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On finite homomorphic images of the
multiplicative group of a division algebra

By Yoav Segev*

Introduction

The purpose of this paper, together with [6], is to prove that the following
Conjecture 1 holds:

Conjecture 1 (A. Potapchik and A. Rapinchuk). Let D be a finite
dimensional division algebra over an arbitrary field. Then D# does not have
any normal subgroup N such that D#/N is a nonabelian finite simple group.

Of course D# is the multiplicative group of D. Conjecture 1 appears in
[4]. It is related to the following conjecture of G. Margulis and V. Platonov
(Conjectures 9.1 and 9.2, pages 510–511 in [3], or Conjecture (PM) in [4]).

Conjecture 2 (G. Margulis and V. Platonov). Let G be a simple,
simply connected algebraic group defined over an algebraic number field K. Let
T be the set of all nonarchimedean places v of K such that G is Kv-anisotropic;
then for any noncentral normal subgroup N ≤ G(K) there exists an open
normal subgroup W ≤ G(K,T ) =

∏
v∈T G(Kv) such that N = G(K) ∩ W ;

in particular, if T = ∅ then G(K) does not have proper noncentral normal
subgroups.

In Corollary 2.5 of [4], Potapchik and Rapinchuk prove that if D is a
finite dimensional division algebra over an algebraic number field K, then for
G = SL1,D, Conjecture 2 is equivalent to the nonexistence of a normal subgroup
N / D# such that D#/N is a nonabelian finite simple group. Of course this
was the main motivation for the conjecture of Potapchik and Rapinchuk in [4].
Thus as a corollary, we get that if D is a finite dimensional division algebra
over an algebraic number field K and G = SL1,D, then the normal subgroup
structure of G(K) is given by Conjecture 2.

Hence we prove Conjecture 2, in one of the cases when G is of type An.
The case when G is of type An is the main case left open in Conjecture 2. For
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further information about the historical background and the current state of
Conjecture 2, we refer the reader to Chapter 9 in [3] and to the introduction
in [4].

More generally we are interested in the possible structure of finite homo-
morphic images of the multiplicative group of a division algebra. Let D be
a division algebra and let D# denote the multiplicative group of D. Various
papers dealt with subgroups of finite index in D#, e.g., [2], [4], [7] and the ref-
erences therein. We refer the reader to [1], for a survey article on the history
of finite dimensional central division algebras.

Let X be a finite group. Define the commuting graph of X,∆(X) as
follows. