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Abstract. Greatest common divisors and least common multiples of quotients of
elements of integral domains have been investigated by Lüneburg and further by
Jäger. In this paper we extend these results to invertible fractional ideals. We also
lift our earlier study of the greatest common divisor and least common multiple
of finitely generated faithful multiplication ideals to finitely generated projective
ideals.
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0. Introduction

Let R be a ring and K the total quotient ring of R. An integral (or fractional) ideal A of R
is invertible if AA−1 = R, where A−1 = {x ∈ K : xA ⊆ R}.
Let I and J be ideals of R. Then [I : J ] = {x ∈ R : xJ ⊆ I} is an ideal of R. The

annihilator of I, denoted by annI, is [0 : I]. An ideal J of R is called a multiplication ideal
if for every ideal I ⊆ J, there exists an ideal C of R such that I = JC, see [6], [16] and
[23]. Let J be a multiplication ideal of R and I ⊆ J. Then I = JC ⊆ [I : J ]J ⊆ I, so that
I = [I : J ]J. We also note that if J is a multiplication ideal of R, then I ∩ J = [I : J ]J for
every ideal J of R, see [30, Lemma 3.1]. A finitely generated (f.g.) ideal I of R is projective
if and only if I is multiplication and annI = eR for some idempotent e, [31, Theorem 2.1]
and [35, Theorem 11]. If I is a f.g. multiplication (equivalently f.g. locally principal) ideal of
R such that annI is a pure ideal, then I is a flat ideal, [31, Theorem 2.2]. Every projective
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ideal is flat while a f.g. flat ideal I with f.g. annihilator is a projective ideal, [31, Corollary
4.3]. A ring R is called a p.p. ring if every principal ideal is projective, [14]. It is shown, [14,
Proposition 1] that a ring R is p.p. if and only if RM is an integral domain for every maximal
ideal M of R and K, the quotient ring of R, is a von Neumann regular ring. If R is a p.p.
ring, then a f.g. ideal I is projective if and only if it is flat, [31]. More results explaining the
relationships between projective, multiplication and flat f.g. ideals can be found in [31] and
[36]. On the other hand, invertible ideals are projective (and hence multiplication and flat)
while f.g. projective (flat) ideals are either locally zero or locally invertible.
Let R be a ring. Let F (R) be the group of invertible fractional ideals of R and I(R) the

semigroup of invertible integral ideals of R. In Part 1 we investigate the greatest common
divisor and least common multiple of the elements of F (R) and I(R) generalizing the results
of Jäger [21] and Lüneburg [27]. We show that if A,B ∈ F (R), then GCD(A,B) exists
if and only if LCM(A,B) exists and in this case AB = GCD(A,B)LCM(A,B), [Theorem
1.3]. We also prove that GCD(A,B) exists if and only if GCD(CA,CB) exists and that
GCD(CA,CB) = CGCD(A,B), where A,B,C ∈ F (R) [Corollary 1.4]. D. D. Anderson and
D. F. Anderson [8] introduced the generalized GCD (GGCD) domains as those in which the
intersection of any two invertible integral (fractional) ideals is an invertible ideal. Theorem
1.8 gives 40 equivalent conditions for an integral domain to be a GGCD-domain. Let R be
a Bezout domain and K its quotient field. Lüneburg [27] studied the GCD and LCM of
any two non-zero elements of K. Let a, b ∈ K − {0}. Then a = u

v
, b = x

y
, where u, v, x, y ∈

R − {0} and gcd(u, v) = 1 = gcd(x, y). Lüneburg proved that GCD(a, b) = gcd(u,x)
lcm(v,y)

and

LCM(a, b) = lcm(u,x)
gcd(v,y)

. Jäger [21] extended these results to GCD domains. We generalize

Lüneburg’s results to GGCD-domains. We show that if A,B ∈ F (R), then A and B can be
written as A = IJ−1, B = KL−1 where I, J,K, L ∈ I(R) and gcd(I, J) = R = gcd(K,L),
and GCD(A,B) = gcd(I,K)lcm(J, L)−1, and LCM(A,B) = lcm(I,K) gcd(J, L)−1, [Theorem
1.10 and Corollary 1.11]. At the end of Part 1 we study the greatest common divisor and
least common multiple of infinite subsets of F (R) and I(R) [Theorem 1.12].
In [3] we investigated the greatest common divisor and least common multiple of f.g.

faithful multiplication ideals. We also introduced a class of rings which we called general-
ized GCD (GGCD) rings in which the intersection of any two f.g. faithful multiplication
ideals is a f.g. faithful multiplication ideal (equivalently the gcd of any two f.g. faithful
multiplication ideals exists). The purpose of our work in Part 2 is to extend these results
to f.g. projective ideals. Let R be a ring and S(R) the semigroup of f.g. projective ideals
of R. We show that if A,B ∈ S(R) such that gcd(A,B) exists, then gcd(A,B) ∈ S(R).
A similar result holds for lcm(A,B), [Theorem 2.1]. We also prove that if A,B ∈ S(R),
then lcm(A,B) exists if and only if [A : B] ∈ S(R), [Theorem 2.2]. Theorem 2.4 establishes
that for A,B,C ∈ S(R), lcm(CA,CB) exists if and only if lcm(A + annC,B + annC) ex-
ists, and lcm(CA,CB) = Clcm(A+annC,B+annC). Moreover, if gcd(CA,CB) exists, then
gcd(A+annC,B+annC) exists and in this case gcd(CA,CB) = C gcd(A+annC,B+annC).
A relationship between lcm(A,B) and gcd(A,B) where A,B ∈ S(R) is given in Corollary
2.5. We prove that if gcd(A,B) exists for all A,B ∈ S(R) then lcm(A,B) exists for all
A,B ∈ S(R), and AB = gcd(A,B)lcm(A,B). We then call a ring R a G*GCD-ring if
gcd(A,B) exists for all A,B ∈ S(R), generalizing GGCD-ring. We see that all the results of
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[3, Section 3] concerning GGCD rings can easily be extended to G*GCD rings.
In Part 3 we introduce a new class of rings, generalizing the almost Prüfer domains

defined by Anderson and Zafrullah [9]. We call a ring (possibly with zero divisors) an almost
semihereditary ring (AS-ring) if R is a p.p. ring and for all a, b ∈ R, there exists a positive
integer n = n(a, b) such that anR+bnR ∈ S(R). Theorem 3.1 and Proposition 3.2 give several
characterizations and properties of AS-rings.
All rings in this paper are commutative with 1. For the basic concepts, we refer the

reader to [15], [16], [22], [23], and [34].

1. GCD and LCM of invertible ideals

Let R be a ring and F (R) the group of invertible fractional ideals of R and I(R) the semigroup
of invertible integral ideals of R. If I, J ∈ I(R), then I divides J (I|J) if J = IK for some
ideal K of R. The common divisor of I and J which is divisible by every common divisor
of I and J (if such exists) is denoted by gcd(I, J), and lcm(I, J) is defined analogously.
The existence and arithmetic properties of these in the case of finitely generated faithful
multiplication ideals are discussed in [3]. If A,B ∈ F (R), then A divides B if there exists
an integral ideal I of R such that B = IA. By analogy with the definitions of gcd and lcm,
we define GCD(A,B) as a fractional ideal which is a common divisor of A and B divisible
by every common divisor of A and B (if such exists). Similarly, we define LCM(A,B) as a
fractional ideal which is a common multiple of A and B which divides every common multiple
of A and B (if such exists).
If B ∈ F (R) and A is any fractional ideal, then A ⊆ B (and hence A = AB−1B where

AB−1 is an integral ideal) if and only if B|A. Also, if B ∈ F (R) and G is any fractional ideal
such that G|B, then G ∈ F (R). In particular, for all A,B ∈ F (R), if GCD(A,B) exists, then
it is in F (R). Moreover, if A,B ∈ F (R) have least common multiple, say K = LCM(A,B),
then there exists a non-zero divisor x ∈ R such that xA and xB are in I(R) and x2AB
is a common multiple of A and B. Therefore K|x2AB. As x2AB ∈ F (R), K ∈ F (R). Let
I, J ∈ I(R) and A,B ∈ F (R). If gcd(I, J) (resp. lcm(I, J),GCD(A,B),LCM(A,B)) does
exist, then it is unique.
Let X be a fractional ideal of R. Then Xv = (X

−1)−1 is a fractional ideal of R. Suppose
that A,B ∈ F (R) such that (A+B)v ∈ F (R). Then A = Av ⊆ (A+B)v, and B ⊆ (A+B)v,
and hence (A + B)v is a common divisor of A and B. If G is any fractional ideal with
G|A and G|B, then G ∈ F (R) and A + B ⊆ G. Hence (A + B)v ⊆ Gv = G. Therefore,
G|(A + B)v, and (A + B)v = GCD(A,B). Conversely, suppose that G = GCD(A,B) exists.
Then A + B ⊆ G, and hence G−1 ⊆ (A + B)−1 = A−1 ∩ B−1. On the other hand, for all
x ∈ A−1 ∩ B−1, xR ⊆ A−1, and xR ⊆ B−1. Hence A ⊆ x−1R and B ⊆ x−1R. It follows that
x−1R is a common divisor of A and B, and hence x−1R|G. This implies that G−1|xR, and
hence x ∈ G−1. Therefore, A−1∩B−1 ⊆ G−1, and this gives that G−1 = (A+B)−1, and hence
G = (A + B)v. So for all A,B ∈ F (R),GCD(A,B) exists if and only if (A + B)v ∈ F (R),
and in this case GCD(A,B) = (A+B)v.
If A,B ∈ F (R), then it is easily verified that LCM(A,B) exists if and only if A ∩ B ∈

F (R), and in this case LCM(A,B) = A ∩B.
In this section we extend results on greatest common divisors and least common multiples
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of quotients of elements of integral domains given in [21] and [27] to fractional invertible ideals.
The first lemma is mentioned in [3] and the second follows immediately by [3, Theorem 2.2].

Lemma 1.1. Let R be a ring.

1. Suppose A,B,C,D ∈ F (R) with A ⊆ C and B ⊆ D. If GCD(A,B) and GCD(C,D)
exist, then GCD(A,B) ⊆ GCD(C,D).

2. If A1, . . . , An ∈ F (R) and GCD(A1, . . . , An) and GCD(A1, . . . , An−1) exist, then

GCD(A1, . . . , An) = GCD(GCD(A1, . . . , An−1), An).

Lemma 1.2. Let R be a ring and A,B,C ∈ F (R), and I, J,K ∈ I(R). Then

1. LCM(A,B) exists if and only if LCM(CA,CB) exists, and in this case

LCM(CA,CB) = CLCM(A,B).

2. If GCD(CA,CB) exists, then so too does GCD(A,B), and in this case

GCD(CA,CB) = CGCD(A,B).

3. lcm(I, J) exists if and only if lcm(KI,KJ) exists, and in this case

lcm(KI,KJ) = Klcm(I, J).

4. If gcd(KI,KJ) exists, then so too does gcd(I, J), and in this case

gcd(KI,KJ) = K gcd(I, J).

Compare the next result with [3, Theorem 2.1] and [21, Theorem 3].

Theorem 1.3. Let R be a ring and A,B ∈ F (R). Then GCD(A,B) exists if and only if
LCM(A,B) exists, and in this case, AB = GCD(A,B)LCM(A,B).

Proof. Suppose that GCD(A,B) exists. As noted earlier, GCD(A,B)−1 = A−1 ∩ B−1, and
hence A−1 ∩ B−1 ∈ F (R). It follows that LCM(A−1, B−1) exists, and by Lemma 1.2(1),
ABLCM(A−1, B−1) = LCM(A,B) exists.

Conversely, assume that LCM(A,B) exists. Then again by Lemma 1.2(1), LCM(A−1, B−1)
exists, and hence A−1 ∩B−1 ∈ F (R). But A−1 ∩B−1 = (A+B)−1 ∈ F (R). Thus (A+B)v ∈
F (R), and hence GCD(A,B) = (A + B)v. Next, since GCD(A,B)

−1 = LCM(A−1, B−1), we
infer that

ABGCD(A,B)−1 = ABLCM(A−1, B−1) = LCM(A,B),

and hence AB = GCD(A,B)LCM(A,B).

Corollary 1.4. Let R be a ring and A,B,C ∈ F (R). If GCD(A,B) exists, then so too does
GCD(CA,CB), and in this case GCD(CA,CB) = CGCD(A,B).
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Proof. The existence of GCD(CA,CB) follows from Theorem 1.3 and Lemma 1.2(1). Also
it is clear that

[CGCD(A,B)]−1 = C−1GCD(A,B)−1 = C−1LCM(A−1, B−1)

= LCM((CA)−1, (CB)−1) = GCD(CA,CB)−1,

and therefore, CGCD(A,B) = GCD(CA,CB).

Corollary 1.5. Let R be a ring and I, J ∈ I(R). Then:

1. If GCD(I, J) exists, then so too does gcd(I, J), and in this case GCD(I, J) = gcd(I, J).

2. LCM(I, J) exists if and only if lcm(I, J) exists, and in this case LCM(I, J) = lcm(I, J).

Proof. 1. Let G = GCD(I, J). Then G ∈ F (R). Also there exists a non-zero divisor x such
that xG ∈ I(R). Now xG is a common divisor of xI and xJ. Let G′ be an integral ideal which
is a common divisor of xI and xJ. Then x−1G′|I, and x−1G′|J, and therefore x−1G′|G. Hence,
G′|xG, and xG = gcd(xI, xJ). By Lemma 1.2(4), xG = x gcd(I, J), and hence G = gcd(I, J).
2. Let K = LCM(I, J). Then clearly K ∈ I(R), and hence K = lcm(I, J). The converse

is obvious.

We make two remarks on Corollary 1.5. The first is [3, Theorem 2.1]. If I, J ∈ I(R) such
that lcm(I, J) exists, then by Corollary 1.5(2), LCM(I, J) exists and LCM(I, J) = lcm(I, J).
From Theorem 1.3, we infer that GCD(I, J) exists and IJ = GCD(I, J)LCM(I, J), and by
Corollary 1.5(1), we obtain that gcd(I, J) exists and IJ = gcd(I, J)lcm(I, J).
The second remark is that the converse of Corollary 1.5(1) is not true. For example, let

R = k[x2, x3], k a field. then gcd(x2R, x3R) = R, but GCD(x2R, x3R) does not exist. We
can however, state the following.

Proposition 1.6. Let R be a ring. Then:

1. gcd(I, J) exists for all I, J ∈ I(R) if and only if GCD(A,B) exists for all A,B ∈ F (R).

2. lcm(I, J) exists for all I, J ∈ I(R) if and only if LCM(A,B) exists for all A,B ∈ F (R).

Proof. Let A,B ∈ F (R). There exists a non-zero divisor x ∈ R such that xA, xB ∈ I(R).
Suppose that G = gcd(xA, xB). Then G ∈ I(R), and G|xA,G|xB. This implies that x−1G|A,
and x−1G|B. Assume that G′ is a fractional ideal of R such that G′|A,G′|B. Then G′ ∈ F (R)
and xG′|xA, xG′|xB. It follows that xG′|G, and hence G′|x−1G. This shows that x−1G =
GCD(A,B). The converse follows by Corollary 1.5(1). Part (2) is similar.

In the next theorem, we state some Ohm-type properties for GCD and LCM of invertible
fractional ideals.

Theorem 1.7. Let R be a ring and A,B ∈ F (R) such that GCD(A,B) exists. Then:

1. LCM(A,B)k = LCM(Ak, Bk) for all k ∈ N.
2. GCD(A,B)k = GCD(Ak, Bk) for all k ∈ N.
3. [A : B]k = [Ak : Bk] for all k ∈ N.
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Proof. (1) As GCD(A,B) exists, so too does LCM(A,B). There exists a non-zero divisor
x ∈ R such that xA, xB ∈ I(R). By Lemma 1.2, Corollary 1.5(2) and [3, Theorem 2.6(i)],
we have that

xkLCM(A,B)k = (xLCM(A,B))k = LCM(xA, xB)k = lcm(xA, xB)k

= lcm(xkAk, xkBk) = LCM(xkAk, xkBk) = xkLCM(Ak, Bk).

Hence, LCM(A,B)k = LCM(Ak, Bk).
(2) By Theorem 1.3 and part (1), we get that GCD(A,B)−1 = LCM(A−1, B−1), and

hence
GCD(A,B)k = (GCD(A,B)−1)−k = LCM(A−1, B−1)−k

= (LCM(A−1, B−1)k)−1 = LCM(A−k, B−k)−1 = GCD(Ak, Bk).

(3) This follows since LCM(A,B) = [A : B]B, and LCM(Ak, Bk) = [Ak : Bk]Bk.

D. D. and D. F. Anderson [8] introduced the generalized GCD domains (GGCD-domains) as
those for which the intersection of any two invertible integral ideals of is invertible. Equiva-
lently, the intersection of any two invertible fractional ideals is invertible.
By combining Theorem 1.3 and Proposition 1.6, we can state the next result summarizing

several equivalent criteria of [3, Theorem 3.1], [8, Theorem 1], [21, Theorem 5], and [24,
Theorem 1], and including some extensions which follow by induction.

Theorem 1.8. Let R be an integral domain and K its quotient field. Then the following are
equivalent.
1. R is a GGCD-domain.

2. For all a, b ∈ R− {0}, aR ∩ bR ∈ I(R).

3. For all a, b ∈ K − {0}, aR ∩ bR ∈ F (R).

4. For all a, b ∈ R− {0}, lcm(aR, bR) exists.

5. For all a, b ∈ R− {0}, gcd(aR, bR) exists.

6. For all a, b ∈ K − {0}, LCM(aR, bR) exists.

7. For all a, b ∈ K − {0}, GCD(aR, bR) exists.

8. For all a, b ∈ R− {0}, (aR + bR)v ∈ I(R).

9. For all a, b ∈ K − {0}, (aR + bR)v ∈ F (R).

10. For all a, b ∈ R− {0}, [aR : bR] ∈ I(R).

11. For all a, b ∈ K − {0}, [aR : bR] ∈ I(R).

12. For all a1, . . . , an ∈ R− {0},
n⋂
i=1

aiR ∈ I(R).

13. For all a1, . . . , an ∈ K − {0},
n⋂
i=1

aiR ∈ F (R).

14. For all a1, . . . , an ∈ R− {0}, lcm(a1R, . . . , anR) exists.

15. For all a1, . . . , an ∈ R− {0}, gcd(a1R, . . . , anR) exists.

16. For all a1, . . . , an ∈ K − {0}, LCM(a1R, . . . , anR) exists.
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17. For all a1, . . . , an ∈ K − {0}, GCD(a1R, . . . , anR) exists.

18. For all a1, . . . , an ∈ R− {0}, (
n∑
i=1

aiR)v ∈ I(R).

19. For all a1, . . . , an ∈ K − {0}, (
n∑
i=1

aiR)v ∈ F (R).

20. For all A,B ∈ F (R), LCM(A,B) exists.

21. For all A,B ∈ F (R), GCD(A,B) exists.

22. For all A,B ∈ F (R), (A+B)v ∈ F (R).

23. For all I, J ∈ I(R), lcm(I, J) exists.

24. For all I, J ∈ I(R), gcd(I, J) exists.

25. For all I, J ∈ I(R), (I + J)v ∈ I(R).

26. For all A,B ∈ F (R), [A : B] ∈ I(R).

27. For all I, J ∈ I(R), [I : J ] ∈ I(R).

28. For all A1, . . . , An ∈ F (R),
n⋂
i=1

Ai ∈ F (R).

29. For all A1, . . . , An ∈ F (R), LCM(A1, . . . , An) exists.

30. For all A1, . . . , An ∈ F (R), GCD(A1, . . . , An) exists.

31. For all A1, . . . , An ∈ F (R), (
n∑
i=1

Ai)v ∈ F (R).

32. For all I1, . . . , In ∈ I(R),
n⋂
i=1

Ii ∈ I(R).

33. For all I1, . . . , In ∈ I(R), lcm(I1, . . . , In) exists.

34. For all I1, . . . , In ∈ I(R), gcd(I1, . . . , In) exists.

35. For all I1, . . . , In ∈ I(R), (
n∑
i=1

Ii)v ∈ I(R).

36. For all A ∈ F (R), R ∩ A ∈ I(R).

37. For all A ∈ F (R), LCM(R,A) exists.

38. For all A ∈ F (R), GCD(R,A) exists.

39. For all A ∈ F (R), (R + A)v ∈ F (R).

40. For all A ∈ F (R), [R : A] ∈ I(R).

The next result is a version of the Chinese Remainder Theorem for invertible fractional ideals.
Compare with [3, Corollary 3.3].

Corollary 1.9. Let R be a GGCD-domain. Then for all A,B,C ∈ F (R),

1. LCM(GCD(A,B), C) = GCD(LCM(A,C),LCM(B,C)).

2. GCD(A,LCM(B,C)) = LCM(GCD(A,B),GCD(A,C)).
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Proof. (1) Let G = GCD(A,B). Then by Corollary 1.4, GCD(AG−1, BG−1) = R, and hence
by Lemma 1.1,

LCM(G,C) = LCM(G,C)GCD(AG−1, BG−1)

= GCD(AG−1LCM(G,C), BG−1LCM(G,C))

= GCD(LCM(AG−1G,AG−1C),LCM(BG−1G,BG−1C))

⊆ GCD(LCM(A,AA−1C),LCM(B,BB−1C))

= GCD(LCM(A,C),LCM(B,C)).

The other inclusion is clearly true, and (1) follows.
(2) Using the fact that if R is a GGCD-domain then for all X, Y ∈ F (R),

GCD(X, Y )−1 = LCM(X−1, Y −1), and LCM(X, Y )−1 = GCD(X−1, Y −1),

and part (1), we have that

LCM(GCD(A,B),GCD(A,C)) = (LCM(GCD(A,B),GCD(A,C))−1)−1

= (GCD(GCD(A,B)−1,GCD(A,C)−1)−1

= GCD(LCM(A−1, B−1),LCM(A−1, C−1))−1

= LCM(A−1,GCD(B−1, C−1))−1

= LCM(A−1,LCM(B,C)−1)−1

= GCD(A,LCM(B,C)),

as required.

Let R be a GGCD-domain. Let A ∈ F (R). Then A = IJ−1 for some I, J ∈ I(R) with
gcd(I, J) = R. For example, there is a non-zero divisor x ∈ R such that xA ∈ I(R). Letting
D = gcd(xR, xA), we may take I = xAD−1 and J = xD−1.
In the next two results, we use this observation to calculate the GCD and LCM of

invertible fractional ideals in terms of gcd and lcm of invertible integral ideals, generalizing
Lüneburg’s results, [27, Theorems 1 and 5]. See also [21, Theorem 8].

Theorem 1.10. Let R be a GGCD-domain and A,B ∈ F (R) such that A = IJ−1 and
B = KL−1 where I, J,K, L ∈ I(R) and gcd(I, J) = R = gcd(K,L). Then

GCD(A,B) = gcd(I,K)lcm(J, L)−1.

Proof. It is enough to show that JLGCD(A,B) = gcd(I,K) gcd(J, L). It follows from Corol-
laries 1.4 and 1.5 that

JLGCD(A,B) = JLGCD(IJ−1, KL−1) = GCD(IL, JK) = gcd(IL, JK),

and by Lemma 1.1,

gcd(IL, JK) ⊆ gcd(gcd(I,K)L, gcd(I,K)J) = gcd(I,K) gcd(J, L).
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On the other hand, let G = gcd(IL, JK). As gcd(I, J) = R = gcd(K,L), we infer from [3,
Proposition 2.3] that

gcd(I,K) = gcd(I,KJ), gcd(J, L) = gcd(J, IL),

gcd(K, I) = gcd(K, IL), gcd(L, J) = gcd(L,KJ).

Using these four equalities, [3, Proposition 2.3], and Lemma 1.1 we get that

gcd(I,K) gcd(J, L) = gcd(I,KJ) gcd(J, IL)

⊆ gcd(gcd(I,K), KJ) gcd(gcd(J, L), IL)

= gcd(gcd((K, IL), KJ) gcd(gcd(L,KJ), IL)

= gcd(K, gcd(IL,KJ)) gcd(gcd(L, gcd(IL,KJ))

= gcd(K,G) gcd(L,G) = gcd(K gcd(L,G), G gcd(L,G))

= gcd(gcd(KL,KG), gcd(GL,G2)) = gcd(gcd(KL,KG), GL,G2)

= gcd(gcd(GL,GK), KL,G2) = gcd(G gcd(L,K), KL,G2)

= gcd(G,KL,G2) = gcd(KL,G) = gcd(KL gcd(I, J), G)

= gcd(gcd(IKL, JKL), G) ⊆ gcd(gcd(IL, JK), G) = G.

This finishes the proof of the theorem.

Corollary 1.11. Let R be a GGCD-domain and A,B as in Theorem 1.10. Then

LCM(A,B) = lcm(I,K) gcd(J, L)−1.

Proof. From Theorem 1.3 we have that AB = GCD(A,B)LCM(A,B), and from Theorem
1.10 we obtain that

LCM(A,B) = ABGCD(A,B)−1 = IJ−1KL−1(gcd(I,K)lcm(J, L)−1)−1

= IK gcd(I,K)−1J−1L−1lcm(J, L) = lcm(I,K) gcd(J, L)−1,

and the result is proved.

Let R be a ring and S a non-empty subset of I(R). We define G = gcd(S) as an integral
ideal which is a common divisor of all elements of S and which is divisible by all common
divisors of all elements of S. In the analogous way we define lcm(S), and if S ⊆ F (R), we
also define GCD(S),LCM(S) analogously.
Any finite set S of invertible integral ideals has an invertible common divisor and common

multiple (for example R,
∏
I∈S
I respectively). Any finite set S of n invertible fractional ideals

also has an invertible common divisor and common multiple. For example, there exists a
non-zero divisor x such that for all A ∈ S, xA ∈ I(R), so x−1R and xn

∏
A∈S
A are invertible

common divisor and common multiple of S respectively.
However, if S is an infinite set of invertible ideals, then it is not necessarily true that S

has an invertible common divisor or a common multiple. Therefore, in the next result we
assume the existence of invertible common divisor and common multiple. It is not difficult
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to see that if S ⊆ F (R), then GCD(S) exists if and only if (
∑
A∈S
A)v ∈ F (R), and in this

case, GCD(S) = (
∑
A∈S
A)v. Also, LCM(S) exists if and only if

⋂
A∈S
A ∈ F (R), and in this case

LCM(S) =
⋂
A∈S
A. GCD(S) exists if and only if LCM(S) exists, and in this case, GCD(S)−1 =

LCM(S−1), and LCM(S) = GCD(S−1), where S−1 = {A−1 : A ⊆ S}.

The final result of this section should be compared with [21, Theorem 9].

Theorem 1.12. Let R be a ring. The following are equivalent.

1. For all non-empty S ⊆ F (R) with common divisor, GCD(S) exists.

2. For all non-empty S ⊆ F (R) with common multiple in F (R), LCM(S) exists and is
in F (R).

3. For all non-empty S ⊆ I(R) with common multiple in I(R), lcm(S) exists and is in
I(R).

4. For all non-empty S ⊆ I(R) with common divisor, gcd(S) exists.

Proof. (1) ⇒ (2). Let S ⊆ F (R) such that S has a common multiple in F (R). Then S−1

has a common divisor in F (R), and hence GCD(S−1) exists in F (R). But GCD(S−1) =

(
∑
A∈S
A−1)v ∈ F (R). It follows that

⋂
A∈S
A = (

∑
A∈S
A−1)−1 ∈ F (R), and hence LCM(S) exists.

(2) ⇒ (1), Let S ⊆ F (R) such that S has a common divisor. Then S−1 has a common

multiple in F (R), and therefore LCM(S−1) exists. It follows that
⋂
A∈S
A−1 ∈ F (R), and hence

(
∑
A∈S
A)−1 ∈ F (R). This implies that (

∑
A∈S
A)v ∈ F (R), and hence GCD(S) exists.

(2)⇒ (3) is obvious.
(3)⇒ (4). Let S ⊆ I(R), and letH be the set of all common divisors of S. ThenH ⊆ I(R)

and H is non-empty as R ∈ H. Also, H has a common multiple (in fact every J ∈ S is a
common multiple of H). Hence, H has a least common multiple, K ∈ I(R). Clearly, K is a
common divisor of S. Let K ′ be any common divisor of S. Then K ′ ∈ I(R) and K ′ ∈ H, so
that K ′|K. Hence K = gcd(S).
(4)⇒ (1). Let S ⊆ F (R) and let X be a common divisor of S. Then X ∈ F (R). For each

A ∈ S, there exists IA ∈ I(R) such that A = IAX. Let M = {IA : A ∈ S}. Let G = gcd(M).
Then G|X−1A and hence XG|A, for all A ∈ S. Assume now that G′ is another common
divisor of S. Then G′ ∈ F (R), and X−1G′|X−1A, so that X−1G′|IA for all A ∈ S. There
exists a non-zero divisor y ∈ R such that yX−1G′ ∈ I(R). Also yX−1G′|yIA for all A ∈ S.
By the assumption, gcd{yIA : A ∈ S} exists, and also

gcd{yIA : A ∈ S} = y gcd{IA : A ∈ S} = yG.

It follows that yX−1G′|yG, and hence X−1G′|G. This implies that G′|XG, and this shows
that XG = GCD(S).

It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout
domain, and that a Prüfer domain need not be a GCD-domain. Clearly any GCD-domain is
a GGCD-domain, and any Prüfer domain is a GGCD-domain.
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We define a pseudo-generalized GCD domain (PGGCD-domain) to be an integral domain
in which every non-empty set of invertible ideals which has a common divisor has a greatest
common divisor. Theorem 1.12 gives several equivalent conditions. Dedekind domains are
PGGCD-domains. Every PGGCD-domain is a GGCD-domain, but the converse is not true.
Let E be the ring of entire functions, and let P be a maximal free ideal of E. Set K = E/P,
whereK is a proper extension of the field C of complex numbers. Let t ∈ K be transcendental
over C and let V0 be a non-trivial valuation domain on C(t). Then V0 can be extended to a non-
trivial valuation domain V on K. Define φ : E → K = E/P as a canonical homomorphism
and R = φ−1(V ), see [15, Example 8.4.1]. Then R is a Prüfer domain and hence a GGCD-
domain. P is a noninvertible divisorial ideal of R. Hence P and P−1 are noninvertible
(and hence not f.g.) integral (fractional) ideals of R. If X is a set of generators of P, and

S = {p−1R : p ∈ X}, then R is an invertible common multiple of S, but
⋂
p∈X
p−1R = P−1 is

not in F (R), and hence LCM(S) does not exist. This shows that R is not a PGGCD-domain.
A PGGCD-domain need not be a GCD domain. For example let R be the ring of

integers of the quadratic field Q(
√
d), where d is a square-free non-zero integer. Then R is a

Dedekind domain ([16], [34]) and hence is a PGGCD-domain. R is a Bezout domain if and
only if d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}, see [34]. Therefore if we take d < 0
outside the previous set, then R is a Prüfer domain but not a Bezout domain, and hence not
a GCD-domain.

2. gcd and lcm of projective ideals

A projective module is characterized, see [23], as a direct summand of a free module. If R
is an integral domain and A a fractional ideal of R, then A is invertible if and only if A is a
projective R−module, see [16]. It is also well known that projective ideals are multiplication,
see [36]. The converse is studied for the finitely generated case in [31], [35], and [36]. It is
proved that a f.g. ideal I of R is a projective ideal if and only if I is multiplication and
annI = eR for some idempotent e, see [31, Theorem 2.1] and [35, Theorem 11]. Let R be a
ring and M a maximal ideal of R. If I is a f.g. projective ideal of R, then IM is principal,
[31], and ann(IM) = eRM for some idempotent e. As RM is local, either e or 1− e is a unit
in RM . If e is a unit, then IM = 0M . Otherwise 1− e is a unit and hence e = 0. In this case,
IM is invertible. For details about projective ideals, see also [13], [14], [20], and [33].
In [3] we investigated the gcd and lcm of f.g. faithful multiplication ideals of a ring R.

In this note we generalize these results to f.g. projective ideals. Let R be a ring and S(R)
the semigroup of f.g. projective ideals of R.
This first result should be compared with [3, Lemmas 1.4 and 1.5].

Theorem 2.1. Let R be a ring and A,B ∈ S(R). Then

1. If gcd(A,B) exists, then it is in S(R).

2. If lcm(A,B) exists, then it is in S(R).

Proof. For (1), Suppose that G = gcd(A,B). Let annA = e1R and annB = e2R for some
idempotents e1 and e2. Then

ann(A+B) = annA ∩ annB = e1R ∩ e2R = e1e2R = eR,
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and e is idempotent. It follows that eA = 0 = eB, and hence (1−e)R is a common divisor of A
and B. Hence (1− e)R|G, and therefore eG = 0. This shows that ann(A+B) = eR ⊆ annG.
The other inclusion is obviously true, and hence annG = ann(A + B). As G|A, there exists
an ideal I of R such that A = IG. It follows that

A+ annA = IG+ annA = (I + annA)(G+ annA),

and therefore G + annA|A + annA. Since A + annA = [A2 : A], [11, p.430] and [2, Lemma
1.2], we have from [35, Corollary 1 of Theorem 10] that A + annA is a f.g. multiplication
ideal. Also, it is easy to see that

ann(A+ annA) = annA ∩ ann(annA) = 0,

i.e. A + annA is a f.g. faithful multiplication ideal of R. It follows from [3, Lemma 1.4]
that G + annA is a f.g. faithful multiplication ideal. Similarly, G + annB is a f.g. faithful
multiplication ideal. Also

(G+ annA) + (G+ annB) = (G+ annA) + annB = [(G+ annA)B : B]

is a f.g. faithful multiplication ideal of R [35, Corollary 1 of Theorem 10]. Next, since
annA + annB = e1R + e2R = (e1 + e2 − e1e2)R, which is f.g. multiplication, we infer from
[4, Theorem 2.1 ] that

(G+ annA) ∩ (G+ annB) = G+ (annA ∩ annB) = G+ ann(A+B) = G+ annG.

