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The quantization conjecture revisited

By CONSTANTIN TELEMAN

Abstract

A strong version of the quantization conjecture of Guillemin and Sternberg
is proved. For a reductive group action on a smooth, compact, polarized variety
(X, L), the cohomologies of £ over the GIT quotient X//G equal the invariant
part of the cohomologies over X. This generalizes the theorem of [GS] on global
sections, and strengthens its subsequent extensions ([JK], [M]) to Riemann-
Roch numbers. Remarkable by-products are the invariance of cohomology of
vector bundles over X//G under a small change in the defining polarization
or under shift desingularization, as well as a new proof of Boutot’s theorem.
Also studied are equivariant holomorphic forms and the equivariant Hodge-
to-de Rham spectral sequences for X and its strata, whose collapse is shown.
One application is a new proof of the Borel-Weil-Bott theorem of [T1] for the
moduli stack of G-bundles over a curve, and of analogous statements for the
moduli stacks and spaces of bundles with parabolic structures. Collapse of the
Hodge-to-de Rham sequences for these stacks is also shown.
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0. Introduction

Associated to a linear action of a reductive group G on a projectively
embedded complex manifold X there is a G-invariant stratification by locally
closed, smooth subvarieties. The open stratum is the semistable locus X*5;
the other, unstable strata were described, algebraically and symplectically,
by Kirwan [K1] and Ness [N], based on algebraic work of Kempf [Ke] and
Hesselink [He], and on topological ideas of Atiyah and Bott [AB]. The algebraic
description uses the projective embedding, but the outcome depends only on
the (equivariant) polarization class of O(1). Geometrically, a line bundle £
with a positive hermitian metric, invariant under a compact form K of G,
defines a Kéhler structure on X, and we are looking at the Morse stratification
for the square-norm ||u||* of the moment map for G.

Each space H$(X; L) of coherent sheaf cohomology with support on a
stratum S carries a natural action of G. The main observation of this paper!
is the vanishing of its invariant part, for unstable S. A descending ordering
{S(m)}men of the strata (where each union of S(k), with k& > m, is closed)
leads to a Cousin-Grothendieck spectral sequence

B = Hgi (X L) = H™ (X L),
and the vanishing of invariants for positive m implies that H*(X ;L’)G =
H*(X®;£)¢. The latter equals H*(X//G; L), and we obtain a strong form
of Guillemin and Sternberg’s “quantization commutes with reduction” conjec-
ture, which, based on their result for H°, predicted the equality of the two
holomorphic Euler characteristics.

That form of the conjecture, extended to the Spin“-Dirac index on com-
pact symplectic manifolds, has been proved in various degrees of generality:
[V] for abelian groups, and [M], [JK] for smooth or orbifold quotients (see also
[Sj2] for a survey); localization formulae were used to compute the two indices.
A more conceptual (if analytically more involved) proof was given by Y. Tian
and W. Zhang [TZ], using a Wittenesque deformation of the Dirac operator.
After my paper was first circulated, their treatment of smooth K&hler quo-
tients was refined by M. Braverman [Br] to give dimensional equality of the
respective Dolbeault cohomologies. However, one does not quite get canonical
isomorphisms this way. Also, the difficulties created by truly singular quotients
are especially acute in the analytic treatment. In the symplectic approach of
Meinrenken-Sjamaar, [MS], singular quotients are replaced by certain partial
and shift desingularizations (Zhang [Z] has recently extended Braverman’s ar-
gument along these lines).

LA special case of which was already noted by Ramadas [R]
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Regularity of the quotient is not relevant to my argument, and the result
holds even when X itself has rational singularities (2.13). Remarkable rigidity
theorems (5.5), (5.6) follow, asserting the invariance of the cohomology of holo-
morphic vector bundles under perturbation of the GIT quotient (by a small
change of polarization or shift desingularization). This justifies a posteriori the
avoidance of seriously singular quotients, and recovers an important theorem
Boutot’s (5.7) on rational singularities of quotients.?

The invariant part of coherent sheaf cohomology is an instance of equiv-
ariant sheaf cohomology HE, definable for the action of any linear algebraic
group (cf. Appendix). In general, it also involves higher group cohomology.
Alternatively, we are discussing cohomologies over the quotient stack Xg of X
by G, with supports on the locally closed substacks Sg. This point of view
allows one to change groups and spaces as needed, via the following version of
Shapiro’s lemma: If G is a subgroup of G’ and X' is the induced space G' x& X,
the quotient stacks X and X(,, are equivalent, in the sense that G-equivariant
computations on X are equivalent to G’-equivariant ones on X’.

If the action of G on X® is free, the quotient stack X@ is the quotient
variety; this is also the GIT quotient X//G of X by G. In the stable case, X*°
only carries finite isotropy groups, and X& is a Deligne- Mumford stack (A.8).
It is closely related to the GIT quotient X* /G, a compact K&hler space arising
from the stack by ignoring the isotropies. The stable case is nearly as good as
the free one, although there arises the delicate question whether equivariant
line bundles over X** are pulled back from (descend to) X//G: line bundles
over a DM stack may define fractional line bundles on its quotient space. When
L does not descend, the statement of the theorem involves the invariant direct
image sheaf ¢C L.

The cohomologies of £ over the GIT and stack quotients also agree in the
presence of positive-dimensional stabilizers. Negative powers of £ are handled
by Serre duality, but care is then needed with singular quotients, when the
dualizing sheaves on X and X//G may not relate as naively expected (3.7).
The naive form of the quantization conjecture requires a mild restriction (3.6);
cf. also (3.8). The referee rightly noted that, according to [MS, §2.14], one gets
a better result for the “2p—shifted” quotient, and this has been included in an
addendum to Section 3.

For a torus, the invariants in HS?O(X ; K® L) vanish as well, and Kodaira’s
theorem on X forces the vanishing of higher invariant cohomology of K ® L over
X%, Occasional failure of this for non-abelian G is related to the difficulties
caused by negative line bundles. In remedy, some vanishing conditions over

2In the other direction, Broer and Sjamaar [Sj1, Thm. 2.23] obtain a special case of the quanti-
zation conjecture from Boutot’s theorem. A relative version of their argument recovers the rigidity
theorems; cf. Section 5.
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singular quotients are given in Section 6. Sometimes, vanishing follows directly
from the theorem of Grauert and Riemenschneider [GR]: thus, [KN] handled
the moduli space of semistable principal G-bundles over a Riemann surface,
but parabolic structures had only been treated for SLy, in [MR] (by Frobenius
splitting). They are now addressed uniformly in Section 9.

Section 7 introduces holomorphic forms. In support of the stack philoso-
phy, the “quantization theorems” (7.1) and (7.3) apply to Kahler differentials
of the stack, not to those of the variety. (We introduce them as equivariant
differentials.) Twisting by £ kills unstably supported cohomologies, but the
more interesting result concerns untwisted forms. Collapse of the Cousin se-
quence is now related to the collapse at Fq of the equivariant Hodge-to-de
Rham spectral sequence. The latter is quite clear when X is proper, but sur-
prisingly, a weaker “KN completeness” condition suffices (§1). In the stable
case, collapse for X® = X*° is equivalent to collapse for the DM quotient stack,
and well-known [St]; but the general case seems new.

Sections 8 and 9 apply these results to the stack of holomorphic principal
bundles over a Riemann surface (enhanced with parabolic structures). Their
open substacks of finite type can be realized as quotients of smooth quasi-
projective varieties (the method goes back to Gieseker [G]). The cohomologies
of suitable line bundles (conveniently mislabeled “positive”) on the stacks equal
those on the semistable moduli spaces; in fact, all higher cohomologies vanish.
(Equality of the spaces of sections was already known from [BL] and [KNR].)
On the stack side, this recovers a key part of the “Borel-Weil-Bott” theorem
in [T1]. On the space side, it extends the vanishing theorem of [KN] to moduli
of parabolic bundles.

Knowledgeable readers will notice the absence of new ideas in this paper.
Indeed, both the question and the answer have been around for fifteen years,
as several people came within a whisker of noticing ([R], [W]). The overlap
in time with the independent proof [TZ] + [Br| seems entirely fortuitous: the
latter draws on a completely different circle of ideas.

Notes. (i) This approach to the quantization conjecture was proposed in
[T1], in connection with moduli of G-bundles. However, as T. R. Ramadas
kindly pointed out, much of my argument in Section 2 had already appeared
in [R], where vanishing of the group HEY™MS(X; £)¢ was shown. (Most ingre-
dients for the full result — vanishing in all degrees — were in place, but only
a weaker conclusion was drawn.)

(ii) In the symplectic case, there should be defined an “equivariant index
with supports” of the pre-quantum line bundle, additive for the || u||2—M0rse
stratification, taking values in the Z-dual of the representation ring of G (infi-
nite sums of representations, with finite multiplicities). The invariant part of
this index, with supports on unstable strata, should vanish. This approach to
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the symplectic theorem would allow for a relative version (cf. 5.2 and 5.3.i); it
is not clear how the existing arguments can address that.

Acknowledgements. I am indebted to Shrawan Kumar for conversations on
G-bundles. Hodge-theoretic exchanges with Carlos Simpson were also greatly
helpful. I thank Y. Tian for acquainting me with his most recent work (joint
with W. Zhang). Discussions and correspondence with Y. Hu, J. Kollar, J. Li,
K. Liu, T. R. Ramadas, N. Shepherd-Barron, R. Sjamaar, C. Sorger and
C. Woodward are gratefully acknowledged. The work was supported by Saint
John’s College, Cambridge, and by an NSF postdoctoral fellowship.

1. The strata of a projective G-variety

The stratification defined by Kirwan and Ness. Let X, L, G be as in the
abstract. For simplicity, X will always be irreducible. The open stratum
X% C X is the complement of the vanishing locus of G-invariant regular
sections of large powers of £. The other strata depend on the choice of a
rational, invariant inner product in g. Fix (for convenience only) a Cartan
subgroup H of G and a dominant Weyl chamber in h%. Any subtorus T C H
acts on the fibers £, over each component C' of its fixed-point set X', by a
character, which defines a rational weight § of §, using the inner product. If
8 # 0, call T : C* — H the corresponding 1-parameter subgroup Z, that
component of X" containing C, and L the commutant of T in G. Divide the
natural action of L on (Z, L) fiberwise by . (Raising £ to some power ensures
integrality of § and T, without affecting the construction to follow.)

The unstable strata are indexed by those Z with dominant 3 for which
the semistable locus Z° C Z of the divided L-action on L is not empty. For
such a Z, call Y the set of points in X flowing to Z under T, as t — oo in C*,
and Y° the open subset flowing to Z°.

(1.1) Properties (i)—(iv) below were proved in [K1]; (v) is from [MFK, Prop.
1.10].

(i) Y is a fiber bundle over Z, with affine spaces as fibers, under the
morphism ¢ defined by the limiting value of the T-flow.

(ii) Y is stabilized by the parabolic subgroup P C G whose nilpotent
Lie algebra radical u is spanned by the negative T-eigenspaces in g.

(iii) The G-orbit S of Y° is isomorphic to G x Y°. Under ¢, it fibers
in affine spaces over G x* Z°, if we let P act on Z° via its reductive
quotient L.
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(iv) The various S, together with X° = X5, smoothly stratify® X.

(v) Z° has a projective, good (cf. 3.1) quotient under L; X** has a good
projective quotient under G.

Kirwan also showed that the S are the Morse strata for ||u||?, in a K-invariant
Kéhler structure representing c1(£), and that X*/G agreed with the “sym-
plectic quotient” p~1(0)/K of X by K.

KN stratifications. If X is quasi-projective, statements (iv) and (v) can
fail; for instance, deletion of part of some Z leaves part of S unaccounted for
by ¢. On the other hand, the prescription for the T can be relaxed. Hence,
the following terminology seems useful. Consider a selection of one-parameter
subgroups T in H, together with an L-invariant open Z° in the fixed-point set
of each. Assume that the G-orbits S of the sets Y° C X of points flowing to
Z° under T satisfy (iii) and that, together with their complement X°, assumed
open, they stratify X. We call this a Kirwan-Ness (KN) stratification. Note
that (i) and (ii) are automatic. If (v) holds for all Z°, and also for X° with
L = G, we say that the KN stratification is complete. A vector bundle is
adapted (strictly adapted) to the stratification if its T-weights on the fiber over
the Z’s are nonnegative (positive). The relevance of these conditions to the
“quantization theorem” was already identified in [TZ, 4.2].

Ezxample. An open union of KN strata in a projective X inherits a com-
plete stratification; O is adapted, £ strictly so. Another (analytic) example
will be the Atiyah-Bott stratification; see (8.8).

Change of polarization. The stratification depends only on the equivari-
ant polarization defined by L, the line through its Chern class in H%(X ;Q):
this follows from (i)—(iv), given the result for semistable strata [MFK, 1.20].
(Morse theory also makes this clear, since line bundles in the same polarization
class carry invariant metrics with the same curvature.) The effect of perturb-
ing the polarization was first described in [DH, 3.3.15], although the idea is
implicit in [K2, §3], while semistable strata were already discussed in [S1, §5].
The formulation below covers all the cases we need. Consider a projective
G-morphism 7 : X/ — X, with relatively ample G-line bundle M. For small
positive € € Q, L. : 7L + € - M is an ample fractional G-line bundle.

(1.2) REFINEMENT LEMMA. The L.-stratification on X' is independent
of the small € > 0, and refines the pull-back of the L-stratification on X.
Further, m* L is adapted to this refined stratification.

3Some authors use the term decomposition rather than stratification; see [K1, Def. 2.11] or [FM]
for the reason.



QUANTIZATION CONJECTURE 7

(1.3) Ezamples. Three cases are especially important, and will be taken
up in Section 5:

(i) X' = X, M is any G-bundle; this is the “change of polarization” studied
in [DH] and [Th].

(ii) X is singular, X’ is an equivariant desingularization. (The proof does
not use smoothness of X; for singular varieties, stratification and moment
map can be defined using the projective embedding.) The blow-up along
an invariant subvariety was studied in [K2]; a natural choice for M is
minus the exceptional divisor.

(i) X' =X x Fx, M = O()) over the flag variety F of G corresponding to
a dominant weight A. This construction, going back at least to Seshadri

[S1], is sometimes called shift desingularization of X//G. If G acts freely
on X%, X'//G is an Fy-bundle over X//G.

(1.4) Remark. In all cases, the semistable stratum in X’ could be empty,
even if X was not so; but this cannot happen if X contains stable points [S1].

Proof. The stratification on X’ changes for finitely many values of £ ([DH,
1.3.9]). Recall the idea: there are only finitely many possible Z’s and finitely
many Z* for each ([DH, 3.3.3], or argue inductively); and, given Z*, there are
finitely many possible Y°, as T varies ([DH, 1.3.8]). (Y and Z can only change
upon vanishing of a T-eigenvalue in the normal bundle to some fixed-point set
of H.)

By [K1, 3.2], the weight [ associated to the stratum of z € X lies in
the unique coadjoint orbit closest to zero in u(Gz) (where Gz is the x-orbit
closure, a compact set). If 2/, ¥/ € X’ stay in the same stratum when & — 0,
then SB:(2') = B:(y'), so equality persists at ¢ = 0. Also, the two points flow
to the same fixed-point component under T, and then also under T; so they
must lie over the same stratum in X.

Since L. is strictly adapted to the stratification and the 3. are e-close to
the 8, n*L is adapted. Moreover, over unstable strata of X , § £ 0, so the
(upstairs) T.-weights on 7*£ must be positive. O

2. Vanishing of cohomology with supports

Cohomology with supports on an unstable stratum S, of codimension c,
can be rewritten as cohomology over Z°. For a vector bundle V defined near
S in X, we have

(2.1) Hg*(X;V) = H* (X; H§(V)) = H" (S;RsV)
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where the sheaf RgV over S of V-valued residues along S in X pushes forward
to the local cohomology sheaf HG (V) = lim,,—, Ext%,(O/J™; V), on an open set
U C X in which S is closed, with ideal sheaf 7. While Rg)V has no natural
Og-module structure, it is increasingly filtered, and the composition series
quotients are vector bundles over S. If V carries a G-action, so does RgV, and
the filtration is equivariant. It is for GrRgV that we shall prove the vanishing
of invariant cohomology; the same then follows for Rg) .

Shapiro’s lemma (A.5) equates the G-invariant part of the F4 term in this
spectral sequence with the P-equivariant cohomology Hp(Y°; GrRgV) (where
the O-module restriction of GrRgV to Y° is implied). Under ¢, this equals
Hp(Z°; ¢«GrRgV), which is the abutment of a spectral sequence (A.4)

(2.2) Ey* = Hp (H® (Z°%¢.GrRsV)) = Hp° (Z°% . GrRgV) .
For a P-representation V', there are natural isomorphisms
Hp(V) = H*(p, V) = H*(w; V)"

(L acts naturally on V', and by conjugation on u). Thus, we can rewrite, in
(2.2)

(2.3) Ey® = H" (w; H® (Z°; 0,GrRgV))*

which is resolved by the L-invariant part of the Lie algebra Koszul complex
for u,

L
(2.4) (H* (2° p.GrRsV) © A" (u)')
When T C L, ¢,GrRgV is T-isomorphic to
(2.5) V@ Sym®*(T7Y)! @ Sym®*(TsX) @ det(Ts X) ;

the first two factors form the Gr of the fiberwise sections of V along ¢ (filtered
by the order of vanishing along Z°), while the last two are GrRgO. There
follows the key observation of the paper.

(2.6) PROPOSITION. (a) H%(X; L)Y =0, in all degrees. HY(X;0)¢ =
unless S is open.

(b) If h is large enough (see 2.10; h > 0 suffices if G is a torus), H4(X; Lh®
K)¢ =0, in all degrees.

(2.7) Remarks. (a) S can only be open if X% = (). If so, H*(S;0)¢ =
H*(X;0).
(b) Part (b) can fail if & is small and G is not a torus; see examples (4.2)
(

and (4.3).
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Proof. T has no negative weights on A®(u)?, so that vanishing of (2.4), and
then of (2.1), is guaranteed whenever the total T-action on (2.5) has positive
weights only. The weights of (T7Y)! a nd of Ts X are positive, while det(TsX)
is T-positive, unless S is open. When V is £ or O, its T-weights over Z° are
also nonnegative, proving (a).

When V = £" ® K, we can factor

(2.8) K=Kz®det {(TzY) ®det  (Ty X) ,

where Kz is the canonical bundle of Z. Note that, over Y, TsX = Ty X /u, so
(2.5) becomes

(2.9) LMKz @ Sym*(T7Y)! @ det ™ (TzY) ® Sym®(TsX) @ det ™ (&) .

In the torus case, u = 0, so no T-weights are negative, while the one on £" is
positive. In general, the problem factor is detu. Subject to the restriction on
h spelled out below, we get part (b). O

(2.10) Remark. “Large enough” means that the T-weight on £" over Z
exceeds the one on det t®@det(T;Y). A sufficient condition is h-||8]|> > (3]2p),
the T-weight on deti. A finer test, taking advantage of T7Y', replaces (3|2p)
by the T-weight on dets, where s is the part of u fixing all points of Z. Note,
by considering T-weights, that a & € u vanishing at a point z € Z° must vanish
everywhere on ¢~!(z2); it follows in particular that any h > 0 will do, if the
u-action on Y is generically free.

(2.11) PrOPOSITION. (a) H*(X; LM = H*(X*; LMY for h > 0 (but
we need h > 0 if X% =0).
(b) H*(X; LM = H*(X™; LMY when h is large enough (cf. 2.10).

Proof. Part (a) follows from (2.6.a) and the ensuing collapse of the Cousin
spectral sequence (A.6). The negative case follows from (2.6.b) and Serre
duality (A.9), applied to X and X*®. O

(2.12) Remarks. (i) As the proof shows, (a) applies to all vector bundles
adapted to the stratification (strictly adapted, if X* = ()). This strengthens
[TZ, Thm. 4.2], for holomorphic vector bundles.

(ii) From Kodaira’s theorem, H*(X; £L~") = 0, except in top degree. Sub-
ject to a condition (3.6), we shall see the same about the cohomology with
proper supports H*(X®; £L7")¢ (Serre duality in Prop. 6.2). Even then, the
nonzero dimensions may disagree for small h; see (4.3). The difference can be
computed from the extra terms in the Cousin sequence.



10 CONSTANTIN TELEMAN

(2.13) Remark. (2.6) and (2.11) also hold when X has rational singu-
4 For an equivariant resolution 7 : X’ — X, we have H%(X; L) =
H:;,l( S)(X "s7*L), and similarly after twisting by Grauert’s canonical sheaves
[GR]. By (1.2), #71(S) is a union of strata in X’, and 7*£ has positive
T-weights, if S is unstable; so the invariant part of the second space van-
ishes. For general singularities, (a) can fail for small h; see (4.6). For large h,
we only have H?, and then (2.11.a) holds whenever X is normal.

larities.

3. Relation to quotient spaces

Refresher on GIT quotients [MFK, Ch. 1]. The GIT quotient X //G is the
projective variety Proj @ ysoT'(X;£Y)¢. Tt is the scheme-theoretic quotient
X% /G of X* by G, and the structural morphism ¢ : X — X //G is affine. The
inclusion of G-invariants within Spec @y ['(X; £LY) extends ¢ to a morphism
between the affine cones over X and X /_/ GG, mapping unstable points to the
origin. Stable points have closed orbits and finite stabilizers. All semistable
points are stable precisely when the G-action on X is proper; this happens if
and only if all stabilizers are finite. If so, X is a compact, Kahler, Deligne-
Mumford stack (A.8).

The invariant direct image ¢¢F of a (quasi) coherent, G-equivariant sheaf
F over X®° (A.1) is the (quasi) coherent sheaf on X//G, whose sections over U
are the G-invariants in F(¢~'U). The functor ¢ is best viewed as the direct
image along the morphism ¢, induced by ¢, from the stack X3 to X//G. As
q is affine and G is reductive, ¢¥ is exact. The lift to X of a sheaf on X//G
has a natural G-structure; therefore, (q*,qf ) forms an adjoint pair, relating
equivariant sheaves on X* to sheaves on X//G. Further, ¢¢ o ¢* = Id; in
particular, ¢¢0O = O.

An equivariant sheaf F over X®descends to X//G if it is G-isomorphic to
a lift from downstairs. This happens if and only if adjunction ¢*¢¢¥F — F is
an isomorphism; if so, F = ¢*¢¥F, and we shall abusively denote ¢¢F by F
as well. Vector bundles descend precisely when the isotropies of closed orbits
in X% act trivially on the fibers (Kempf’s descent lemma). Some power of L
always descends, because the infinitesimal isotropies in X* act trivially. Vector
bundles with this last property are said to descend fractionally.

4Recall that a normal variety has rational singularities if and only if the higher direct images of
O, from any desingularization, vanish. Equivalently, it is Cohen-Macaulay and Grauert’s canonical
sheaf [GR] of completely regular top differentials (the push-down of the dualizing sheaf, from any
desingularization) agrees with the Grothendieck dualizing sheaf of all top differentials.
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(3.1) Remark. Affineness of ¢ and ¢¢O = O are Seshadri’s [S1] defin-
ing conditions for a good quotient under a reductive group action; the other
properties of ¢& follow (in characteristic 0).

Quantization commutes with reduction. If £ descends, RgCL = ¢¥L = L
and (2.11.a) gives the following.

(3.2.a) THEOREM. If £ descends, H*(X; L)%= H*(X//G; L). If X//G # 0,
H*(X;0)¢ = H*(X//G;0).

(3.3) Remarks. (i) When £ does not descend, equality holds with ¢&L
downstairs. This need not be a line bundle, but, if nonzero, it is a reflexive
sheaf of rank 1.

(ii) The theorem holds for any vector bundle adapted to the stratification

(strictly adapted, if X = ()). Further, as in (2.13), rational singularities are
permissible on X.

Negative powers of L raise a delicate question. According to Boutot [B],
X//G has rational singularities, so we can use Serre duality, once the invariant
direct image of the canonical sheaf IC of X is known. We shall review that in a
moment; most relevant is the canonical sheaf Kg of the stack Xq, the twist of
K by the 1-dimensional representation det g. (This plays the role of dualizing
sheaf of BG; it is a sign representation, trivial when G is connected.) Call w
the dualizing sheaf of X//G and ¢ := dim X — dim X//G.

(3.2.b) THEOREM. If L"descends and h > 0 is large enough (2.10), an
isomorphism ¢ Kg = w determines another one:

[ (X; £ @ detg]” = B (X /G5 L7

These vanish if x # dim X. If stable points exist and the g-action on X is free
in codimension 1, any h > 0 will do, and ¢ Kq = w, canonically.

Proof. When £" descends,
E(Lhoke)=LreKe=Lhow.
From (2.11.b) and Serre duality,
(3.4)
[H' (X;£7") @ det g]G = HY (X;Kg @ £h>t = H (X Kg @ Eh)t

Il

HO (X)/G: " ww) = H (X/jGiL™") .

Cohomology vanishing is Kodaira’s theorem. The last part of (3.2.b) follows
from the criterion in (2.10) (strata of codimension > 2 do not affect H") and
from Knop’s theorem (3.6) below. O
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(3.5) Remarks. (i) Call Rg” the derived invariant direct image with proper
supports along ¢, shifted down by § (A.9). Under relative duality, an isomor-
phism ¢¢Kg = w correspond to a quasi-isomorphism Rq!GO = O, and the
theorem also follows by application of Rq!G in (2.11.b).

(ii) Irrespective of ¢“Kg, (3.4) holds, for large enough h, with RgL~"
downstairs. Freedom of the action in codimension 1 ensures that Rq,G,C*h =

¢¢ L7, even when £ does not descend, and that the second isomorphism
holds for any h > 0.

Knop’s results on dualizing sheaves. Keep X smooth, although Knop’s
results [Kn] hold more generally. Consider the condition:

. able points exist, an e G-action on as finite stabilizers in
3.6) Stable point ist, and the G-acti X*® has finite stabili i
codimension 1.

(3.7) (Cf. [Kn, Kor.2].) If (3.6) holds, there exists a natural isomorphism
¥:q¢fKe — w.

A description of v different from Knop’s will be needed in Section 6, so
we shall reprove this in Section 5. Note, meanwhile, a more general result.
The kernel & of the infinitesimal action g ® O — TX is a vector bundle in
codimension 1; call X the line bundle extension of det™'¢ to all of X*5.

(3.8) [Kn, Kor.1]. If the generic fiber of q contains a dense orbit, then,
for an effective G-divisor D supported by the points where the stabilizer dimen-
sion jumps, w is naturally isomorphic to ¢¢(\ ® Kg(D)).

Note that A corrects for generic positive-dimensional stabilizers, but I do
not know a good interpretation for D. Note also that, when the generic orbits
in X® are closed, a jump in stabilizer dimension in codimension 1 entails the
appearance of a unipotent radical in the isotropy (use a slice argument).

(3.9) COROLLARY. If the generic orbits in X are closed, then, for large
h, H* (X//G; q*G(E*h)) is the det™tg-typical component of

o4 (X0 e LM(-D))
Generic points in D have nonreductive isotropy.

Addendum: Shifted quotients. Meinrenken and Sjamaar [MS, Thm. 2.14]
prove a different statement for £, involving shifted quotient (X x Fs,)//G,
linearized by £(2p) (cf. 1.3.iii). For convenience, we call it X5,//G. This cannot
be easily described in terms of stacks (X2,//G depends on X and G, not only on
the stack X¢), but has the advantage of removing the “large h” restriction in
(3.2.b). Further, since all semistable points in X x I, have reductive isotropies,
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(3.6) is now replaced by the simpler condition that the shifted quotient should
contain stable points. At the referee’s suggestion, I shall sketch a proof of
their result along the lines of Section 2. (Due to Kodaira vanishing, this does
not strengthen the Riemann-Roch statement of [MS], except when X5,//G is
singular.) We also note amusing half-way versions, involving K2 and the
p-shifted quotient.

(3.10) PropoSITION. (a) If X2,//G contains stable points,
G
H (X£71)7 = B (X5//G1 a8 (£20) 7))

and the other cohomologies vanish.

(b) Always,
G
ar (X; ke ﬁ) =H" (Xp//G; ¢ (’C%iF ® E(p))) :
(c) If X,//G contains stable points,

H (XK @ .C‘l)G = H 7 (X,//G;af (K2 p @ L(p) 7)) -

(3.11) Remarks. (i) If G is not connected, we must twist /C by det(g).

(i) It will emerge from the proof that the conditions on stable points in
(a) and (c) can be much weakened, if one is interested in (X x F')* and not in
the quotient.

Proof (sketch). To argue as in (3.2.b), we must show that H§(X x F;
K ® L(2p))¢ =0, for an £(2p)-unstable stratum S on X x F, with associated
G and Z = Zx x Zp. If Wi, and W denote the Weyl groups of L and G, the
H-fixed point set of Zg is Wy, -w, for some w € W. Existence of L-semistable
points for £(2p — () on Z requires a := (3 — 2wp to belong to the H-moment
map image of Zx, and this in turn forces the nilradical of the generic isotropy
on Zx to lie in the a-negative parabolic ¢ C g. The T-negative part s of the
generic isotropy of Z° (cf. 2.10) lies then in g N wn. This is vn N wn, for a
certain v € Wg for which v~ !a is dominant; so (3|dets) is underestimated by
(Bldet(vn Nwn)) = — (Blvp + wp), and we have

(3.12)
3% + (B|dets) >

The second term is semipositive (v"'a is dominant), so that (3.12) is positive,

unless 3 = vp+wp, o = vp—wp. In the latter case, dominance of v~ o implies
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that a« = detq, 0 = 2pp, where M is the Levi component of gq. The longest
element w' € Wy C Wg fixes @ and changes the sign of 3; thus it acts on
Z°, swapping positive and negative normal directions. If Y° is the N-orbit of
Z°, the action of w’ shows that S = GY*° is open in X; in this case, X,//G is
empty (unless 5 = 0, but then S was semistable). Else, there must be extra
directions in 7Y, not yet counted in the estimate (3.12) of det™!(T;Y); and
they force vanishing of T-invariants in (2.9).

The proof of (3.10.b) is similar, but involves p/2 and det!/?s. O

4. Counterexamples

Occasional failure of the naive quantization statement for negative bundles
was already noted by M. Vergne [MS, §2.14]. The examples below justify the
restrictions in (3.2.b) and other theorems.

(4.1) The statement can even fail for G = C*, in the absence of stable
points. Let X = P!, £ = O(1), with the obvious C*-action on P! and its lift
to £ which fixes the fiber over 0. X = P~! — {00}, X//G is a point, but
¢¢K = 0. The invariant cohomology of negative powers of £ vanishes, yet the
space of sections on the quotient point is always a line. The correction divisor
D in (3.7) is the origin, with multiplicity 2.

(4.2) For an example where H§(X; K ® £)¢ # 0, let G be simple, B C G
a Borel subgroup, X = G/B x G/B, with G acting diagonally. With £ =
O(p) R O(p), K& L =0O(—p) ®O(—p). The strata are the G-orbits, labeled
by Weyl group elements; they correspond to the B-orbits on G/B. Also,
H;Odim(s) (X;K ® £)¢ = C for each orbit S, while the other cohomologies
vanish. The Cousin sequence collapses at Es, not Ej.

(4.3) Another counterexample to the statement for small negative pow-
ers, where stable points exist, arises from the multiplication action of SLy on
X = P3, the projective space of 2 x 2 matrices, and £ = O(1). The un-
stable locus is the quadric surface of singular matrices, while X*®° is a single
orbit isomorphic to PSLy. The stabilizer Z/2 acts nontrivially on L. Serre
duality identifies H3(PSLg; O(—h)), the only nonzero group, with the dual of
HY(PSLy; O(h —4)). The invariants vanish for odd h, and equal C when h > 0
is even. This matches H*(P3; O(—h))5"2 for all h > 0, except h = 2.

(4.4) Without the codimension condition in (3.6), isomorphism in (3.2.b)
can fail for all negative powers of £. Consider the multiplication action of SLsy
on the space of 2 x 2 matrices, completed to P* by addition of a hyperplane
at infinity. The quotient is P!. The unstable set is the quadric surface of
singular matrices at infinity. Since ¢*O(1) = O(2), ¢¢O(2n) = O(n) for all n.
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One sees on global sections that ¢¢O(1) = O. Thus, ¢¢O(2n + 1) = O(n),
and ¢€K = ¢¢O(-5) = O(-3) # w. Quantization fails to commute with
reduction for nearly all negative bundles, even on Riemann-Roch numbers:
RY(PY; O(=h)) = h — 1, and kY = 0; but the invariants in H*(P*; O(—2h)) are
in degree 2 and have dimension h — 2 (if b > 2). A twist by O(—2) on X = P4
corrects the statement; D, in (3.7), is the cone of singular matrices.

(4.5) An interesting example (without stable points) is the adjoint repre-
sentation of SLg, with quotient A'. Completing sly to P3, the GIT quotient
becomes P!, the unstable locus being the trace of the nilpotent cone at in-
finity. Again, O(—2) = ¢*O(-1), but this time K pushes down correctly:
q¢¢0O(—4) = O(-2). Consider now X, the blow-up of the origin, with excep-
tional divisor E. Linearizing by O(2)(—E), the quotient is still P! (the unstable
locus is the proper transform of the nilpotent cone). However, the push-down
of the canonical sheaf is now O(—1). The natural morphism ©°K — ¢¢ K,
which normally gives rise to ¥ in (3.6), has a 1-dimensional cokernel at 0. The
problem stems not from a jump in the stabilizer dimension, but from the non-
trivial dualizing line of the (dihedral) stabilizer C*xZ/2 along E. (In (3.7), A
is nontrivial.)

(4.6) Finally, (3.2.a) can fail if X has irrational singularities. Choose
a smooth proper curve 3 of genus > 2 and a positive line bundle F with
H'(Z;F) # 0. Let X be the cone over X, obtained by adding a point to the
total space of F, L the tautological line bundle on X restricting to F over X
and to O(1) on every generator. Lift the C*-action on X to £, making it trivial
over Y. The unstable locus is the vertex, and the GIT quotient is the original
curve, over which £ = F has nontrivial first cohomology. Yet H'(X;L) = 0
(say, by a Mayer-Vietoris calculation), while Hé with supports at the vertex
equals H(X; F).

5. Relative version, rigidity and rational singularities

This section presents the relative version (5.2) of the quantization theo-
rem, whose special case (5.4) has the attractive applications (5.5), (5.6), and
Boutot’s theorem (5.7). The more technical wall-crossing lemma (5.8) will be
used for a vanishing theorem in Section 6.

Relative version of the theorem. Recall, in the discussion (1.2) of a pro-
jective morphism 7 : X’ — X, that (X/)% C 7—1X5; thus, 7 induces a map
p: X'//G — X//G on quotients. The former is Proj@,~q ¢¢m«M™ over the
latter, whereas 71 X is Proj @,>¢ ¢=mM". The difference 7! (X™)— (X')*
is the base locus of invariant relative sections of powers of M, and ¢’ : (X —
X'//G arises from the obvious inclusion of graded algebras over X//G.
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(5.1) LEMMA. The L.-stratification (¢ — 0) on 7~ 1(X*%) depends on M
and X%, but not on L.

Proof. The description just given for (X’)* does not involve £. Further,
any 3 and T in 7~ 1(X®) depend on the M-weights alone (the L-weights are
null), and so we can argue inductively for the other strata. O

This allows us to stratify X’ when X is affine, taking £ = O, with affine
quotient X//G = X/G. The construction is local on X/G (G-local near closed
orbits in X = X®%). The stratification can be described word-for-word as in
Section 1, except the Z°/L are now projective over X/G. In the rest of this
section, either X is projective and L is ample, or else X is affine and £ = O.

(5.2) RELATIVE QUANTIZATION. Let X' have rational singularities. If
h >0 and the M" descend to X'//G, Rp.M" = ¢¥Rr, M" on X//G (h >0
is needed if any X'-component has empty quotient).

