover, we obtain a neces-
sary and sufficient condition for a factor of a convolution Riemannian manifold
to be totally geodesic. We also completely classify flat convolution Riemannian
surfaces.

MSC 2000: 53B20, 53C50 (primary); 53C42, 53C17 (secondary)

Keywords: convolution manifold, convolution Riemannian manifold, convolution
metric, conic submanifold, totally geodesic submanifolds, flat convolution Rie-
mannian surface, tensor product immersion

1. Convolution of Riemannian manifolds

Let N; and N be two Riemannian manifolds with Riemannian metrics g; and go, re-
spectively, and let f be a positive differentiable function on N;. The well-known notion of
warped product manifold N1 X ¢y No is defined as the product manifold N; x Ny equipped
with the Riemannian metric given by g; + f2g>. It is well-known that the notion of warped
product plays some important roles in differential geometry as well as in physics (cf. [4]).
The new notion of convolution of Riemannian manifolds introduced in [1] can be regarded
as a natural extension of warped products.
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The notion of convolution products is defined as follows: Let N; and Ny be two Rie-
mannian manifolds equipped with metrics g; and g, respectively. Consider the symmetric
tensor field gy of type (0,2) on the product manifold N7 x Ny defined by

grn = h’g1 + f2g2 + 2fhdf @ dh (1.1)

for some positive differentiable functions f and h on N; and N,, respectively. We denote
the symmetric tensor gfn by ng1 *f g2, which is called the convolution of g1 and g2 (via
h and f). The product manifold N; x Ny equipped with g1 *f g2 is called a convolution
manifold, which is denoted by 5, N1 % ¢No. When the scale functions f, h are irrelevant, we
simply denote , N1 % N2 and g1 *¢ g2 by Ni¥% N2 and g; * go, respectively.

When g1 *¢ g2 is a nondegenerate symmetric tensor, it defines a pseudo-Riemannian
metric on Ny x No with index < 1. In this case, ,g1 *f g2 is called a convolution metric and
the convolution manifold ;, N1 % N3 is called a convolution pseudo-Riemannian manifold.
If the index of the pseudo-Riemannian metric is zero, ,,Ni% s N3 is called a convolution
Riemannian manifold. The author provides in [1] examples and applications of convolution
manifolds.

In Section 2 of this paper we provide basic formulas and definitions. In Section 3
we apply tensor product of Euclidean submanifolds to construct more examples of con-
volution manifolds. In this section we also obtain a necessary and sufficient condition
for a convolution of two Riemannian metrics to be a Riemannian metric. Our condition
is expressed in terms of the length of gradient of the scale functions of the convolution
manifolds. In Sections 4 and 5 we construct examples of submanifolds in Euclidean and in
pseudo-Euclidean spaces whose distance function p satisfies |grad p| = ¢ € [0, 00). We also
investigate general properties of such submanifolds. In Section 6, we obtain a necessary
and sufficient condition for one of the factors of a convolution Riemannian manifold to be
totally geodesic. In the last section, we completely classify flat convolution Riemannian
surfaces.

2. Preliminaries

Let N be a Riemannian manifold equipped with a Riemannian metric g. The gradient
grad ¢ of a function ¢ on N is defined by (grad ¢, X) = X¢ for vector fields X tangent
to V.

If N is a submanifold of a Riemannian manifold M, the formulas of Gauss and Wein-
garten are given respectively by

VxY =VxY +0(X,Y),
Vxé=—A¢X + Dx¢

for vector fields X, Y tangent to N and & normal to N, where V denotes the Rieman-
nian connection on M , o the second fundamental form, D the normal connection, and
A the shape operator of N in M. The second fundamental form and the shape operator
are related by (4¢X,Y) = (0(X,Y),§), where ( , ) denotes the inner product on M as

well as on M. A submanifold in a Riemannian manifold is called totally geodesic if its
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second fundamental form vanishes identically, or equivalently, its shape operator vanishes
identically.

The equation of Gauss of N in M is given by

R(X,Y;Z,W) =R(X,Y; Z, W) + (¢(X, Z),0(Y,W)) (2.3)
—(o(X,W),0(Y, 2)), ‘

for X,Y,Z, W tangent to M, where R and R denote the curvature tensors of N and M,
respectively.