It follows by [35, Lemma 7], [4, Theorem 2.3] that G+annG is multiplication. But G∩annG =
0, for if x ∈ G ∩ annG, then x ∈ G and x = re, r ∈ R, eG = 0. This implies that
x = re = re2 ∈ eG = 0. It follows from [35, Theorem 8], [4, Theorems 3.6 and 4.2] that G
is a multiplication ideal of R. Finally, since A + B ⊆ G and ann(A + B) = annG, it follows
from [25, Corollary 1 of Lemma 1.5] that G is f.g. and by [31, Theorem 2.1], G ∈ S(R), and
part (1) of the theorem is concluded.
For part (2), let K = lcm(A,B). We first show that annK = ann(AB). AB ⊆ K since

K|AB, so annK ⊆ ann(AB). Let ann(AB) = eR for some idempotent e. As A|K, we have
eK ⊆ K ⊆ A. Also, eKA ⊆ eBA = 0. It follows that eK ⊆ A ∩ annA = 0, and hence
ann(AB) = eR ⊆ annK. This shows that annK = ann(AB). Next, since K|AB, we have
that K + annK|AB + annK. But

AB + annK = AB + ann(AB) = [A2B2 : AB]

which is a f.g. multiplication ideal, see [11, p. 430] and [35, Corollary 1 of Theorem 10].
Moreover, it is clearly faithful. Therefore by [3, Lemma 1.4], we have that K+annK is a f.g.
faithful multiplication ideal of R. Finally, since K ∩ annK = 0, we infer from [35, Lemma 7]
that K is multiplication (see also [4, Theorems 3.6 and 4.2] and [12, Theorem 2.2]). Next, as
AB ⊆ K and ann(AB) = annK, we get from [25, Corollary 1 of Lemma 1.5] that K is f.g.,
and by [31, Theorem 2.1], K ∈ S(R). This finishes the proof of the theorem.

Recall that a ring R is called an arithmetical ring if every f.g. ideal of R is multiplication.
R is a semihereditary ring if every f.g. ideal of R is projective. R is an f.f. ring if every f.g.
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ideal of R is flat. A f.g. ideal I is flat if I is multiplication and annI is a pure ideal, [31].
It is proved [30, Theorem 2.5] that if R is an arithmetical ring and A,B are f.g. ideals of
R such that annB is f.g., then [A : B] is f.g. (and hence multiplication). From this result,
it follows immediately that if R is a semihereditary ring and A,B are f.g. ideals of R, then
[A : B] is f.g. (and hence projective). These results have been generalized to modules by P.
F. Smith [35, Theorem 10 and its two corollaries]. On the other hand, the Ohm property,
(A ∩ B)k = Ak ∩ Bk, for ideals A,B of a ring R is proved for ideals of Prüfer domains [17]
and semihereditary rings [33].
It is further known that if A and B are f.g. multiplication (projective, flat) ideals of

R such that A + B is multiplication (projective, flat) then this Ohm property holds, see
[29], [32] and [28] respectively. This result has been generalized for multiplication ideals (not
necessarily f.g.) in [1]. We proved in [3] that if A,B are f.g. faithful multiplication ideals of
a ring R such that A ∩ B is f.g. faithful multiplication (which is equivalent to the existence
of lcm(A,B)), then this Ohm property is satisfied.
In the next result we generalize the above results and more to f.g. projective ideals. It

enables simpler proofs of most of the results in [24].
Let R be a ring and A,B ∈ S(R). Then lcm(A,B) exists (and hence by Theorem 2.1,

lcm(A,B) ∈ S(R)) if and only if A ∩B ∈ S(R); and in this case, lcm(A,B) = A ∩B.

Theorem 2.2. Let R be a ring and A,B ∈ S(R) such that lcm(A,B) exists. Then the
following are true.

1. [A : B] ∈ S(R).

2. (A ∩B)k = Ak ∩Bk for all k ∈ N.
3. lcm(A,B)k = lcm(Ak, Bk) for all k ∈ N.
4. [A : B]k = [Ak : Bk] for all k ∈ N.
5. C(A ∩B) = CA ∩ CB for every C ∈ S(R).

6. Clcm(A,B) = lcm(CA,CB) for every C ∈ S(R).

Proof. (1) By [35, Corollary 2 of Theorem 10], [A : B] is a multiplication ideal. We now show
that ann[A : B] = ann(A + annB). Obviously, ann[A : B] ⊆ ann(A + annB). On the other
hand let x ∈ ann(A+ annB). Then xA = 0, and x ∈ ann(annB). For each h ∈ [A : B], hx ∈
annB ∩ ann(annB) = 0. Hence x ∈ ann[A : B], and therefore ann(A + annB) ⊆ ann[A : B].
It follows from [25, Corollary 1 of Lemma 1.5] that [A : B] is f.g. and hence by [31, Theorem
2.1], [A : B] ∈ S(R).
(2) It is enough to prove the result locally. Thus we may assume the R is a local ring. If

A = 0 or B = 0, the result is trivial. Let A and B be invertible. Then by [3, Theorem 2.6],

(A ∩B)k = lcm(A,B)k = lcm(Ak, Bk) = Ak ∩Bk.

(3) By (2), lcm(A,B)k = (A ∩ B)k = Ak ∩ Bk. Hence Ak ∩ Bk ∈ S(R), and therefore
lcm(Ak, Bk) exists and lcm(A,B)k = lcm(Ak, Bk).
(4) Again, it suffices to prove the result locally. Thus we may assume that R is a local

ring. If B = 0, then both sides of the relation equal R. Suppose that B is invertible (and
hence Bk is invertible). As A ∩ B = [A : B]B and Ak ∩ Bk = [Ak : Bk]Bk, we infer that
[A : B]kBk = [Ak : Bk]Bk, and therefore [A : B]k = [Ak : Bk].
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(5) Again, we prove the result locally. If C = 0, the result is trivial. Assume that C is
invertible. It follows from [3, Theorem 2.2(i)] that

C(A ∩B) = Clcm(A,B) = lcm(CA,CB) = CA ∩ CB.

(6) Clcm(A,B) = C(A ∩ B) = CA ∩ CB, and therefore CA ∩ CB ∈ S(R). Hence,
lcm(CA,CB) exists and Clcm(A,B) = lcm(CA,CB).

Theorem 2.3. Let R be a ring and A,B ∈ S(R). Then

1. lcm(A,B) exists if and only if lcm(A+ann(AB), B+ann(AB)) exists, and in this case,

lcm(A+ ann(AB), B + ann(AB)) = lcm(A,B) + ann(AB).

2. If G = gcd(A,B) exists, then so too does gcd(A+ann(AB), B+ann(AB)), and in this
case,

gcd(A+ ann(AB), B + ann(AB)) = G+ ann(AB).

3. If G = gcd(A,B) exists, then so too does gcd(A+ annG,B + annG), and in this case,

gcd(A+ annG,B + annG) = G+ annG.

Proof. First of all we observe that A+ ann(AB) = [A2B : AB], and B + ann(AB) = [AB2 :
AB], and these are f.g. faithful multiplication ideals (and hence f.g. projective).
(1) Suppose that K = lcm(A,B) exists. Then ann(AB) = annK by Theorem 2.1. Also,

K + annK = [K2 : K] is a f.g. faithful multiplication ideal and a common multiple of
A + annK and B + annK. Assume that K ′ is another common multiple of A + annK and
B + annK. Then K ′K is a common multiple of AK and BK, and by Theorem 2.2(2),

K ′K ⊆ AK ∩BK ⊆ A2 ∩B2 = (A ∩B)2 = K2.

It follows that K ′ ⊆ K + annK, and hence (K + annK)|K ′, and this shows that

K + annK = lcm(A+ annK,B + annK).

Suppose now that lcm(A + ann(AB), B + ann(AB)) exists. Then by Theorem 2.2(6),
lcm(A2B,AB2) exists, and again by Theorem 2.2(1), [A2B : AB2] ∈ S(R). We now show
that [A2B : AB2] = [A : B]+ann(AB). Obviously [A2B : AB2] ⊇ [A : B]+ann(AB). On the
other hand, let y ∈ [A2B : AB2]. Then yB(AB) ⊆ A(AB), and hence yB ⊆ A + ann(AB).
It follows that y ∈ [A + ann(AB) : B]. But A + ann(AB) is a f.g multiplication ideal. Thus
by [4, Corollary 1.2],

y ∈ [A : B] + [ann(AB) : B] = [A : B] + [[0 : AB] : B]

⊆ [A : B] + [0 : AB2] ⊆ [A : B] + [0 : A2B2] = [A : B] + ann(A2B2).

As AB ∈ S(R), we have by [32, Corollary 2.4] that ann(AB) = ann(A2B2), and therefore
y ∈ [A : B] + ann(AB), and hence, [A2B : AB2] ⊆ [A : B] + ann(AB). Next, we prove that
[A : B] ∩ ann(AB) = annB. Obviously, [A : B] ∩ ann(AB) ⊇ annB. On the other hand,
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let x ∈ [A : B] ∩ ann(AB). Then xB ⊆ A, and x ∈ ann(AB) = eR for some idempotent
e. Hence x = re, r ∈ R, and eAB = 0. It follows that (reB)(eB) ⊆ eAB = 0, and hence
x ∈ ann(B2). But B is projective and annB = ann(B2), [32, Corollary 2.4]. It follows that
[A : B] ∩ ann(AB) ⊆ annB. Since each of [A : B] + ann(AB) and [A : B] ∩ ann(AB) is a
projective ideal (and hence multiplication), it follows from [35, Theorem 8] that [A : B] is
multiplication. See also [4, Theorems 3.6 and 4.2]. As we mentioned in the proof of Theorem
2.2(1), ann[A : B] = ann(A + annB), and hence by [25, Corollary of Lemma 1.5], [A : B] is
f.g., and hence [A : B] ∈ S(R). Finally, as A ∩ B = [A : B]B, we see that A ∩ B ∈ S(R), so
that lcm(A,B) exists, and the first part of the theorem is proved.
(2) Let G = gcd(A,B). Then G + ann(AB) is a f.g. faithful multiplication ideal and a

common divisor of A + ann(AB) and B + ann(AB). Let G′ be another common divisor of
A + ann(AB) and B + ann(AB). Then G′ is a f.g. faithful multiplication ideal [3, Lemma
1.4]. As A ⊆ G′ and B ⊆ G′, we have that G′ is a common divisor of A and B, and hence
G′|G. It follows that G ⊆ G′. But ann(AB) ⊆ G′. Thus G + ann(AB) ⊆ G′, and hence
G′|G+ ann(AB). This shows that

G+ ann(AB) = gcd(A+ ann(AB), B + ann(AB)).

(3) From the proof of Theorem 2.1(1), we know that G + annG is a f.g. faithful multi-
plication ideal of R (and hence is projective). From [35, Corollary 1 of Theorem 10] and [31,
Corollary 3.4], we have that the following ideals are f.g. projective:

A+ annA = [A2 : A],

A+ annB = [AB : B],

(A+ annA) + (A+ annB) = (A+ annA) + annB = [(A+ annB)B : B].

We infer from [35, Lemma 7] and [30, Corollary 3.4] that

A+ annG = A+ ann(A+B) = A+ (annA ∩ annB) = (A+ annA) ∩ (A+ annB)

is a f.g. multiplication ideal of R, and hence by [31, Theorem 2.1], A + annG ∈ S(R).
Similarly, B + annG ∈ S(R). Clearly, G + annG is a common divisor of A + annG and
B + annG. Suppose that G′ is another common divisor of A + annG and B + annG. Then
from the proof of Theorem 2.1(1), we have that G′ + ann((A + B) + annG) = G′ is a
multiplication ideal of R. Moreover, G′ is a common divisor of A and B, and hence G′|G.
This implies that G ⊆ G′. But annG ⊆ G′. Hence G + annG ⊆ G′, and G′|G + annG. This
proves that

G+ annG = gcd(A+ annG,B + annG),

as required.

Let R be a ring and A,B ∈ S(R) such that K = lcm(A,B) exists. Then by the above
theorem, lcm(A + annK,B + annK) exists and equals K + annK. By [3, Theorem 2.1],
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gcd(A+annK,B+annK) exists. AsK|AB, there exists an ideal G of R such that AB = KG.
Then also by [3, Theorem 2.1],

gcd(A+ annK,B + annK) = [(A+ annK)(B + annK) : K + annK]

= [AB + annK : K + annK] = [GK + annK : K + annK]

= [(G+ annK)(K + annK) : K + annK] = G+ annK.

Also, by [1, Proposition 2.1] and [3, Theorem 2.6(ii)] we have for every positive integer n,

Gn + annK = gcd(An + annK,Bn + annK).

We conjecture that the ideal G in the above remark is gcd(A,B). If this is true, then as one
would expect, AB = gcd(A,B)lcm(A,B), and for every positive integer k, gcd(A,B)k =
gcd(Ak, Bk).

As a consequence of Theorem 2.3 we give the next result which generalizes [3, Theorem
2.5].

Corollary 2.4. Let R be a ring. If gcd(A,B) exists for all A,B ∈ S(R), then lcm(A,B)
exists for all A,B ∈ S(R).

Proof. gcd(A,B) exists for all A,B ∈ S(R), hence for all f.g. faithful multiplication ideals
of R. Hence we get from [3, Theorem 2.5] that lcm(A+ ann(AB), B + ann(AB)) exists, and
hence by Theorem 2.3(1), lcm(A,B) exists.

The next theorem should be compared with [3, Theorem 2.2].

Theorem 2.5. Let R be a ring and A,B,C ∈ S(R). Then

1. lcm(CA,CB) exists if and only if lcm(A+ annC,B + annC) exists, and in this case,

lcm(CA,CB) = Clcm(A+ annC,B + annC).

2. If gcd(CA,CB) exists, then so too does gcd(A+ annC,B + annC), and in this case,

gcd(CA,CB) = C gcd(A+ annC,B + annC).

Proof. (1) Let K = lcm(CA,CB). Then K ⊆ C and [K : C] ∈ S(R), (see [35, Corollary 1 of
Theorem 10], [25, Corollary 1 of Lemma 1.5], and [31, Theorem 2.1]). Also, A + annC and
B + annC ∈ S(R), and [K : C] is a common multiple of them. Suppose that K ′ is another
common multiple of A + annC and B + annC. Then CK ′ is a common multiple of CA and
CB, and therefore K|CK ′. It follows that K ′ ⊆ [K : C] and [K : C]|K ′. This implies that

[K : C] = lcm(A+ annC,B + annC),

and
K = [K : C]C = Clcm(A+ annC,B + annC).

The converse follows by Theorem 2.2(4).
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For (2), let G = gcd(CA,CB). As C|CA,C|CB, we have C|G and hence G ⊆ C. But
G ∈ S(R) by Theorem 2.1. Thus [G : C] ∈ S(R). Now A + annC,B + annC ⊆ [G : C], and
hence [G : C] is a common divisor of A + annC and B + annC. Suppose that G′|A + annC,
G′|B + annC. Then CG′|CA and CG′|CB. It follows that CG′|G, and hence there exists an
ideal F of R such that G = FCG′. Next,

[G : C] = [FCG′ : C] = FG′ + annC = (F + annC)(G′ + annC).

But annC ⊆ G′. Thus [G : C] = (F + annC)G′, and hence G′|[G : C]. It follows that
[G : C] = gcd(A+annC,B+annC), and G = [G : C]C = C gcd(A+annC,B+annC). This
completes the proof of the theorem.

It is easy to see that Lemma 1.1 remains true for f.g. projective ideals. Moreover we mention
two further corollaries of Theorem 2.5(2). They may be compared with [3, Proposition 2.3
and Lemma 2.4] respectively. The first is an extension of Euclid’s lemma to f.g. projective
ideals.

Corollary 2.6. Let R be a ring and A,B,C ∈ S(R) such that gcd(BA,BC) exists and
gcd(A,C) = R. Then gcd(A,BC) = gcd(A,B).

Proof. By Theorem 2.5(2), gcd(A+ annB,C + annB) exists and

gcd(BA,BC) = B gcd(A+ annB,C + annB).

From Lemma 1.1, we have that

R = gcd(A,C) ⊆ gcd(A+ annB,C + annB) ⊆ R,

hence gcd(BA,BC) = B, and

gcd(A,B) = gcd(A, gcd(BA,BC)) = gcd(gcd(A,BA), BC) = gcd(A,BC).

Corollary 2.7. Let R be a ring and A,B ∈ S(R) such that G = gcd(A,B) exists. Then
gcd([A : G], [B : G]) = R.

Proof. As A ⊆ G,B ⊆ G and G is projective (and hence multiplication), A = [A : G]G,
B = [B : G]G. It follows from Theorem 2.5(2) that

G = gcd([A : G]G, [B : G]G) = G gcd([A : G] + annG, [B : G] + annG).

But annG ⊆ [A : G], and annG ⊆ [B : G]. Thus G = G gcd([A : G], [B : G]), and therefore
R = gcd([A : G], [B : G]) + annG. Again, annG ⊆ gcd([A : G], [B : G]), and the result is
established.

It may be worth noting that Corollary 2.4 can also be proved by using Corollary 2.7 and
the same argument as that used in [3, Theorem 2.5], from which it also follows that AB =
gcd(A,B)lcm(A,B).
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In [3] we introduced a class of rings called generalized GCD rings. A ring R was called a
GGCD ring if gcd(A,B) exists for all f.g. faithful multiplication ideals of R (equivalently, the
intersection of every two f.g. faithful multiplication ideals of R is f.g. faithful multiplcation).
S.Glaz [18],[19] defined a ring R to be a GGCD ring if the following two conditions hold:

(1) R is a p.p. ring.

(2) The intersection of any two f.g. flat ideals of R is a f.g. flat ideal of R.

As f.g. flat and f.g. projective ideals coincide in p.p. rings, one can replace Condition (2) by

(2′) The intersection of any two f.g. projective ideals of R is a f.g. projective ideal of R.

It is proved [18, Theorem 3.3] that if aR ∩ bR is a f.g. projective ideal for any two non zero
divisors a, b of R, then aR ∩ bR is a f.g. projective ideal for any elements a, b of R. Thus a
ring R is a GGCD ring as defined by Glaz if the following conditions are satisfied:

(1) R is a p.p. ring.

(2′′) The intersection of any two invertible ideals of R is invertible.

As every f.g. faithful multiplication ideal of a ring R is projective, it follows that a GGCD
ring as defined by Glaz is a GGCD ring by our definition. In fact, Condition (2) alone
implies GGCD by our definition. The converse is not true. For example, arithmetical rings
are GGCD rings by our definition but not necessarily by that of Glaz. Z12 is such an example,
being an arithmetical ring but not a p.p. ring. Both definitions coincide, however, if R is an
integral domain.
We now call a ring R a G*GCD ring if gcd(A,B) exists for all f.g. projective ideals of R.

This implies that the intersection of every two f.g. projective ideals of R is f.g. projective. It
is clear that this class of rings includes our GGCD rings, semihereditary rings, f.f. rings (and
hence flat rings), von Neumann regular rings, arithmetical rings, Prüfer domains and GGCD-
domains. Also it is obvious that the concepts G*GCD ring and GGCD-domain coincide when
R is an integral domain.
Let R be a G*GCD ring and A,B ∈ S(R). Then by Corollary 2.7,

gcd([A : G], [B : G]) = R.

By Corollary 2.5 and Theorem 2.2, K = lcm(A,B) exists and [A : B], [B : A] ∈ S(R).
Therefore

gcd([A : B], [B : A]) = gcd([K : B], [K : A]) = R.

In fact, all the results of [3, Section 3] concerning GGCD rings can be extended to G*GCD
rings. The proofs are routine modifications of those given.

3. Almost semihereditary rings

Anderson and Zafrullah [9] introduced several classes of integral domains.

AB. Almost Bezout domain: domain R in which for all a, b ∈ R − {0} there exists
n = n(a, b) such that anR + bnR is principal.
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AV. Almost valuation domain: domain R in which for all a, b ∈ R − {0}, there exists
n = n(a, b) such that anR ⊆ bnR or bnR ⊆ anR.

AP. Almost Prüfer domain: domain R in which for all a, b ∈ R − {0}, there exists
n = n(a, b) such that anR + bnR is invertible.

AGCD. Almost greatest common divisor domain: domain R in which for all a, b ∈ R−{0},
there exists n = n(a, b) such that anR ∩ bnR is principal.

These classes of domains are studied further in [10] and [24]. In this note, we generalize
AP-domains to rings with zero divisors. A ring R is called an almost semihereditary ring
(AS-ring) if the following conditions are satisfied:

1. R is a p.p. ring, i.e. every principal ideal of R is projective.

2. For all a, b ∈ R, there exists a positive integer n = n(a, b) such that anR + bnR is
projective.

For basic properties of p.p. rings, see [13] and [14]. Clearly, AP-domains and semihereditary
rings are AS-rings. The polynomial ring R = K[x, y] over a field K is not an AS-ring, since
xR, yR ∈ S(R), but for all n ∈ N, (xR)n + (yR)n /∈ S(R).
The next theorem shows several equivalent conditions for a ring to be an AS-ring. Com-

pare with [9, Lemma 4.3 and Theorem 5.8].

Theorem 3.1. Let R be a p.p. ring. Then the following are equivalent:

1. For all a, b ∈ R, there exists n = n(a, b) such that anR + bnR ∈ S(R).

2. For all a1, . . . , am ∈ R, there exists n = n(a1, . . . , am) such that
m∑
i=1

ani R ∈ S(R).

3. RP is an AV-domain for every prime ideal P of R.

4. RM is an AV-domain for every maximal ideal M of R.

5. For all a, b ∈ R, there exists n = n(a, b) such that

[anR : bnR] + [bnR : anR] = R.

6. For all a, b ∈ R, there exists x, y, r, s ∈ R and n = n(a, b) such that
(
x r
s 1− x

)(
bn

−an

)
=

(
0
0

)
.

7. For all a1, . . . , am; b1, . . . , br ∈ R, there exists n = n(a1, . . . , br) such that

[
m∑
i=1

ani R :
r∑
i=1

bni R] + [
r∑
i=1

bni R :
m∑
i=1

ani R] = R.

8. For all A,B ∈ S(R) there exists n = n(A,B) such that An +Bn ∈ S(R).

Proof. (1) ⇒ (2) : Let a1, . . . , am ∈ R. For each i, j there exists nij = nij(ai, aj) such that

a
nij
i R + a

nij
j R ∈ S(R). Put n =

∏
i,j

nij and n̂ij =
n

nij
. Then from [1, Proposition 2.1] and [32,

Theorem 2.1 and Corollary 4.3], we have that

(a
nij
i R + a

nij
j R)

n̂ij = ani R + a
n
jR
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is projective. It follows by [35, Theorem 8] that
n∑
i=1

ani R is multiplication. See also [4, Theorem

2.3]. As R is p.p.,
n∑
i=1

ani R ∈ S(R).

(2)⇒ (1) : Clear.
(1) ⇒ (3) : Let P be a prime ideal of R. Let I, J be principal ideals of RP . Then

there exist a, b ∈ R such that I = aRP and J = bRP . There exists n = n(a, b) such that
anR+ bnR ∈ S(R). Hence (anR+ bnR)P is principal, and either (anR+ bnR)P = anRP which
implies that bnRP ⊆ anRP , or (anR + bnR)P = bnRP which implies that anRP ⊆ bnRP . It
follows that In ⊆ Jn or Jn ⊆ In, and hence RP is an AV-ring. But RP is an integral domain,
since R is p.p. [13, Proposition 1]. Thus RP is an AV-domain.
(3)⇒ (4) : Obvious.
(4) ⇒ (1) : Let M be a maximal ideal of R. Let a, b ∈ R. There exists n = n(a, b,M)

such that anRM ⊆ bnRM or bnRM ⊆ anRM . It follows that anRM + bnRM is principal. By
[9, Lemma 4.7], there exists N = N(a, b) such that aNRM + b

NRM is principal, and hence
aNR + bNR is multiplication. As R is a p.p. ring, aNR + bNR ∈ S(R).
(1)⇒ (5) : Let a, b ∈ R. There exists n = n(a, b) such that anR+ bnR is projective. The

result follows by [31, Corollary 4.2], see also [30, Lemma 3.3] and [4, Corollary 1.4].
(5) ⇒ (4) : Let M be a maximal ideal of R. Let I, J be principal ideals of RM . There

exist a, b ∈ R such that I = aRM and J = bRM . There exists n = n(a, b) such that
[anR : bnR] + [bnR : anR] = R, and hence, [anRM : b

nRM ] + [b
nRM : a

nRM ] = RM . It
follows that either [anRM : b

nRM ] = RM which implies that b
nRM ⊆ anRM , i.e. Jn ⊆ In,

or [bnRM : a
nRM ] = RM which gives that a

nRM ⊆ bnRM , i.e. In ⊆ Jn. Hence, RM is an
AV-domain.
(5) ⇒ (6) : There exist x, y ∈ R such that x + y = 1 with x ∈ [anR : bnR] and

y ∈ [bnR : anR]. Hence there exist r, s ∈ R such that xbn = ran and yan = sbn. Thus(
x r
s 1− x

)(
bn

−an

)
=

(
0
0

)
.