(5.3) Remarks. (i) If the G-action on X is trivial, this becomes Rp,M" =
(R, M")E | which is a quantization theorem for a family parametrized by X.
Taking X to be a point simply recovers (3.2.a) for X’ and M.

(ii) More generally, if less simply,
Rp, o ¢¢(M" @ V) = ¢¢(V @ Rr,M") |

for any h > 0 and G-vector bundle V on X*° which descends fractionally (with
the usual caveat for h = 0).

(5.4) COROLLARY (assumptions as in 5.2). If Rm,O = O, then Rp,.O = O;
and, for any vector bundle W on X//G, H* (X'//G;p*W) and H* (X//G; W)
are naturally isomorphic.

Below, we shall deduce Boutot’s theorem (5.7) from (5.4). The two are,
in fact, equivalent. (However, (5.2) is strictly stronger; cf. the proof of 5.8.)
Indeed, the assumptions in (5.4) ensure, possibly after we replace M by a large
power, that Spec @, I'(X’; M™) has rational singularities. So, also, does the
quotient Spec @,,~ F_(X ' M™%, and then, O has no higher cohomology over
X'//G = Proj@®,,>o ['(X’; M™)E. This argument is due to Broer and Sjamaar
in the absolute case (when X is a point) [Sj1, 2.23]. Curiously, I do not find
the relative case and its consequences (5.5), (5.6) in the literature.

Proof of (5.2). For affine X, this amounts to

r (X//G; quiw*Mh) —H (X' //G; Mh) .
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Lifting to X', this means
HZG (ﬂ_—les;Mh) — HlG ((X/)SS;Mh) ’

which follows from vanishing of the invariant cohomology of M" with supports
on 71(X®) — (X")*. The affine case suffices, as the statement is local on

X//G. 0

Application: Rigidity and rational singularities of quotients. Important
applications of (5.4) arise from the examples (1.3), when X itself has rational
singularities. The first two results allow us to replace badly singular quotients
with nicer ones, without changing the cohomology of vector bundles. Perturb-
ing the polarization of X slightly gives, for a vector bundle W on X//G:

(5.5) RicipiTY THEOREM. If the perturbed quotient X.//G is not empty,
H* (X //Gip"W) = H* (X//G5 W) .

When no perturbation leads to a nice quotient, shift desingularization
(1.3.iii) can help. Call X} //G the GIT quotient of X x F) under the diagonal
action of G, linearized by £ & () (for small fractional \).

(5.6) SHIFTING THEOREM. A nonempty X\ //G, with small X\, can re-
place X' //G in (5.5).

(5.7) BouToT’s THEOREM. X//G has rational singularities, if X does.

Proof. If X is singular, choose a resolution X’. Next, recall Kirwan’s
partial desingularization of X’//G by the GIT quotient X //G of a sequential
blow-up X of X’ along smooth G-subvarieties [K2]: at every stage, the center
of blowing-up comprises the points whose stabilizers have maximal dimension.
X //G has finite quotient singularities, which are rational (Burns [Bu], Viehweg
[Vi]; see also Remark 5.11). If X //G # (), the composite p : X //G — X//G is
birational. From (5.4) and the assumption on X, Rp.O = O.

This argument fails if X’ or X lead to an empty quotient. By K2, 3.11],
this only happens if, at some stage of the process, the center of blowing-up
dominates the quotient. In that case, we can replace X by that (smooth)
blowing-up center, without changing the quotient, and proceed as before. [

Application: canonical wall-crossing. When X = X', two quotients X$/G,
X*/G (for different signs of ) can be compared with X /G, and we may
consider vector bundles which descend to the perturbed quotients, but not to
X*/G. Showing equality of the plus and minus cohomologies (invariance under
wall-crossing) by the argument in Section 2 requires more information about
the strata. (Typically, we need absolute bounds on the fiberwise T-weights;
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the bundle should not be “too far” from descending.)® An important exception
concerns M = K. (C. Woodward informs me that the result was known for
Riemann-Roch numbers of smooth symplectic quotients.)

(5.8) LEMMA. If X® is smooth and verifies (3.6), V descends fractionally
to X3 /G and 0 < a < 1, the cohomologies of the invariant direct images of
Y ® K% on all three quotients agree.

Proof. Equality for X, //G and X//G is an instance of (5.3.ii), without
any upper bound on a. On the minus side, ¥V ® K* = (V@ K1) @ K,
and K> ! is positive relative to p_ : X_//G — X//G. A classical argument
of Grauert and Riemenschneider [GR, Satz 2.3] deduces the vanishing of all
higher direct images of ¢%,(V®K®) under p_ from a global vanishing result on
X_//G; that vanishing (which slightly extends [GR, Satz 2.2]) is the subject
of Theorem 6.2 below. Agreement of the direct images requires elimination
of cohomologies supported on codimension 1 strata. This follows from the
last criterion in (2.10) and the assumed freedom of the g-action (thus of the
u-action) in codimension 1. O

Appendiz: Construction of ¥ and proof of (3.7).

Stable case. The result is clear when G acts freely on X®%; given that, étale-
locally on X//G, Luna’s slice theorem (A.7) reduces the case of a proper action
to a finite group quotient. Assume then that G and ¢ are finite; O = ¢.O
splits, as an Oy /g-module, into G-isotypical components, with O/ as the
identity summand. Grothendieck duality along ¢ gives natural isomorphisms
(note that g is now K):

(5.9) w = RHomyx/q(O;w) = RHomX//G(ng;w)G
! G G
= Rgi o RHomy//q ((’); q'w) =q¢,Kg .
(5.10) Remark. In stack language, we would say that the morphism

q“ - X& — X//G is proper; thus, ¢ = q!G has a right adjoint ¢©', for which
¢“'w = Kg. Since Rq!GO = O, duality for ¢ gives

w = RHomy ;c(0;w) = Rl o RHomxs (0; Ka) = ¢FKe -

5This is exactly right when the strata on the two sides of the perturbation are in one-to-one
correspondence, as in a truly faithful wall-crossing, studied in [DH, §4] and [Th]. Each T is then the
stabilizer of a Z, and the bounds on the fiberwise T-weights over Z come from the determinants of
the positive and negative parts of the normal bundles; cf. (2.6).
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(5.11) Remark. This shows that X//G is Cohen-Macaulay, since the du-
alizing complex ¢¢ /g lives in a single degree. Now, for finite group quotients,
it is clear that top differentials are completely regular (locally L? [GR, §2])
downstairs, if their liftings are so; thus, Grauert’s and Grothedieck’s canonical
sheaves agree on the quotient, if they did so upstairs. Rational singularities
are thus preserved by finite quotients.

General case. Let, for simplicity, X* be smooth. In the proof of (5.7),
¢€Kg =qf omKe .

With § : X*//G denoting the structural map and i : X% C 7' (X*) the
inclusion, we have canonical isomorphisms

(5.12) w=p&=ps03%Kg=q%0m 0iKg.

The first holds because X//G and X //G have rational singularities; EKg = @
has just been proven, while gomo¢ = p o ¢ gives the last equality. Also,
Y g Kg — w is defined from Kg = K C e 00K

We check that @ is an isomorphism stepwise in Kirwan’s construction.
Luna’s slice theorem and the result for finite groups reduce us to the case of a
linear representation X = V of a connected reductive group R, with V% = {0},
and its blow-up X = V about the origin. Let & be the canonical bundle of
P(V). The desired isomorphism can be checked on global sections over V', and
is guaranteed by the vanishing, for n > 0, of R-invariants in the cohomologies
HL(P(V); k(n)) supported on strata S of codimension 1. This follows from the
last criterion in (2.10); the u-action on Y is generically free, since (3.6) requires
this on the cone over Y in V, and nilpotence of u ensures its generic freedom
onY C P(V).

(5.13) Remark. Similarly, ¢¢(V @ K) = p, 0 ¢¢(7*V @ K), if V descends
fractionally.

6. Cohomology vanishing

Let X° be a smooth G-variety having a projective good quotient (3.1) (e.g.
the earlier X*°). Call an equivariant line bundle over X° G-ample if it descends
fractionally to an ample line bundle on X°/G. This is stronger than ampleness.
(For instance, if X° is quasi-affine, ampleness is a vacuous condition.)

(6.1) LEMMA. X° can be realized as the semistable part of a smooth, proper

X, carrying a linearization extending (some power of ) any given G-ample line
bundle on X°.
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Proof® We shall, in fact, produce a relative G-projectivization § : X —
X°/G of q, with relatively ample invariant divisor F at infinity; and we shall
see that X can be chosen smooth, if X° is so. Granting that, choose a large
L on X°/G; then, g*L(E) is ample on X and carries an obvious G-action.
Thus linearized, the semistable part of X is precisely X°, because all invariant
sections of ¢*L™ over X° extend by zero to sections of §*L"(nE) over X.

To find g, choose a coherent G-subsheaf F C ¢,O, large enough to embed
X° properly into the linear space A := Spec Sym®(F) over X°/G. The closure
X of X° in the relative projective completion of A and the relatively ample
divisor E at infinity are equivariant. If X° is smooth, X will become so, after
sequentially blowing up G-subvarieties in X —X°; and the desired E is obtained
by subtracting, at each blow-up step, from the pull-back of the previous FE, a
small multiple of the exceptional divisor. O

(6.2) PROPOSITION. If (3.6) holds and F is G-ample, higher cohomol-
ogy of ¢¥(F ® Kg) over X°/G wvanishes. (Equivalently, the invariant higher
cohomology of F @ Kg over X° vanishes.)

Proof. The lifting F of F to X° (cf. the proof of 5.7) defines a quasi-
positive line bundle over the smooth, compact, Kdhler DM stack X°//G. By
Grauert-Riemenschneider [GR],

H>Y(X°//G; F®K) =0

and o
R™p, 0 ¢ (F @ Kg)=0.

As in Remark (5.13), py 0 % (F @ Kg) = ¢%(F @ Kg). O
(6.3) Remark. This can fail without (3.6): if 7 = O(1) in (4.4),
¢ (K®F)=0(-2),
on P!, has H' # 0.

The results of Section 5 allow us to relax the assumptions. Let X¢ be
the semistable locus for a perturbed linearization (or shift desingularization)
of X°; note, because of (6.1), that the refinement lemma (1.2) applies.

(6.4) PROPOSITION. If L descends fractionally to X°/G, F := L& K"
is G-ample on X3, and the latter verifies (3.6), then H>° (XO/G; qfﬁ) =0.

When X is smooth and projective, and £ > 0 and £ > K, Kodaira’s
theorem and (3.2.a) imply that H>°(X//G; L) = 0. Yet £ need not dominate
K on X//G, since the quotient with respect to £ may differ from the quotient

6The author thanks Y. Hu for spotting an error in the original proof.
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at LK~!, where the latter is guaranteed to be ample. (The difference between
quotients is often described in terms of K-flips [Th], which create negative
subvarieties for LK ~1.) The previous argument for vanishing breaks down
when X is not compact; and indeed, the conclusion can then fail (example
6.6). A useful criterion arises from the wall-crossing lemma. (Astute use of
Nadel’s vanishing theorem in (6.4) might well accomplish the same, but I have
only checked special cases.)

(6.5) PropPosITION. H>? (XSS/G; qfﬁ) = 0, when the following hold:

(i) £ and LK~ are ample on X;

)
(ii) all quotients X3°/G (linearized by LK) are projective;
(iii) the family X;® is “upper semicontinuous” for 0 <t < 1;
)

(iv) (3.6) holds for each X%, 0 <t <1, and X contains LK~ !-stable points.

“Upper semicontinuous” means: constant except at finitely many ¢, where
C X{®. The X;® will then satisfy a ‘refinement lemma’ akin to (1.2): each
. € X/, then
is the (t + ¢)-semistable part of X;*, and application of Lemma

Xite
X7®— X5 ,, if not empty, is a union of KN strata. (Indeed, if X7
in fact X5,
(6.1) to X;® reduces us to the projective case.) Parts (ii) and (iii) are automatic
when X is projective, but then, the conclusion is obvious, as noted earlier. We
require, roughly, that no semistable sets “notice” the missing part of X. Note
that semistability is delicate in the quasi-projective case ([MFK, Def. 1.7]).

Proof. Lemma (5.8) shows that the cohomology of £ is the same for all
t < 1. Because of (iv), LK ™! is G-quasi-positive on X3 _, and the argument

in (6.2) implies cohomology vanishing there. O

(6.6) Ezample. Let X be the total space of Ky, less the zero-section, on
a smooth projective curve ¥ of genus 2. Since X is quasi-affine, (6.5.1) is
automatic. Further, (ii), (iii) and the first part of (iv) hold for 0 < ¢ < 1, with
L = Kx and the natural C*-action; but H'(%;K) # 0.

7. Differential forms and Hodge-to-de Rham spectral sequence

The two main results (7.1) and (7.3) were motivated mainly by the
applications (9.9) and (9.10) to the moduli stack of principal bundles over
a curve. Those will be further developed in a joint paper with S. Fishel and
I. Grojnowski, leading to combinatorial applications.
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Statements. Unless otherwise noted, G is reductive and X a completely
KN-stratified G-manifold (§1). The first theorem involves the (strictly adapted)
line bundle £ and is the straightforward generalization of (2.11).

(7.1) THEOREM. Restriction induces an isomorphism
HY (X3 Q9(£)) = H (X5: 07(L))
of cohomologies over the smooth sites of the two stacks.

(7.2) Caution. The “cohomology of QP(L) over the smooth site of the
stack” (cf. Remark 7.7) is the invariant hypercohomology of a complex
grﬁodge ® L over X; see the paragraph preceding (7.9). It is not the invariant
part of H? (X;QP(L)), for which (7.1) can fail, as we saw for Q. When G
acts freely on X the second space in (7.1) equals H? (X*/G;QP(L)), and,
in this case, (7.1) generalizes (3.2.a). Already for finite stabilizers, we need
to use the modules of orbifold differentials on X*/G [St, §1]. In general, the
interpretation of ¢¢ Qrﬁodge is more sophisticated than the definition: it should
be the p'" Hodge-graded part of a Hodge module (in the sense of M. Saito), the
total direct image of C along ¢ : X& — X*/G. Unfortunately, I know of no
reference for equivariant mixed Hodge modules where this is made rigorous.

The more interesting case is h = 0, when the spaces in (7.1) constitute
the E; term in the Hodge-to-de Rham (Frolicher) spectral sequence for the
stack Xqg. For classifying stacks of complex Lie groups, this was studied by
Cathelineau [C], who viewed it as a holomorphic analogue of the Bott-Shulman
spectral sequence. The following result (a) is quite clear when X is proper,
but less obvious in general.

(7.3) THEOREM. (a) The Hodge-to-de Rham spectral sequence for Xg
collapses at Ey, which equals GrHE(X), for the algebro-geometric Hodge fil-
tration. There is a Hodge decomposition

Hg(X) = @ FﬁodgeHg(X) n FglodgeH(n?(X) :
ptg=n
(b) The same holds for the equivariant HAR sequences with supports on
each KN stratum.

(7.4) Remark. Kirwan [K1, Thm. 5.4] proved the equivariant perfection of
the Morse function |||, that is, the collapse at E) of the equivariant Cousin
sequence of the stratification, with C coefficients. She further showed that the
induced filtration on H¢ (X) was compatible with Hodge decomposition [K1,
§15]:

GreHM(X)= @ H} “7Z°).

codim S=c¢
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We shall use these facts in proving (7.3) (see, however, Remark 7.22).

The Cartan-Dolbeault complex. Call K a compact form of G, and let
{A*(X),d} be the C*° de Rham complex of X. The Cartan model for Hy,(X)
is the complex

K
A% (X) = [A’(X) ® sym'gt}

with differential
dg = d+25a ’ L(&a) :

Here, &, is a basis of £, £% the dual basis of €, and ¢ denotes interior multipli-
cation by the vector field generating the g-action. Elements of g* have degree
2. The complex structure refines the grading on A*(X) to a bigrading, which
we extend to A% by declaring g’ to have type (1,1). The first (holomorphic)
degree defines the descending Hodge filtration of { A% (X),dk }:

K
(75) FhoaeAk(X) = @ [4™(X) @ sym'g!| " .
r4+s>p

The associated graded complex @, GrﬁodgeA;((X ), defined by r + s = p in
(7.5), carries the Cartan-Dolbeault differential Ok := 0 + >, &% - 1(€L9). The
spectral sequence resulting from (7.5) is the Hodge-to-de Rham (HdR) spectral
sequence for the stack Xgq.

For an invariant locally closed subvariety S C X, the HdR spectral se-
quence for X g with supports in S (converging to the equivariant cohomology
of X with supports in S) arises similarly, from the Hodge filtration on the
total complex of the restriction arrow A% (U) — A% (U —S) when we use some
invariant open set U C X in which S is closed.

(7.6) Remark. When X is not proper, (7.5) computes the analytic HIR
sequence, whereas it is the algebraic one that concerns us. One can show
that the two agree, when X is completely KN stratified,” but a simpler way
around the difficulty is to choose a smooth G-compactification X of X, with
normal-crossing complement, and replace A®*(X) by the Dolbeault resolution
of the meromorphic extension to X of the holomorphic de Rham complex of
X. (Taking the direct limit over all choices removes the dependence on X.)

(7.7) Remark. The simplicial homotopy quotient variety X, associated to
the G-action by the bar construction, represents the stack X in the simplicial
theory of stacks. Its hypercohomology with constant coefficients is the K-
equivariant cohomology of X. It follows from (7.3) that {A®*(X k), FP,dk} is a

7One can show, in this case, that the algebraic sheaf cohomology is computed by the K-finite
part of the Dolbeault complex.
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real, pure Hodge complex [D, §6] representing RI'(X,; C) in the derived category
of (mixed, a priori) Hodge complexes. Note, when X is not proper, that the
filtration on A®(X) by the holomorphic degree is not the Hodge filtration; so
the result is not completely obvious.

(7.8) Remark. (7.3) implies the Ok Ox-lemma for A% [DGMS, 5.17]. The
main theorem of that paper, to which we refer for definitions, implies that the
differential graded algebra { A% (X),dk} is equivalent to its cohomology (with
zero differential). Thus, subject to restrictions on 7, the rational homotopy
type of the stack X (which is the homotopy quotient of X by G) is determined
by its cohomology H¢(X), as are the rational homotopy types of inclusions
Ug C X of open unions of KN strata. In truth, the OxOx-argument for open
U assumes that the analytical difficulty (7.6) has been properly addressed;
however, the second proof of the main theorem in [DGMS], along with Morgan’s
follow-up work on open varieties, shows that purity of the Hodge structure and
formality for complete X suffice for the topological corollary.

Algebraic description of E1. The bundle Q% ® Sym®g’ of Cartan-Kéhler
differentials, filtered by the Hodge degree, carries the equivariant de Rham
operator dg = 0+, £%-1(&,). While 82 # 0, the degree-zero part >_, £%-1(&,)
is a differential, so that the hypercohomologies of the graded parts

p . P ° o 1t
ngodge . gTHodge <QX ® Sym g )
are defined. (Script G indicates sheaves, rather than vector spaces.)

(7.9) LEMMA. The Cartan-Dobeault E{"? equals H, (X;grﬁodge)7 and
Og gives rise to successive differentials which agree with those coming from

(7.5).

(7.10) Remark. One can show that H, (X; grﬁodge) agrees with the hy-
percohomology HY%(X,; Q) of QP over the simplicial variety Xo of (7.7), and
that the differentials arise from de Rham’s operator.

Proof. H*(X;GrP) is a complex-algebraic representation of G, so that
Hy (X;Gr7) = H* (X;GrP)" ;

the latter is computed by (GrPQk (X)), Ok), by exactness of K-invariants and
by Dolbeault’s theorem. O

From this, one can see that the spectral sequence depends only on the
quotient stack X, not on X or GG. In terms of equivariant cohomology, let
G’ O G be reductive, and call X’ the induced space G’ x& X. After factoring
out the Koszul complex Sym®(g’/g)! @ A*(g'/g)!, Gr (2% ® Sym®g’) becomes
quasi-isomorphic to the complex induced on X’ from Gr (2% ® Sym®g’).
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(7.11) COROLLARY. The HdR sequences for Xq and X, are naturally
isomorphic, from Eq1 onwards.

(7.12) Remark. Taking G' = GLy yields an HdR spectral sequence for X
for any linear G it can be shown to agree with “the” HdR sequence (7.10). The
first part of (7.9) still holds; but when G is not reductive, extra differentials
arise from group cohomology (already when X is a point; cf. [C]).

Proof of (7.3). Assume that G is connected (the components only extract
the invariant parts of the terms below). By (7.9), the Ej-term in the G-HdR
sequence is

G
(7.13) B = Y (X5 Grfiogg) = HE(X).

For each p, filtering by the degree r of the differential form gives yet another
spectral sequence

(7.14) EI,S _ [Hs (X: Q") ® <Symp7rgt>}a — {T (X; grﬁodge> .

For proper X, collapse of the usual HdR implies that the F; term is H*(X) ®
(Sym*g*)¢. This vector space already equals H(X) (non-canonically), be-
cause the purity of the Hodge structure (or [K1, 5.8], in the projective case)
forces the collapse of the Leray sequence for X — BG with complex coeffi-
cients. So there can be no further differentials in (7.13) or (7.14).

For any X, there is, for each Hodge degree p, a G-equivariant Cousin
spectral sequence converging to the E; term in (7.13), involving the G-hyper-
cohomologies with supports on the KN strata:

G G
(7.15) B = HGE (X0 ) = H™ (X3 0mh00)

for a descending ordering {S(m)}m,en of the strata. Fix m and let ¢ = m + n;
the left-hand side is the E*? term of a G-HdR spectral sequence with supports
on S = S(e),

G
(7.16) EPY = HY (X0 ) T = HE (XG5 C)

abutting to equivariant cohomology, with supports on .S, of the constant
sheaf C.

Collapse of all sequences (7.16) and the Hodge splitting in (7.3) will fol-
low by induction on the rank of G. We shall see below how the inductive
assumption forces the collapse of (7.16) for unstable S. Granting that, let us
prove its collapse for §' = X5, Realize X*° as the semistable stratum in some
smooth projective X, as in (6.1). With X replacing X, the m # 0 part of the
Cousin sequence (7.15), and its abutment, are the Gr%odge of their counter-
parts with C coefficients. But [K1, Thm. 5.4] asserts the collapse at F; of the
latter sequence. As Grlﬁodge is exact, the m # 0 part of (7.15) embeds into
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E+. So there are no differentials, and the left edge H"(X*%; grﬁodge)G(Xss; C)
agrees with Gr%odgeHngp(Xss;(C). Hodge splitting for X follows from the
same for X.

Collapse of (7.15) for any X follows hence and from [K1, 5.4]: the differ-
entials vanish in complex cohomology even prior to taking Hodge Gr’s.

Let us explain the collapse of G-HdR for an unstable stratum S, mapping,
as in Section 1, to G xP Z° under ¢. As in Section 2, Hg (X; grﬁodge>G is
the G-hypercohomology of a complex ngrﬁodge of sheaves of S. There is a
natural inclusion

(7.17) G Hodge (Qg ® Sym'gt) — ngr’gggge (Q}( ® Sym'gt)

(¢ = codim(S)), coming from the obvious maps (where Js is the ideal sheaf
of S),

(7.18) A*(T'S) — A*TE(T'X) @ A*P(TsX), O/Js® A*P(TsX) — Rs0 .

Cramm A. (7.17) induces a “Thom isomorphism” in G-hypercohomologies,
(7.19)

HY (S Grfgee (23 @ Symta!) ) = HLF (X2 Grls,. (2%symg!))

If so, it suffices to check the collapse of the G-HdR sequence for S (rather
than with supports in S). By (7.12), that is also the HdR sequence of the stack
Y5. We may assume the collapse at Eq of HAR on Z} (T acts trivially on Z°,
so we are reduced to the lower-rank group L/T); it thus suffices to prove:

Cramm B. The morphism of stacks Yp — Z7 induced by ¢ gives an
isomorphism on Ey terms.

Proof of the claims. Freedom of the ui-action cancels a Koszul factor
Sym®*u! ® A*u in go*RggrﬁJggge. Its “Gr” for the residue filtration is, then,
the induced bundle, from Z° to G x Z°, of

(7.20) €D peGriinage ( y® Sym'pt) @ Sym(TsX) ® A" (TsX)! @ det(TsX) .

Combining the last two factors into A°~"(Ts X') shows that the T-invariants are
in r = ¢ and the constant line in Sym(7sX). This picks the image of (7.17),
proving (A). The surviving factor go*grgodge (23 ® Sym®p’) admits a further,
T-compatible degeneration to

(7.21) P Irhiee " (0% ©Sym*) @ Sym"u' @ A*(T7Y)' @ Sym(TY)" .

The T-invariant part is the first factor, proving Claim B and completing the
argument. O
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Proof of (7.1). After twisting by the line bundle, the argument (7.16)—
(7.19) implies the vanishing of all unstably supported cohomologies, because
of the positive T-weights on L. d

(7.22) Remark. A more careful analysis shows that (7.3) consists of two
portions:

e If X is KN stratified, the Cousin sequence (7.15) collapses at Fj.

e If, additionally, (1.1.v) holds for a stratum S, the G-HdR spectral se-
quence with supports on S collapses at F7, and the filtration on F1 = FE4
gives the Hodge splitting on cohomology.

Their proof is a refinement of Bott’s argument [K1, 5.4] for the equivariant
perfection of the stratification. However, being unaware of any application of
the separate statements, I shall not prove them here.

8. Application to G-bundles over a curve

The final sections briefly explain how to recover a cohomology vanishing
theorem of [T1], and prove vanishing of higher cohomologies of line bundles
over moduli spaces of G-bundles over a curve. Also, Theorems 7.1 and 7.3 are
restated for the stacks of bundles (Thms. 9.9 and 9.10), but serious applications
will be discussed elsewhere. Everywhere, G is reductive and connected.

The stack 91 of algebraic G-bundles over a smooth projective curve 3 of
genus ¢ has several presentations. All global ones involve infinite-dimensional
objects, which the equivariant cohomology of Appendix A cannot quite handle.
Still, sheaf cohomology over 9 (defined as cohomology over its smooth site) can
be recovered as a limit over open substacks of finite type, which admit quasi-
projective modulo reductive presentations. We can choose these substacks to
be unions of finitely many Shatz strata (8.4).

One technical point deserves mention. The most explicit presentation, the
Atiyah-Bott stack (8.3), is the analytic stack underlying the stack of algebraic
bundles. To argue as in Section 2, we must use algebraic sheaf cohomology.
That algebraic and analytic sheaf cohomologies agree is true but not obvious.
Avoiding that fact, the existence of algebraic presentations shows that algebraic
sheaf cohomology is well-defined; while the analytic presentation (8.3) serves
only to identify the subgroup T (of the gauge group) whose action on the strata
and their normal bundles enforces the vanishing of local cohomologies.

81t follows from [T1], which reduced everything to Lie algebra cohomology. See Remark (7.6)
for another argument.
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(8.1) Weil’s adele group presentation. For semisimple G, 91 is the double
quotient stack G(X)\G4/Gg, where A is the adele ring of ¥, O the subring
of adelic integers, and G(X) the (algebraic ind-) group of G-valued rational
maps. Alternatively, 9 is the quotient under G(X) of the ind-variety G /Go),
the adéle flag variety. Equality between the moduli and the double coset
stack holds for any linear group at the level of C-points; however, equality of
the stacks requires Harder’s result, and its refinement to families [DS], that
algebraic bundles with semisimple structure group are trivial over an affine
curve (this fails for GLq).”

(8.2) The uniformization theorem [LS]. One can economize in Weil’s de-
scription by considering the affine curve ¥* obtained from ¥ by removing a
point p, and the groups G[[z]] and G((z)) of formal holomorphic and of formal
Laurent loops, using a formal coordinate centered at p. Then I is equivalent
to the quotient stack of the local flag variety Q := G((2))/G][z]] by the group
G[X*] of regular G-valued maps on ¥*. (Both are ind-objects.) Again, the
key ingredient is [DS], so G must be semisimple.

For another look at the same presentation, consider the quotient Xy,x :=
G((#))/G[X*]. This is a scheme of infinite type, but locally it is fibered in
(infinite-dimensional) affine spaces over a smooth finite-dimensional variety.
(The fibers are normal subgroups of finite codimension in G[[z]], and the base is
a locally universal family of G-bundles over X, with suitable “level structure”.)
Then, M = X5,/G][z]]. Similar statements hold for any number of punctures
on X.

(8.3) The Atiyah-Bott construction [AB]. The identity component of 9,
in the analytic category, is the quotient stack of A, the space of smooth,
g-valued (0,1)-forms, under the gauge action of the group G(G) of smooth
G-valued maps. (If G is multiply connected, extra components of 91 arise from
connections and gauge transformations on various C'*° principal G-bundles over
¥..) Locally on A, there are normal subgroups of finite codimension in G(G)
acting freely, with smooth, finite-dimensional quotients; so this presentation is
locally equivalent to a finite-dimensional one. It was suggested in [AB], and
proved in [Da] and [R], that the Morse stratification of A by the Yang-Mills
functional (defined after choice of a Kahler metric on ¥ and an inner product
on g) agreed with the Shatz stratification (8.4).

In the spirit of Section 1, unstable strata are described as follows. A
dominant 1-parameter subgroup (1 — psg) v of H C G determines L, P and
u as in Section 1. Smooth L-bundles (equivalently, P-bundles) over ¥ are
classified by H? (X; mo(BL)) = H? (¥;71(L)), so v~ ! determines an equivalence

90ne could avoid [DS] by using nonstandard “configuration space” style ind-variety structures
on G(X) and G4/Go.
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class of smooth reductions to P of our G-bundle. A Yang-Mills connection A
determines a 1 — psg T of G(G), whose infinitesimal generator is minus the
curvature. Assume that T is locally conjugate to . (This happens if and only
if A determines an L-reduction of type y~!.) The T-unstable stratum S in A
is the G(G)-orbit of the set Y° of those connections which flow, as ¢ — oo in T,
into the set Z° of the semistable connections of topological type y~! € m1(L).
The connections in Z° are necessarily subordiate to the L-reduction of the
G-bundle determined by A, those in Y° to the corresponding P-reduction. If
we call G(P) and G(L) the obvious gauge groups, the quotient stack & = Sgq)
(a substack of 901) is equivalent to Ygo( Py and classifies semistable P-bundles
of type v~ 1; while Zé( L) is the stack of semistable L-bundles of the same type.

(8.4) The Shatz stratification. Shatz [Sh] defined functorial stratifications
on algebraic families of vector bundles on ¥. Strata are indexed by con-
cave polygonal functions with integral vertices, starting at (0,0), the Harder-
Narasimhan (HN) polygons. The vertex coordinates label the ranks and degrees
of subbundles in a distinguished filtration with semistable subquotients. This
filtration is a reduction of the structure group to a parabolic P C GL,; the
HN polygon defines a homomorphism T : C* — GL,, with generator corre-
sponding to a dominant, regular weight 3 of P, such that T~! classifies the
P-bundle topologically. The partial ordering on weights, defined by A > p if
and only if A — p is in the span of negative roots, matches the partial ordering
of the strata by the intersection relations between their closures [FM].

A similar description applies to any reductive G. Every unstable G-bundle
has a unique parabolic reduction whose associated Levi bundle is semistable
and for which the nilradical of the ad-bundle has positive HN slopes. The
topological type of this reduction, described by a 1-parameter subgroup of G,
labels the stratum to which the bundle belongs. The construction is functorial
for group homomorphisms with finite kernels; for instance, the Shatz strata
for G-bundles are pull-backs of those for SL(g)-bundles under the morphism
Ma — Mgy, (g)induced by the adjoint representation.

(8.5) Line bundles over M. For a torus T, My = H(X;T) x BT, and
Pic for each component is an abelian variety times H'(7T;Z). For simple G,
Pic(IM) = H?(9M; Z), a finitely generated group of rank 1. In general, the exact
sequence [G, G] — G — G® = T splits Pic(9M) into Pic(M(q,¢) and Pic(Mr),
modulo finite groups (see (8.10) for more details). Call line bundles over M ¢
positive if their lifts to the adele flag variety are so. This is a convenient
misnomer; there is no satisfactory notion of positivity for bundles over Artin
stacks. Positivity over the H'(X;T)-factor in 97 has an obvious meaning.
Positive line bundles over 9 are those whose Mg ) and My components are
positive. Similarly, one defines semipositivity.
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Linearizing 97 by any positive £ leads to the same space

M = Proj @ rem,.cr),
n>0

the moduli space of semistable G-bundles. The morphism ¢™ : M — M
from the open substack of semistable bundles to M is known to be equivalent
to a good quotient of a smooth quasi-projective variety by a reductive group
(see [BR] and the references therein). M is the quotient of M|g g1 X Maq(c)
by the finite group H'(X; 71 ([G, G])), so, for cohomology vanishing questions,
we only need to discuss simple groups.

In genus g > 2 (3, for sly) the complement of the stable points in 9t has
codimension 2 or more; (6.2) recovers the following result, due to Kumar and
Narasimhan in the case when £ descends to M.

(8.6) THEOREM (cf. [KN, Thm. B]). H* (M;¢™(K ® L)) = 0 in positive
degrees.

(8.7) Remarks. (i) Kumar and Narasimhan deduce this directly from the
theorem of Grauert and Riemenschneider; the key point is that M is Goren-
stein. (Cf. also Satz 2 in [Kn], following which X//G is Gorenstein when (3.6)
holds and K¢ descends.)

(ii) (8.6) can be checked directly in genus 1, when the moduli space is a
weighted projective space. The next section will show another way to remove
the restriction on the genus.

The quantization theorem implies the following special case of [T1, Thm. 3].
The older statement about H® goes back to [BL] for SL,,, and to [KNR] and
[LS] in general.

(8.8) THEOREM. For positive £, H*(9; £) = H(M; £), H>O(IM; L)
vanishes, as do all cohomologies with supports on unstable Shatz strata.

Proof. We use the definitions and notation of (8.3); the objects essential
to the argument (as opposed to those merely used to simplify the description)
are algebraic. As we are only checking the signs of some T-weights, an analytic
description suffices.

At a T-invariant connection A € A, defining a principal L-bundle B4,
the normal space TsA (equal to T, and replacing TgX in 2.4) is
H! <E; By x* ﬁ). Its a-weight space has dimension g — 1+ (5|a) and T-weight
(Blcr). The T-weight on det(Ts.A) is the sum of all (¢ — 1+ (Ble)) - (Bla). (It
can happen, if g = 0, that all dimensions (g — 1+ (3|a)) vanish; S is then open
and there are no semistable bundles in the A-component of 91. Otherwise, the
weight on det(Ts.A) is positive.)
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Recalling that Zé( L) is the T-component of the stack of semistable
L-bundles, let E be the universal L-bundle over ¥ X ZE(L) and p the pro-
jection to ¥. As in Section 2, the cohomology with supports Hg (9;V) of
an algebraic vector bundle is computed from the cohomologies over Zg;( L) of
V @ det(TsA) @ Sym(Ts.A), tensored with the dual of the free commutative
DGA on Rp.(E x% u)[1]; the first factor is the Gr of the residues, while the
second is the fiberwise cohomology of the morphism Yg"( P~ Zé( L) induced by
the T-flow. (The fibers are quotient stacks of A%!(¥;u) by the 0-gauge action
of G(U); this corresponds to the U-action on the fibers of ¢ in Section 2.) All
T-weights on Rp, (U x I u) being negative, all cohomologies will vanish, if the
V-weights are nonnegative (or, even, not too negative). Since the L-weight is
positively proportional to ||3 ||2 (again, from the Atiyah-Bott description), we
are done. O

(8.9) Remark. Theorems 8.6 and 8.8 apply to all reductive groups. There
seems to be no clean written account of the factorization formula (cf. 9.8.ii)
for the dimension of H? for multiply connected groups, but an explicit “Ver-
linde formula” for all semisimple groups was recently derived by Alekseev,
Meinrenken and Woodward [AMW].

(8.10) Appendiz: More on Pic(IM) for reductive G. If G is simply con-
nected, M is connected and Pic(9M) is free, of rank equal to the number of
simple factors. For semisimple G, the components of 9t are labeled by 1 (G),
and, for each component 9M® . p € 7 (), there appears in Pic the torsion
subgroup of flat line bundles, dual to m (MP) = H (¥;7,(G)), in addition
to a free group of the expected rank. (Identification of the integer generators
of the free group is a bit subtle; see [BLS], [T1].)

For any connected G, the group extension G/ = [G,G] — G — G* =T
leads, over a component Dﬁg? ) of My labelled by p € m1(T), to a locally trivial
fibration of stacks

Himfg,)c] o IImE —mp
v’ o’

with p’ ranging over the liftings of p to m1(G). Here fmg/) stands for the
p’-component of M, but QJTZ[)C,;’G] is a component of a twisted version of the
stack of G’-bundles, best described as the stack of “Ad(G’)-bundes with local
G’-structures along ¥”. The component in question is selected by the image
of p' in m (Ad(G’)) (under the obvious map G — Ad(G) = Ad(G")); and the
obstruction to a global G’-structure is the further image in the center of G'.
(The local G’-structures have the effect of cutting down the components of
the gauge group, in the Atiyah-Bott presentation (8.3).) From the fibration of
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stacks, the Leray sequence with O coefficients gives an exact sequence
: (p) : ' : '
1 — Pic (DﬁT ) — Pic (ﬂﬁ%) — Pic (DﬁfGyG]) ,

which I claim is short and split.
We must only check this on the groups of components, because the (divisi-
ble) abelian variety in Pic(9r) splits off. It suffices (by pure Hodge theory) to

see that H? D’ﬁ(Gp); Z) — H? (Dﬁfg)m; Z) is onto and that the torsion parts are
isomorphic. Now, in the Leray sequence of the earlier fibration of stacks, with Z
coefficients, the cokernel of this last map transgresses to the torsion-free group
H3(M7; Z), and rational splitting forces integral surjectivity. Equality of the
torsion parts follows from 71 (G’) = 71 (G)™™ and the earlier identification of

1 (9), which holds for any G.

9. Parabolic structures

There exist thorough treatments of moduli of vector bundles with parabolic
structures ([MeS], [S2]), including the GIT variation problem ([BH], [Th]), but
none, it seems, for parabolic G-bundles. This is partly because the definition
of the moduli spaces adopted in the standard reference [BR] is “wrong” for cer-
tain parabolic weights (those on the far wall of the Weyl alcove, cf. (9.1); the
true moduli space is then smaller than in [BR], and is always real-analytically
isomorphic to a space of representations into the compact form of G). Most
results extend from GL,, to other groups by embedding. For brevity assume
that G is simple.

A quasi-parabolic datum assigns to points 21, ..., z, € ¥ parabolic'® sub-
groups P; of G((z)). The associated stack M(z, P) of G-bundles with quasi-
parabolic structure is best described with respect to the adélic presentation
(8.2), as the quotient stack, under G(X), of a modified adelic flag variety, in
which the local factor G((2))/G[[z]] at z; is replaced by the generalized flag
variety G((z))/Pi. The standard example involves the subgroups P; C G[[z]]
of those formal holomorphic loops which take values, at z = 0, in specified
parabolic subgroups P; C G;9(z,P) is then the moduli stack of principal
G-bundles over ¥, equipped with a reduction of the structure group to P; at
zi, and is an étale fiber bundle over M, with fiber G/P; x --- x G/P,,. In any
case, M(z, P) is dominated by the stack M(z, B), defined by Borel data; more
precisely, the latter is a fiber bundle over the former, with fiber a product of
flag varieties of reductive subgroups of G((z)).

10 parabolic subgroups of G((z)) are those containing a conjugate of the standard Borel subgroup,
the group of formal-holomorphic loops which become, when z = 0, a given Borel subgroup of G.
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(9.1) Remark. When G = SL,,, all generalized flag varieties are isomorphic
to G/P-bundles over twisted forms of G((z))/G[[#]], obtained by replacing
G((2)) by multi-valued Laurent loops with period equal to a specified central
element of G. Thus, inserting a twisted copy of SLy,((2))/SLy[[2]] leads to the
stack of vector bundles with fixed, nontrivial determinant. For other groups
and more general P;, the gauge condition at the z; which gives rise to 9(z, P)
is more awkward to spell out; and there is no morphism to the stack 9 of
G-bundles. These more general stacks must be included for uniform treatment
(see Remark 9.3). This seems to have been missed in [BR].

Again, Pic(M(z,P)) equals H2(M(z,P)Z); we call line bundles over
M(z,P) (semi) positive if they lift to (semi) positive ones over the modified
adelic flag variety. The class in PH?(9(z, P); Q) of a positive line bundle is a
parabolic datum.

(9.2) Ezamples. (i) In the standard example, Pic(9(z,P)) splits into
Pic(9M) and a full-rank subgroup of @, Pic(G/F;), so that line bundles are
determined by a level k € Z = H?(9M) and weights ); of the parabolic subal-
gebras p; C g. When G is simply connected, all integral levels and weights are
allowable.

(ii) Semi-positive bundles have k£ > 0 and dominant weights satisfying
Ai - 0 < k in the basic invariant inner product (in which the highest root 6
has length v/2). Positivity requires regular weights and strict inequalities. In
general, positive line bundles require P;-dominant, regular affine weights of
equal level.

(iii) The anticanonical bundle on 9M(z, P) is positive, in the sense just
defined.

For positive £, denote by M(z, P, L)% C M(z, P) the complement of the
base locus of large powers of £. It depends on L, but there are only finitely
many of these semistable substacks ([BH] or [Th, §8] for SL,,; argue by embed-
ding in general). Now, M(z, P, £)* has a good quotient ¢™ : M(z, P, L) —
M(z,P, L), the moduli space of bundles with parabolic structures;

M(z,P,L) = Proj T (M(z,P); L") .

n>0

(9.3) Remark. An inclusion of parabolic data P C P’ gives a map of flag
varieties in the same direction, hence a morphism from 9M(z, P) to M(z, P’).
This lifts positive line bundles to semipositive ones. Every semipositive line
bundle over M(z, P) arises by lifting a positive one from a unique 9M(z, P’).
For semipositive £, we can define M(z,P, L) as M(z,P’, L).
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(9.4) Caution. If g(¥) > 0, M(z,P, L) is not empty precisely when L is
semipositive (that is, semipositive = effective). In genus zero, the effective
cone is more delicate to describe [TW]. We only need to know that X! is an
interior point thereof, as soon as three Borel-marked points are present.

(9.5) Stratifications of M(z,P). (See [TW] for more details.) Call ¥° C ¥
the affine complement of the marked points, LG the product of formal loop
groups associated to them, L*TG c LG the product of formal holomorphic loop
groups, and P the product of the P;. If, as in (8.2), Xyo := jLG/G[EO], then
M(z, P) = X0 /P.

Given a positive line bundle £ of type (k;A1,...,An), choose N € Z*
so that each N - \;/k determines a homomorphism y; : C* — H, using
the basic inner product on g. Let NYX — X be a cyclic covering of de-
gree N, totally ramified at the z;, call LyG the N Y.-counterpart of I:G, and
X = (X1,---,Xm). Because P = LGNy - i}JJ([G - x~!, the embedding
E, : Xso C Xnso, defined by the inclusion LG C LyG followed by
x-translation, gives a morphism from 901(z; P) to the stack MY = X o /LG
of G-bundles over NX. The restriction there, under the Shatz strata of MY,
turns out to give a smooth KN stratification of 91(z, P), to which L is strictly
adapted.!! Again, this is best seen in the Atiyah-Bott picture.

Call A the set of smooth (0, 1)-connections on a I := Z/N-equivariant
G-bundle over N3, which is trivial as a smooth bundle, but on which the
[T-action translates the fiber over z; by exp(\;/k). If G is the smooth gauge
group, M(z,P) = A"/G. In a Il-invariant metric on N3, the entire Yang-
Mills structure is IT-equivariant, and A™ is smoothly stratified by the in-
variant parts of the Yang-Mills strata of A. Each unstable A stratum is
the G-orbit of the set S of II-invariant connections, subordinate to a fixed
II-equivariant parabolic reduction, whose Levi parts define semistable, II-equi-
variant L-bundles of fixed topological type. (Such a reduction is determined,
after the choice of a Il-invariant Yang-Mills connection A in S, by the curva-
ture of A.) Note that L-bundles are topologically classified by HZ (3; C*(L)),
so there is now a finite amount of information in addition to a 1-psg in H; so
a stratum in A could break up into several strata in A, The normal space
to a stratum within A", at some such L-bundle B, is the II-invariant part of
H'(¥; B x* 1), and the description of the local cohomologies proceeds as in
the proof of (8.8).

Remark. A defter way to summarize the equivariant Atiyah-Bott con-
struction, following [Bo] and [FS], involves the moduli stack of G-bundles over

HNote that the fundamental line bundle pulls back to LN/k_ This functoriality is a general
feature of Kirwan’s stratification.
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the orbifold NX/II. Its components are labeled by assigning, to each marked
point z;, a conjugacy class of N*® roots of unity in G. Corresponding to
{exp(Ai/k)} is our stack M(z,P). The basic statement (proved by this re-
duction to the equivariant picture) is that “Atiyah-Bott applies to compact
Riemann orbi-surfaces.”

(9.6) THEOREM. For semipositive L,
H(M(z, P); £) = H' (M (2, P, L); " L) ,
and vanishes if ¢ > 0.

(9.7) Remark. When G = SLgy, Mehta and Ramadas [MR] describe the
cohomology over the moduli spaces in characteristics p # 2,3. (If p # 0, the
curve ¥ must be suitably generic.)

Proof. L is positive on some 9(z, P’), and equality of the cohomologies
follows, as in (8.8), from the properties of the stratification in (9.5). For the
vanishing, we argue as in (6.5), after adding enough Borel data. The general
quotients will then contain stable points, and (3.6) is automatic, because all
semistable isotropies are abelian. Lemma 5.8 implies that

HY (M(2,B,L); £) = H* (M(2,B, LK) L) .

(Note, in genus 0, that if £ is effective and we add three or more Borel markings,
then £K~! lies inside the effective cone; while, if £ is not effective, M # ()
and there is nothing to prove.) Finally, vanishing of higher cohomology over
M (z, P, LK) follows from (6.4). O

(9.8) Remarks. (i) One recovers the dominant case of the cohomology
vanishing in [T1, Thm. 3] by pushing semipositive line bundles over Mi(z, B)
down to 91; the result is a twist of a positive line bundle by a product of
evaluation vector bundles.

(ii) Unlike the proof in [T1], this argument does not determine the dimen-
sion of the space of sections. However, (9.6) in genus zero implies Verlinde’s
factorization formula and determines the fusion rules; for it recovers the Lie
algebra cohomology vanishing result on which [T1] is based (see [T2] for a
short survey). One can of course also invoke the original factorization proof
for HO(M(z, P)) [TUY]. Note, finally, that [MW] recovers, by symplectic meth-
ods, the factorization formula for the index of £ over (shift desingularizations
of) M(z,P; L). Direct computations of this index have also been given.

(iii) The proofs in [T1] relied on the “Borel-Weil-Bott” theorem of Kumar
and Mathieu. The vanishing theorem for the genus zero stack, with parabolic
structures at two marked points, recovers that theorem as a consequence of the
BGG resolution. Of course, in finite dimensions, it is well-known that BGG
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implies the geometric Borel-Weil-Bott theorem; but the argument uses the
Peter-Weyl theorem for G, which fails for G((2)). Use of the stack circumvents
that difficulty.

(9.9) THEOREM. The Hodge-to-de Rham spectral sequences for I, for
M(z,P), or for any open substacks which are unions of Shatz strata, collapse
at E1 and induce the Hodge filtration on cohomology.

The dimensions of H?(M; OP) thus equal the Hodge numbers of M1; for
those, see [T1, §5]. The Hodge structure of M(z, P) can be found by the same
methods.

(9.10) THEOREM. For positive L,
H* (0 QP(L)) = H* (% 9°(L))
and similarly for 9M(z, P).

The spaces HY (1, QP(L)) will be discussed elsewhere. For p = 0, they are
the famous conformal blocks, with dimensions given by Verlinde’s factorization
rule. At another extreme, in genus zero, 9% = BG, to which L restricts
trivially; so HY (9;QP(L)) = HPY(BG). Note, in comparing with £ = O,
that the factor H*(QG) has been lost from

H*(M; Q) = H*(M; C) = H*(BG) ® H*(QG) .

10. Complements in positive characteristic

Appropriately stated, the main theorems and some of their consequences
in Sections 3 and 5 carry over to positive characteristic. The key point is that
the description in Section 1 of the Kirwan-Ness stratification, and its properties
(i)—(v), apply to smooth projective varieties over a perfect ground field &k [K1,
§12].

One subtlety, when char(k) = p > 0, concerns the distinction between
linearly reductive and geometrically reductive groups. For the former, the cat-
egory of representations is semisimple; the latter verify the weaker condition
that any surjection V' — k of G-modules splits after going over to a symmetric
power. (These, plus affinity of G, may be taken as definitions.) It is known
that G is geometrically reductive if and only if its identity component G has
trivial unipotent radical, linearly reductive if Gy is a torus and the order of
the group of components is not a multiple of p (see [MFK] for references).

Another complication is the existence of nonreduced group schemes; they
appear naturally as stabilizers (for instance, the group scheme of p™ roots
of unity is the kernel of the p'" power automorphism of G,,). Luckily, they
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can be treated on a par with the groups, with geometric and linear reductivity
defined as above. An important fact is that closed subgroup schemes of linearly
reductive groups are also linearly reductive, while closed subgroup schemes
of geometrically reductive ones are geometrically reductive if and only if the
quotient space is affine. (The argument in [H] works for group schemes.) Note,
though, that finite quotient stacks are not of Deligne-Mumford type, if the
isotropies are not reduced.

GIT produces good quotients (3.1) ¢ : X% — X%/G for geometrically
reductive groups. Moreover, ¢ separates invariant closed sets, and each fiber
contains a unique closed orbit, whose isotropy is a geometrically reductive
group scheme. However, ¢¥ is only left exact; it is exact, if the following
condition holds:

(L) Closed orbits in X** have linearly reductive isotropy group schemes.
Luna’s slice theorem then applies. The quantization theorem runs as follows.

(10.1) THEOREM. Assumptions are as in 3.2.a.

() HGU,0) = H (0 )

(b) If (L) holds, H:(X; L) = H*(X//G L).

(c) If G is linearly reductive, H*(X; L)Y = H*(X//G; L).

The argument in Section 2 carries over, with the following changes:

e For the Gr of the sheaf of residues, Sym(7sX) is replaced by the divided
symmetric algebra;

e Lie algebra cohomology of u is replaced by group cohomology of U (re-
solved by the bar complex);

e [-invariants are replaced by L-cohomologies; their vanishing follows from
the identity Hy (V) = Hj /T(V ) (a consequence of the Hochschild-Serre
spectral sequence) and from the vanishing of T-invariants.

Most useful consequences require condition (L). Without it, the rela-
tive quantization theorem (5.2) takes the less attractive form Rp,R¢CM" =
RgERr, M". Subject to (L), it holds as originally stated, and Theorems 5.4~
5.6 apply. Boutot’s theorem (5.7) takes the following form:

(10.2) PROPOSITION. If X is smooth and (L) holds, there exists a smooth

X, projective over X, such that X //G has finite (linearly reductive) quotient
singularities, p : X //G — X//G is birational and Rp,O = O.

By Grothendieck duality, Rp.ID ¢ //G(’) =Dx//¢O on dualizing complexes;
so p«@ = w on dimensional grounds, in particular, X*°/G is Cohen-Macaulay.
This is the Hochster-Roberts theorem (see e.g. [Ke2]).
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Appendix. Quotient stacks

The theory of coherent sheaves over 1-stacks of finite type is described in
[LM]. However, the case of quotients of varieties by group actions reduces to
the equivariant cohomology of coherent sheaves, so similar to its topological
counterpart that an economical account is possible (at least over C).

(A.1) Equivariant sheaves. Given a complex scheme X of finite type, acted
upon by a linear algebraic group G, a (quasi) coherent sheaf over the quotient
stack X is a G-equivariant (quasi) coherent sheaf over X. Algebraicity of
the group action can be imposed via a cocycle condition [MFK, Def. 1.6], or
geometrically, by requiring that the induced action on the associated linear
space Spec Sym of the sheaf be algebraic.

(A.2) Categorical properties. Equivariant quasi-coherent sheaves over X
form an abelian category Qcoh®(X) (or Qcoh(X¢g)) under G-morphisms.'?
When X is a principal G-bundle, Qcoh®(X) is equivalent to the category of
sheaves over its base. When X is a point *, quasi-coherent sheaves over *¢ (also
denoted BG) are locally-finite algebraic representations of G. The following
are easily checked. Call p the projection G x X — X. For any F € Qcoh(X),
p«p*F has a natural G-structure. The adjunction morphism F — p,p*F is
equivariant, if F carries a G-action to begin with. More precisely, p.p* is right-
adjoint to the forgetful functor from Qcoh(X ) to Qeoh(X). It therefore takes
injectives to injectives, and it follows that Qcoh™(X) has enough injectives.

(A.3) Cohomology. Global sections of F over X form an algebraic, locally-
finite representation of G. The functor F +— I'(X¢; F) := I'(X; F) of invari-
ant global sections is left exact, and its right derived functors are the cohomol-
ogy groups of F over X, or the equivariant sheaf cohomologies over X. Over
BG, T'C selects the invariant vectors in a representation. Its derived functors
are the group cohomologies, denoted H*(BG;_) or H}(—). Grothendieck’s
spectral sequence for the composition of functors

(A4) Y = HY, (H(X; F)) = HPV9(X/G; F)
can be viewed as Leray’s spectral sequence for the morphism X5 — BG.

(A.5) Shapiro’s lemma. Given an embedding G C G’, form the induced
space X' := G’ x© X. Restriction to X gives an equivalence between the cat-
egories of (quasi) coherent equivariant sheaves over X(, and X¢, commuting
with the functor of invariant global sections; so sheaf cohomologies over the two

124Smooth descent of quasi-coherent sheaves” asserts that this category is equivalent to that of
quasi-coherent sheaves over the smooth site of the quotient stack X/G. See [LM] for more details
along these lines.
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stacks agree. (More generally, for a G-equivariant principal G’-bundle P over
X, the stacks Pgx and X¢ are equivalent, in the same sense.) When X is a
point, this is a classical result of Shapiro’s: the G’-cohomology of a representa-
tion induced from G agrees with the GG-cohomology of the original. A reductive
group G’ has no higher group cohomology, so H:(X;F) = H*(X'; F)¢, in
obvious notation. Reduction to invariants is a shortcut for extending standard
theorems to the equivariant setting. Most important for us is the equivariant
Cousin-Grothendieck spectral sequence,

(A.6) Ef = HGS (Xa; F) = HH(Xa: F)

where S(c) is a decreasing G-stratification of X by locally closed subsets; the
formula reads “cohomology of F over the stack X with supports on the lo-
cally closed substack S(c)g”, or better, “equivariant cohomology of F over X
with supports in S(¢)”. It can be defined, after a reductive embedding of G,
as invariant cohomology with supports, on the induced stratified space; alter-
natively, when S(c) is closed in some open U C X, with open complement
j:V Cc,U, it is the G-hypercohomology of the complex F — Rj.j*F over U
(“G-cohomology over U relative to V).

(A.7) Etale slices. Let G be reductive, X affine and normal, with quotient
q: X — X/G. Each fiber of ¢ contains a single closed orbit, in which the
stabilizer R of any point x is reductive. Luna’s theorem [MFK, App. A] asserts
the existence of an étale slice W through z, an affine R-subvariety of X for
which the morphism G xgp W — K is strongly étale. When X is smooth, W
is R-isomorphic to an étale neighborhood of 0 in the normal bundle to Gz.
“Strongly étale” means that the morphisms ¢© : Xg — X/G and ¢% : Wi —
W/R on quotient stacks fit into an obvious Cartesian square, in which (étale-
locally near x) the quotient spaces are isomorphic and the quotient stacks are
equivalent. Note that g on X corresponds to g on W.

(A.8) Deligne- Mumford stacks. Morally, DM stacks arise by gluing to-
gether finite quotient stacks via Shapiro equivalences.'® Sheaves are obtained
by compatible gluings of equivariant sheaves. Properties (such as coherence or
smoothness) which can be tested locally have obvious meanings; so does the
Kéhler condition on a (globally defined) 2-form. Thus, when X is a compact
Kahler manifold with Hamiltonian G-action, a holomorphic slice argument
[Sj1] shows that X is a smooth DM stack, and carries a Kéhler form obtained
by symplectic reduction.

The (awkward) compatibility condition on Shapiro gluings (and the path-
ologies of nonseparated stacks) are best circumvented in Artin’s presentation of

13This works for separated stacks; the correct general definition starts from groupoids, as in the
next paragraph.
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DM stacks by étale groupoids X1=Xg, groupoids in the category of algebraic
spaces, where the two structural projections are étale morphisms. (One may
allow smooth structure maps, provided the diagonal morphism X1 — Xg x Xj
is unramified: a slice argument produces an étale presentation.) Now, Xg
corresponds to the groupoid G x X=X, and is a separated DM stack if and
only if the action is proper. A notion of equivalence of groupoids, extending
(A.5), generates an equivalence for stacks; this agrees with the equivalence
defined category-theoretically in [LM]. A stack is separated if the diagonal
morphism is finite; it then has a separated algebraic space quotient [KM]. It is
proper if it is separated and its quotient space is proper. Sheaves on the stack
can be pushed down to the quotient space; the higher direct images vanish
when the orders of the isotropies are invertible in the stalks.

For smooth stacks, we can define local and global C**° functions, de Rham
and Dolbeault complexes. The cohomology of (holomorphic bundles over) a
smooth, separated DM stack can be computed from the global sections of de
Rham’s (Dolbeault’s) complex, whose push-down to the quotient space is a
complex of soft resolution sheaves. A Kahler structure determines Hilbert
spaces of L? forms, and the differential-geometric Kihler package applies.
In the smooth, compact, Kéhler case, familiar theorems on manifolds (rep-
resentation of cohomology by harmonic forms, the classical vanishing theo-
rems of Kodaira-Nakano and Grauert-Riemenschneider and the collapse at Fq
of the Hodge spectral sequence) follow in the usual manner. This has been
known for some time, albeit in the language of “V-manifolds” (see for instance
[St, §1]); nowadays it is often attributed to “physicists”.

(A.9) Cohomology with (formally) proper supports (see Deligne’s appendix
to [Ha]). Completing X to a proper variety X', any coherent sheaf F on X
admits a coherent extension F’ over X’. Call F}, the completion of F' along
Z := X' — X. The cohomology H}(X;F) of F over X with formally proper
supports is the hypercohomology of the complex F — .7:"’Z over X'. It depends
only on X and and F; indeed, Serre duality asserts that H}(X;F) is the
algebraic dual of ExtS™X~*(F;DO), where DO is the dualizing complex of X .
If X and F carry a G-action, we can choose X’ and F’ to do likewise; H(X; F)
is then the full dual of a locally finite G-representation, and Serre duality is
equivariant.

More generally, one defines, for a compactifiable G-morphism f: X — Y,
an equivariant direct image with proper supports R f;, whose value is a pro-
object in D*@ah“(Y), the bounded derived category. For a good quotient
q: X°— X°/G, let Rq!G be the downward dim G-shifted invariant part of Rq.
Relative duality Extyo /G(Rq!G]-" ;w) = ¢¥Extx(F; K) shows that RgC lands,
in fact, in D*@oh(X°/G).
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