The covariant derivative Vo of ¢ with respect to the connection on TM @ T+M is
defined by

(Vxo)(Y,Z) = Dx (oY, 2)) — o(VxY,Z) — o(Y,VxZ). (2.4)

The equation of Codazzi is
(R(X,Y)Z)" = (Vxo)(Y,Z) = (Vyo)(X, Z), (2.5)

where (R(X,Y)Z)* denotes the normal component of R(X,Y)Z.
Let E™ @ E" denote the tensor product of two Euclidean spaces E™ and E™. Then
E™ @ E" is isometric to E™". The Euclidean inner product ( , ) on E™ @ E" is given by

(a®f,7®0) = (a,7)(B,0), (2.6)

where («,) denotes the Euclidean inner product of o,y € E™ and (3,0) the Euclidean
inner product of 3,0 € E".

We denote E" — {0} by E?. Let E}" denote the pseudo-Euclidean n-space equipped
with a pseudo-Euclidean metric with index ¢. A pseudo-Euclidean space with index one is
known as a Minkowski space-time.

3. Convolution manifolds

The tensor product of two Euclidean submanifolds have been investigated by F. Decruye-
naere, F. Dillen, L. Verstraelen and L. Vrancken in [3]. The following result shows that the
notion of convolution manifolds arises very naturally. It also provides us ample examples
of convolution manifolds.

Proposition 3.1. Let x : (N1,91) — EY CE" and y : (N2, g2) — E* C E™ be isometric
immersions of Riemannian manifolds (N1,¢1) and (Na, g2) into EI and E*, respectively.
Then the map

: Ny x No > E"QE™ =E""; (u,v) = z(u) @ y(v), u€ Ny, v € No, (3.1)

gives rise to a convolution manifold N1 No equipped with

201 *p1 92 = P3g1 + p1g2 + 2p1padpr ® dpa, (3.2)
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where py = /> 51 &7 and py = /Y0 Y2 denote the distance functions of x and y, and

= (x1,...,%,) and y = (Y1,...,Ym) are Euclidean coordinate systems of E" and E™,
respectively.

Proof. For vector fields X,Y tangent to N; and Z, W tangent to No, we have
dp(X)=Xyp=XQ®z, dp(Z)=2Z¢ =2 Z. (3.3)

Also, it follows from the definitions of gradient of p; = |z| that

1
(X,2) = SX (2,2) = p1(Xp1) = prdp1 (X). (3.4)
Similarly, we have
p2dp2(Z) = (Z,y) - (3.5)
From (2.6), (3.3), (3.4) and (3.5), we obtain Proposition 3.1. O

Example 3.1. If y : (N2,92) — EJ* C E™ is an isometric immersion such that y(Ns) is
contained in the unit hypersphere S™~! of E™ centered at the origin. Then the convolution
g1 * g2 of g1 and g2 on the convolution manifold N;% No defined by (3.2) is nothing but
the warped product metric: g; + |z|>go.

Definition 3.1. A convolution ,g1 * rgo of two Riemannian metrics g1 and g is called
degenerate if det(ng1 *f g2) = 0 holds identically.

For X € T(N;) we denote by |X|; the length of X with respect to metric g; on Nj.
Similarly, we denote by |Z|2 for Z € T'(N3) with respect to metric g, on No.

Proposition 3.2. Let ,Ni% ;N2 be the convolution of Riemannian manifolds (N1, g1)

and (Naz, g2) via h and f. Then pg1 %5 g2 is degenerate if and only if we have

(1) the length |grad f|1 of the gradient of f on (N1,91) is a nonzero constant, say ¢, and

(2) the length |grad h|s of the gradient of h on (Na,g2) is the constant given by 1/c, i.e.,
the reciprocal of c.

Proof. By a direct computation we have
det(ng1 *f ga) = f¥"*h*"* (1 — |grad f|7 |grad h]3), (3.6)

where n; and no are the dimensions of Ny and N, respectively. Thus the convolution
ng1* £g2 of g1 and gs is degenerate if and only if |grad f|3 |grad h|3 = 1. Since |grad f|; and
lgrad h|, depend only on N7 and N, respectively, we conclude that |grad f|? |grad h|3 = 1
holds identically if and only if both statements (1) and (2) of Proposition 3.2 hold. O

The following proposition provides a necessary and sufficient condition for a convolution
ng1 *¢ g2 of two Riemannian metrics to be a Riemannian metric.
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Proposition 3.3. Let ,Ni% ;N2 be the convolution of Riemannian manifolds (N1, g1)
and (N2, g2) via h and f. Then pg1 * fg2 is a Riemannian metric on ,N1% N2 if and
only if we have |grad f|; |[grad b2 < 1.

Proof. Follows from equation (3.6) and the fact that the index of g1 * g2 is at most one.
O

4. Examples of submanifolds satisfying |grad p| = ¢

In view of Propositions 3.2 and 3.3, we provide some examples of Riemannian manifolds
equipped with a positive function f satisfying |grad f| = ¢ for some real number ¢ > 0.

Example 4.1. Let x : M — E" be an isometric immersion such that z(M) is contained
in a hypersphere of E™ centered at the origin. Then the distance function p = |z| on
M satisfying |grad p| = 0. In fact, spherical submanifolds are the only submanifolds in
Euclidean space whose distance function has zero gradient.

There exist many submanifolds in Euclidean space whose distance function p satisfies
lgrad p| = ¢ for some real number ¢ € (0,1). Here we provide some such examples.

Example 4.2. For any real numbers a,c with 0 < a < ¢ < 1, the curve

v(s) = (\/ c? — a? ssin (;—__c; In s), V2 — a? scos (\/012—__76; lns),as> (4.1)

in E3 is a unit speed curve satisfying |grad p| = c¢. A direct computation shows that the
curvature function x of the space curve ~ is given by

wfe) = YE2C) (@2

When a = 0, (4.1) defines a planar curve which satisfies the condition |grad p| = ¢ and

whose curvature k equals to /(1 — ¢2)/cs.

Example 4.3. Let v(s;) : I — E™,j = 1,...,k, be k unit speed curves in Euclidean
spaces which satisfy the condition: |grad p;| = ¢, p; = |7;|, for some constant c¢. Then the
product immersion

o IF S B (s ) o (v (1), (58)) (4.3)
is an isometric immersion satisfying the condition |grad p| = ¢, too.
There exist many space-like submanifolds in pseudo-Euclidean spaces whose distance func-

tion p satisfies the condition: |grad p| = ¢ for some real number ¢ > 1 or ¢ < 1. Here we
provide some such examples.



14 Bang-Yen Chen: More on Convolution of Riemannian Manifolds

Example 4.4. Let a,c be two real numbers satisfying ¢ > 1 and ¢ > a > 0. We put
b =+/c? — a?. Then the curve

1 1
(s) = <§81—\/02—1/b (32\/62_1/1’ _ b2>, 581—\/c2—1/b (Szm/b + 52),%) (4.4)

in E? is a unit speed space-like curve which satisfies the condition: |grad p| = ¢ > 1, p = |5|.
Here, the Minkowski metric on E$ is given by g = —dx? + dz3 + dz3.

Example 4.5. For any real numbers a and ¢ with 0 < ¢ < 1, the curve

V1—¢2 vi-¢?
v(s) = <as, Va2 + c? ssin <—a2——|—602 lnS), Vv a? + c? scos (\/(12:_1_662 lns))

in E? is a unit speed space-like curve satisfying the condition: |grad p| = ¢ < 1.

Example 4.6. Let v(s;) : I — E{*, j = 1,...,k be k unit speed space-like curves in
pseudo-Euclidean spaces which satisfy the condition: |gradp;| = ¢ > 1, p; = |y;|. Then
the product immersion

x: IF — E?lli'_'_ftzk; ($1,---y8k) = (1(81)y- -+ 7k(SK)) (4.5)

is a space-like submanifold satisfying the condition |grad p| = ¢ > 1, where the pseudo-

Euclidean space Ef7 7 is given by E{* @ --- @ E}*.

5. Convolution of Euclidean submanifolds

Let z : M — EI be an isometric immersion. We denote the position vector function of M
in E™ by also z. At each point on M, we decompose the position vector z into x = 27 +z+,
where 7 and z1 are the tangential and normal components of x at the point, respectively.
Hence we have |z|? = |27 |? + |zt |2.

In views of Propositions 3.2 and 3.3, we give the following.

Lemma 5.1. Let x : M — E" be an isometric immersion. Then the distance function
p = |z| satisfies |grad p| = ¢ for some constant c if and only if we have |zT| = c|z|. In
particular, if |grad p| = ¢ holds, then ¢ € [0, 1].

Proof. Let eq,...,e,, be alocal orthonormal frame field on M. Then the gradient of p is
given by grad p = Z?:_ll(ejp)ej. Since ejp = (ej, x) /|x|, we find

L (e, x)”
|grad p|? = Z Do (5.1)
= 7l
Therefore, the condition |grad p| = ¢ holds for some constant ¢ if and only if we have
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In particular, since |z7| < |z|, the condition |grad p| = ¢ implies ¢ < 1. O

Definition 5.1. By a cone in E™ with vertex at the origin we mean a ruled submanifold
generated by a family of lines passing through the origin. A submanifold of E™ is called a
conic submanifold with vertex at the origin if it is contained in a cone with vertex at the
origin.

The following result provides a very simple geometric characterization of conic submani-
folds.

Proposition 5.2. Let z : M — E C E" be an isometric immersion. Then x is a conic
submanifold with vertez at the origin if and only if the distance function p = |x| satisfies
the condition: |grad p| = 1.

Proof. Assume that x : M — E" satisfies |gradp| = 1. Then we have 27 = z. Hence

e; = x/|z| is a unit vector field tangent to M. Thus, we obtain Velx = ey and Velx =
Ve, (pe1) = (e1p)er + pVe, e1. Therefore , we find V., e; = 0. Hence, the integral curves of
ey are lines in E™. Moreover, from the fact that the position vector is always tangent to
the submanifold, we also know that the lines given by the integral curves of e; must pass
through the origin. Consequently, x is a conic submanifold with vertex at the origin.

The converse follows from Lemma 5.1. O

The following result provides us a necessary and sufficient condition for the convolution of
two Euclidean submanifolds to be degenerate.

Proposition 5.3. Let x : (N1,91) — E} CE" and y: (Na,g2) — E* CE™ be isometric
immersions of Riemannian manifolds (N1,¢1) and (N2, g2) into EI and E*, respectively,
and let py = |x| and py = |y| be the distance functions of x and y. Then the convolution
p291 *p, G2 15 degenerate if and only if both x and y are conic submanifolds with vertex at
origin.
Proof. Let x : (N1,91) — E} C E" and y : (N2, g2) — EJ* C E™ be isometric immersions
of Riemannian manifolds (N1, g1) and (Na, g2) into EY and E", respectively. If ,, g1 *,, g2
is degenerate, then Proposition 3.2 implies that both |grad p;|; and |grad ps|2 are nonzero
constants satisfying |grad p;|; |grad p2|o = 1. Hence, by applying Lemma 5.1, we obtain
lerad p1|1 = |grad p2|> = 1. Thus, we get 27 = x and y? = y. Therefore, by applying
Proposition 5.2, we conclude that x and y are both conic submanifolds with vertex at the
origin.

The converse follows from Proposition 3.2 and Proposition 5.2. 0J

Definition 5.2. An immersion x : M — E" is said to be transversal at a point p € M if
and only if the position vector x(p) is not tangent to M at p, that is x(p) ¢ dx(T,M). If
x s transversal at every point of M, then the immersion x is said to be transversal.

Corollary 5.4. [3] Let z : (N1,91) = E} CE" andy : (N2, g2) — EJ" C E™ be isometric
immersions of Riemannian manifolds (N1,¢1) and (Na, g2) into EI and E*, respectively.
If either x or y is transversal, then x @ y : N1 X Ny — E" @ E™ is an immersion.
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Proof. Follows from Proposition 5.2 and Proposition 5.3. U
For curves in a Euclidean space, we have the following.

Lemma 5.5. Let~y : I — E" be a unit speed curve and ¢ € (0,1). Then, up to translations

of the arclength function s, we have

(a) [gradp| = c <= [y(s)| = cs.

(b) If n = 2 and |gradp| = ¢, then the curvature function k of v satisfies K*(s) =
(1 —c?)/c2(s*> +b) for some constant b.

Proof. Let v : I — E™ be a unit speed curve and let p(s) = |y(s)| be the distance function
of 4. Then

dp o _ ()7 ()) oy ((8)9(5))
—7'(s) = (s) = 7' (s)- (5.2)
ds v (s)] 2(s)]

Hence, we have |grad p| = ¢ for some constant ¢ € (0, 1) if and only if we have (y(s), y(s)) =

grad p =

2¢ (fy,'y)l/ ?. The later condition is equivalent to p/(s) = ¢. Thus the condition |grad p| =
¢ holds if and only if we have |y(s)|] = cs + b for some constant b. After a suitable
reparametrization of the arclength function s, we have b = 0. Hence we obtain |y(s)| = cs.
This proves statement (a).

Suppose n = 2 and |grad p| = ¢ € (0,1). Then, by applying Proposition 5.2, we obtain
(v, T>2 = c%(y,7), T = v'. Differentiating this equation with respect to arclength function
s yields

k{y,N) =c*—1, (5.3)

where N is a unit normal vector field of v. Thus, by applying Frenet’s formula and (5.3),

we obtain .

K K
K K
Differentiating (5.4) with respect to s and applying (5.3) give

2

AN c
(E) 21 (5-5)
Therefore, by solving (5.5), we get
1 c?
S =T ((s+a)® +b), (5.6)

where a and b are the integrating constants. Thus, we may obtain statement (b) after
applying a suitable translation in s. 0

Theorem 5.6. Let v : I — E" be a unit speed curve in the Euclidean n-space. Then
lgrad p| = ¢ holds for a constant c if and only if one of the following three cases occurs:
(1) v(I) is contained in a hypersphere centered at the origin.

(2) v(I) is an open portion of a line through the origin.
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(3) v(s) =csY (u), c € (0,1), whereY =Y (u) is a unit speed curve in the unit hypersphere
of E™ centered at the origin and u = (V1 — ¢?/c)Ins.

Proof. If ¢ =0 or ¢ = 1, we have case (1) or case (2), respectively. So, let us assume that
lgrad p| = ¢ holds for some ¢ € (0,1). In this case, Lemma 5.5 implies that

v(s) = esY (s) (5.7)
for some Y'(s) with |Y(s)| = 1. From (5.7) we get
7' (s) = cY (s) + csY'(s) (5.8)

which implies 1 = |7/(s)|? = ¢2(1 + s2|Y’(s)|?). Thus, |Y'(s)| = v/1 —c?/(cs). Hence, if
we put u = (V1 —c?/c)Ins, then Y (u) is a unit speed curve in the unit hypersphere of
E" centered at the origin. Thus, we obtain case (3).

The converse can be verified easily. 0]

The same proof as for statement (a) of Lemma 5.5 also gives the following.

Lemma 5.7. Let v : I — EJ' be a unit speed space-like curve in a pseudo-Euclidean space
with index t. Then |grad p| = ¢ holds for a constant c if and only if, up to translations of
the arclength function s, we have |y(s)| = cs.

Theorem 5.8. Let v : I — E} be a unit speed space-like curve in a pseudo-Euclidean

n-space. Then |grad p| = ¢ holds for a constant c if and only if one of the following three

cases occurs:

(1) v(I) is contained in {w € E} : (w,w) = a}, for some real number o # 0,

(2) v(I) is an open portion of a space-like line through the origin.

(3) v(s) = csY (u) for some ¢ # 0,1, where Y =Y (u) is a unit speed curve in {w € Ey :
(w,w) = €1}, (g =1 or =1), u = (V1 —€1e2¢?/c)Ins, and e = 1 or —1, according
to Y (u) is a space-like or time-like unit speed curve.

This theorem can be proved in a way similar to the proof of Theorem 5.6.

Remark 5.1. (Added on August 29, 2001) Recently, the author has completely classified
Riemannian submanifolds in a pseudo-Euclidean space whose distance function p satisfies
the condition: |grad p| = ¢ holds for a constant c¢. For the details, see [2].

6. Total geodesy of convolution Riemannian manifolds

Let us assume that (N1, g1) and (Na, g2) are Riemannian manifolds and f and h are positive
functions on N7 and N satisfying 0 < |grad f|; |grad h|]2 < 1. Then by Proposition 3.3,
we know that the convolution gfn = ng1 *¢ g2 of g1, g2 via f and h is a Riemannian metric
on Ni x Na; thus , N1% §No = (N1 X Na,g¢,p) is a convolution Riemannian manifold.
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If we put
DlzT(Nl), .7-"1={X€D1:Xf:0},

Dy =T(Ns), Fo={Z € Dy:Zh=0}. (6.1)

then Dy, Ds, F1 and F3 can be regarded as distributions on , N1 % yN2 in a natural way.