(6)⇒ (5) : Clear.
(5) ⇒ (7) : Let a1, . . . , am; b1, . . . , br ∈ R. For all i ∈ {1, . . . ,m} and j ∈ {1, . . . , r}

there exist nij = nij(ai, bj) such that [a
nij
i R : b

nij
j R] + [b

nij
j R : a

nij
i R] = R. Let n =

∏
i,j

nij and

n̂ij =
n

nij
. It follows from [1, Lemma 3.5] that [ani R : b

n
jR] + [b

n
jR : a

n
i R] = R, and hence,

[
m∑
i=1

ani R : b
n
jR] + [

r∑
j=1

bnjR : a
n
i R] = R. For each j = 1, . . . , r, and l = 1, . . . ,m, we have

[
m∑

i=1

ani R : b
n
jR] + [

r∑

k=1

bnkR : a
n
l R] = R.

Hence, by [4, Corollary 1.2],

[
m∑

i=1

ani R : b
n
jR] + [

r∑

k=1

bnkR :
m∑

i=1

ani R] = R.

Similarly for each j, and the result follows.
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(7) ⇒ (8) : Let A,B ∈ S(R), A =
m∑
i=1

aiR, B =
k∑
j=1

bjR. Then for all n ∈ N, An =

m∑
i=1

ani R, and B
n =

k∑
j=1

bnjR. By [30, Lemma 3.3], A
n+Bn is multiplication and hence projective,

since R is a p.p. ring.
(8)⇒ (7) : See [30, Lemma 3.3], [4, Corollary 1.4], and [35, Corollary 3 of Theorem 1].

The next result generalizes some results on AP-domains. Compare with [9, Lemma 4.5 and
Theorem 4.10].

Proposition 3.2. Let R be an AS-ring. Then the following are true:

1. For all A,B ∈ S(R), there exists n = n(A,B) such that An ∩Bn ∈ S(R).

2. RS is an AS-ring for every multiplicative set S.

3. R/P is an AP-domain for every prime ideal P of R.

4. Every overring of R is an AS-ring.

Proof. (1) By Theorem 3.1, there exists n = n(A,B) such that An + Bn ∈ S(R). Hence by
[30, Corollary 3.4], [4, Corollary 2.4], and [35, Proposition 12], An∩Bn is f.g. multiplication.
As R is p.p., An ∩Bn is projective.
(2) Clearly, if R is p.p., then so too is RS. Let I, J be principal ideals of RS. Then

I = aRS and J = bRS for some a, b ∈ R. By the above theorem, there exists n = n(a, b) such
that [anR : bnR] + [bnR : anR] = R, and hence [anRS : b

nRS] + [b
nRS : a

nRS] = RS, that is,
[In : Jn] + [Jn : In] = RS, and again by Theorem 3.1, RS is an AS-ring.
(3) Let I, J be principal ideals of R/P. Then for some a, b ∈ R, I = (a + P )R/P and

J = (b+ P )R/P. Since R is an AS-ring, there exists n = n(a, b) such that

[anR : bnR] + [bnR : anR] = R,

and hence

[(a+ P )nR/P : (b+ P )nR/P ] + [(b+ P )nR/P : (a+ P )nR/P ] = R/P.

It follows that [In : Jn] + [Jn : In] = R/P. R/P is p.p. since it is an integral domain, and
hence by Theorem 3.1, R/P is an AS-ring, hence an AP-domain.
(4) Let R ⊆ T ⊆ K, where T is an overring of R and K is the total quotient ring of T

(and of R). Let a, b ∈ T. There exists a non-zero-divisor r ∈ R such that ra, rb ∈ R. Then
for some n ∈ N, (ra)nR + (rb)nR is projective. Hence (ra)nT + (rb)nT is projective. As
rnT (anT + bnT ) is projective, and rnT is invertible, we infer that anT + bnT is projective.
Finally, since R is p.p., T is also p.p., and the result follows.

In our last two theorems, we characterize AB-domains and then generalize [9, Lemma 4.5]
concerning AP domains.

Theorem 3.3. Let R be an integral domain. Then R is an AP- and an AGCD-domain if
and only if R is an AB-domain.
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Proof. Assume that R is an AP- and AGCD-domain. Let a, b ∈ R − {0}. Then there exist
m,n ∈ N such that amR + bmR is invertible and anR ∩ bnR is principal. It follows from [17]
that amnR + bmnR = (amR + bmR)n, which is invertible, and by Theorems 1.7 and 2.2 we
have that (anR ∩ bnR)m = amnR ∩ bmnR is principal. By [26, Theorem 3]

(amnR + bmnR)(amnR ∩ bmnR) = amnbmnR,

and hence by [7, Theorem 1],

amnR + bmnR = [amnbmnR : (amnR ∩ bmnR)].

Next, as R is an AGCD-domain, we have from [10], [24, Theorem 3.2] and [37] that there
exists k ∈ N such that [amnkbmnkR : (amnR ∩ bmnR)k] is principal. Since

amnbmnR + (amnR ∩ bmnR) = amnR ∩ bmnR

is invertible and hence flat, we infer again from [28, Corollary 3.2] that

[amnkbmnkR : (amnR ∩ bmnR)k] = [amnbmnR : (amnR ∩ bmnR)]k,

and this finally gives that

amnkR + bmnkR = (amnR + bmnR)k = [amnbmnR : (amnR ∩ bmnR)]k

is principal, and hence R is an AB-domain.
Conversely, clearly an AB-domain is an AP-domain. Let a, b ∈ R − {0}. There exists

n ∈ N such that anR + bnR is principal (hence invertible). It follows from [26, Theorem 3]
that

(anR + bnR)(anR ∩ bnR) = anbnR,

and hence
anR ∩ bnR = anbnR(anR + bnR)−1

is principal. Hence R is an AGCD-domain.

It is proved in [22, Theorem 101] that if R is a Prüfer domain with quotient field K, and L
is an algebraic extension of K, then the integral closure T of R in L is also a Prüfer domain.
The next theorem is a generalization of this fact to AP-domains. First we give a lemma.

Lemma 3.4. Let R be an AV-domain. Then any overring T of R is an AV-domain.

Proof. Let x, y ∈ T. Then there exists 0 6= r ∈ R such that rx, ry ∈ R, and hence for some
n ∈ N, either rnxnR ⊆ rnynR or rnynR ⊆ rnxnR. Hence rnxnT ⊆ rnynT or rnynT ⊆ rnxnT,
and this gives that xnT ⊆ ynT or ynT ⊆ xnT. Hence T is an AV-domain.

Theorem 3.5. Let R be an AP-domain with quotient field K, and L an algebraic extension
of K. Then the integral closure T of R in L is an AP-domain.

Proof. Let M be a maximal ideal of T. Then P = M ∩ R is a maximal ideal of R. Let
S = R \P. Then TS is the integral closure of RS = RP in L, and TS is an overring of RP . As
RP is an AV-domain ([9, Theorem 5.8] and Theorem 3.1) we infer from Lemma 3.4 that TS
is an AV-domain, and hence an AP-domain. Hence TM = (TS)MS is an AV-domain. By [9,
Theorem 5.8], T is an AP-domain.
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[27] Lüneburg, H.: Was ist das kleinste gemeinsame Vielfache zweier rationaler Zahlen?
Mat. Phys. Sem.ber. 23 (1976), 6–13. Zbl 0323.13011−−−−−−−−−−−−

[28] Naoum, A. G.: The Ohm type properties for finitely generated multiplication ideals.
Period. Math. Hungar. 18(4) (1987), 287–293. Zbl 0628.13002−−−−−−−−−−−−

[29] Naoum, A. G.; Balboul, M. M.: On finitely generated multliplication ideals in commu-
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