It follows from the definition of g ; that the distribution ¥; is a normal subbundle of
{u} x N2 in , N1% §N; for u € Ny. Similarly, F; is a normal subbundle of Ny x{v},v € Ny,
in ,Ni% ¢Ns.

Theorem 6.1. Let ,Ni% N2 be a convolution Riemannian manifold. Then, for every

v € Ny, we have

(1) Nyx{v} is Fo-totally geodesic in N1 % §Na, that is, the shape operator AL, of Ny x{v}
in ,N1% ¢ No vanishes identically for every Z € F,

(2) N1 x {v} is a totally geodesic submanifold of , Ni% sNo if and only if

(VxY,grad h*) = |grad h|3 (VxY, grad f*) (6.2)
holds for any vector fields X,Y tangent to N1 x {v}.

Proof. Let X,Y be any two vector fields in D; and Z be a vector field in F,. Then we
have
(X,Z]=VxZ —-VzX =0. (6.3)

Let ( , ) denote the inner product of , N1% §N2. Then

Z(X,Y) = Z(h%q:(X,Y)) = 2(%) (X,Y) = 0. (6.4)

On the other hand, from (6.3), we find

Z(X,Y) = (VzX,Y) + (X,V,Y)
= (VxZ,Y) + (X,Vy Z)

= —(Z,VxY)—(VyX,Z) (6.5)
= -2 <Z, ol (X, Y)>
=-2(A7X,)Y),

where o! is the second fundamental form of Ni x {v} in ,N1% fN2. Combining (6.4)
and (6.5), we conclude that Ny x {v} is F-totally geodesic in ,,Ni% sNo. This proves
statement (1).

From (1.1) it follows that

Vo = grad h — (% |grad h\%) grad f (6.6)

is a normal vector field of Ny x {v} in , N1% §N2, where grad f and grad h are regarded as
vector fields on , N1% yN>. The vector field V5 is perpendicular to the normal subbundle
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F;. Clearly, the normal bundle of Ny x {v} in , N1% N2 is spanned by F» and V,. Hence,
by applying statement (1), we know that N7 x {v} is a totally geodesic submanifold of
nIN1% s N3 if and only if we have

0= (grad h, VxY) — (% grad h|§) (grad f,VxY) . (6.7)
for vector fields X, Y tangent to Ny x {v}. Clearly, condition (6.7) is nothing but condition
(6.2). O
Similarly,

h
Vi =grad f — (? lgrad f|§)gradh (6.8)

is a normal vector field of {u} x Ny in ,, Ny % yN>. Moreover, V; is orthogonal to the normal
subbundle F; and the normal bundle of {u} X Ny in ;N1 % s N is spanned by F; and V;.
In general, V; and V5 are not perpendicular to each other, since

(V1,Va) = fhlgrad f|7 |grad h|3( |grad f|7 |grad k|5 — 1). (6.9)

When the convolution pg; *5 g2 is a Riemannian metric, Proposition 3.3 implies
lgrad f|3 |grad k|3 < 1. In this case, Vi and Vs are orthogonal if and only if either f
or h is a constant function.

We may apply Theorem 6.1 to obtain the following.

Theorem 6.2. Let ,I% N be the convolution Riemannian manifold of an open interval
I of the real line and a Riemannian (n — 1)-manifold N via f and h. Then I x {v} is a
geodesic in pI¥% fN for every v € N if and only if one of the following two cases occurs:
(1) h is a constant function on N.

(2) Up to translations of I, f(s) is given by v/s?> + ¢ for some constant c.

Proof. The proof of this theorem bases on Theorem 6.1 and the following.

Lemma 6.3. Let ,I% ¢N be the convolution Riemannian manifold of an open interval I
and a Riemannian (n — 1)-manifold N via f and h. Denote by s an arclength function of
I. Then we have

9 2
(Vg 55 8radf) =0, (6.10)
(Va g, grad h? ) = 2(f'? + ff" — 1)h? |grad h|*. (6.11)
s Os
Proof of Lemma 6.3. Let {us,...,u,} be a local coordinate system on N. Suppose g =

szﬁ Gjrdu;jdug. Let (g°) be the inverse matrix of (gap), gap the coefficients of g. And
denote by (g;%) the inverse matrix of (g;x).
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The convolution metric on the , /9% ¢N is given by

g=h>(ug, ..., up)ds* + f2(s Z Z Giwdujduy, + 2f f hds@Zh du;,

71=2j,k=2

where h; = Oh/0u;. Then, by a direct computation, we find
0 12 " - 1j 0 S 4t 9
— = —1)h Th; — hy—
Vogs =+ 11" =1 j§:2g i 54 +£§t229 B (7

where
A = det(gap) = f7"72h2G(1 — f? |grad hl3), G = det(g;x).

From the definition of gradient, we have

0

grad f2 = 2f f' —, grad h? = 2h Z g”khkauj

7,k=2
From (6.12), (6.13) and (6.15), we obtain

<Va§gradf2)

=2ff'(f*+ ff" = 1)h’ hZhgg” +ff Z g hihy,

7,k=2

and

0 grad h? ) = 2(f"* + ff" — 1)h®x

(Vg n

n
Z 9V g91ed* hihe + > §7%g" gijhihe
4,k 0=2 4,k 0, t=2

Equation (6.11) now follows from(6.17) and Y ;- , g1, = 5§ — g1;9%

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Since equation (6.10) is independent of the choice of coordinate system on N, we only
need to verify the equation at any arbitrary point v € N. For simplicity, we choose a local

normal coordinate system {us,...,u,} on N about v. At v € N we have
1 f2n—2

A )

glj _ _f2n_3f/hhj
A )

2n—4p2

o= g (12 o),
k#j

gjk _ f2n—4f/2 h2 hj hk

x , 2<j#k<n,

(6.18)



Bang-Yen Chen: More on Convolution of Riemannian Manifolds 21
From (6.18) we find
n n
WY higt + £ g hihy,
Jj=2 J k=2

=h> hig" + fFY TR+ Y g hih =0

=2 =2 ik

(6.19)

at v. Combining (6.16) and (6.19) gives equation (6.10). This proves Lemma 6.3.
By applying Theorem 6.1 and Lemma 6.3, we know that I x {v} is a geodesic in /5 f N
for every v € N if and only if we have

(f?+ ff" —1)|grad h|> = 0, (6.20)

which implies either h is constant on N or f(s) on I satisfies the following differential
equation:

1= f24 ff". (6.21)

By solving (6.21) we obtain f(s) = v/s? + ¢15 + ¢ for some constants ¢; and cy. Hence,
after applying a suitable translation on s, we have f(s) = v/s? 4 ¢ for some real number c.
The converse is easy to verify. O

7. When pI % ¢I, is a flat surface?

Let o be a positive number and k£ a nonzero real number. We define functions F} , and
Hj, 5 of one variable by

Fr o 7.1

o / V14 kmz/o‘ (7.1)
v gl/edy

Hy o(u) = (7.2)

Vk + 22/

Denote by F} k.o L and H, the inverse functions of Fy o and Hy , respectively.
In this sectlon we completely classify flat convolution Riemannian surfaces.

Theorem 7.1. Let pI1% ¢l2 be a convolution Riemannian surface of two open intervals

of the real line. Then pI1% I is a flat surface if and only if one of the following seven

cases occurs:

(1) f and h are positive constants.

(2) f is a positive constant and h = h(t) is a positive linear function or h is a positive
constant and f = f(s) is a positive linear function.

(3) f = s+b for some constant b and h(t) is a positive function with h'(t) # 1 or h = t+d
for some constant d and f(s) is a positive function with f'(s) # 1.

(4) f =as+b,h = ct+d, where a,b,c,d are constants satisfying 0 < a?c? < 1.
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(5) f(s) = Fk_é(s) and h(t) = Hml_a 1(t) for some nonzero constants k, m and positive
number a.

(6) f(s) = Hk_l_a(s) and h(t) = FT;}_a_l(t) for some nonzero constants k,m and real
number a < —1.

(7) f(s) = Hk_l_a(s) and h(t) = H;L _o_1(t) for some nonzero constants k,m and number
a satisfying 0 > a > —1.

Proof. Without loss of generality, we may assume that I; and I5 contains the zero. Suppose
that ,11% ¢I2 is a flat convolution Riemannian surface. Then, according to Proposition
3.3, we have f'2h/? # 1. Since the convolution metric on 1% ¢I> is given by

g = h2(t)ds* + f*(s)dt* + 2fhdf ® dh, (7.3)

a direct computation gives

_ (A= f2 = / 0

s f2(1— fr2n2) (ff " os Os 815)
O L A et VA
¢t (1— f/2h/2)h£ (1— flzh/2)f§

o  (1—W2—mn")f' [, 0 , .0
Vot~ T R e (f%_fhhﬁ)'

(7.4)

The equations in (7.4) and a straightforward long computation imply that the Riemann
curvature tensor of ,I; % ¢l satisfies

8 0\ 0 P P
R<%, at)as A3, 1)+ Bls,t) .. (7.5)

where

(1 _ f/2)hh// + (1 _ h/2 _ hh//)ff//
(1 _ f’2h’2)2fh !

— _f/h/

7.6
N o Y (7.6)
- (1 _ f/2h12)2f2
Thus ,11% ¢1I is a flat convolution Riemannian manifold if and only if
(1—f*)hh" +(1 —KW*—hh")ff' =0 (7.7)

holds.

Case (1): h is constant. In this case, (7.7) reduces to f” = 0. Thus, f = as + b for some
constants a,b. Hence, f is either a nonzero constant or a linear function in s.

Case (2): f is constant and h is nonconstant. In this case, (7.7) reduces to h” = 0. Thus,
h(t) is a linear function in ¢.
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Case (3): f,h are non-constant and A" = 0. In this case, h = ct + d for some constants
¢ # 0,d. Hence, equation (7.7) implies (1 — c?)f” = 0. Therefore, either we have ¢* = 1 or
f(s) is a linear function.

Case (3.i): If ¢ = 1, then without loss of generality we may assume ¢ = 1; and hence
h =t+d. From (7.7) we know that f = f(s) can be any positive function with f’ # 1.

Case (3.ii): If f(s) is a linear function, then we may put f = as+ b and h = ct + d for
some constants a, b, c,d. Since f and h are nonconstant, a and ¢ are nonzero. In order
that the convolution defines a Riemannian metric, we must have a?c? < 1, according to
Proposition 3.3.

Case (4): f and h are non-constant and f” = 0. In this case, we have either f = s+ b for
some constant b and h(t) any positive function with h'(t) # 1 or both f(s) and h(t) are
linear functions such that f'2h'2 # 1.

Case (5): f” # 0 and h” # 0. In this case, (7.7) implies

f/2_1_1_h/2_hh//_

Tk " = q, (7.8)

for some constant «. Hence, we find
aff’' = f?+1=0, (7.9)
Bhh' —h'? +1=0, (7.10)

where o + 8 = —1.

If « = 0, then (7.9) reduces to f’> = 1 which is a contradiction, since f” # 0.
Therefore, we have o # 0. Similarly, (7.10) implies o # —1.

In order to solve equation (7.9). Let us put v = f’(s). Then (7.9) can be written as

vdv  df

P11 af (7.11)

So, after integrating both sides of (7.11) we find

b Tikfe (7.12)

ds

for some constant k # 0.

Case (5.1): a > 0. In this case, solving (7.12) yields Fj o(f) = £(s+c¢1) for some constant
c1. Thus, we obtain f(s) = F; _i(:lz(s + ¢1)). Without loss of generality, we may assume
f(s) = F L(s), by applying a reparametrization of s if necessary.

Since @ > 0, we have 8 = —1 — a < —1. So, after solving (7.10) for A’ in the same

was as f’, we obtain
dh vm + h2/1P]
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for some constant m. Since h” # 0, we have m # 0. Thus, from (7.13), we find
Hp14a(h) = £(t+c2) for some constant cp. Therefore, we find h(t) = H;L}Ha(j:(t—f—cQ)).
Without loss of generality, we may assume h(t) = H, ,n_%ll +o(t), by applying a reparametriza-
tion of s if necessary.

Case (5.ii): o < —1. In this case, we have § > 0. Thus, we may solve (7.9) and (7.10) in a
way similar to Case (5.i) to obtain f(s) = H, * (s), h(t) = Fg}_a_l(t) for some nonzero
constants k and m. 7
Case (5.iii): 0 > a > —1. In this case, 8 = —1 — a < 0. Thus, we may solve (7.9) and
(7.10) as solving A’ in Case (5.i) to obtain f(s) = H, - (s), h(t) = H;L’lfafl(t) for some
nonzero constants k£ and m. ’

The converse follows from straightforward computation. OJ
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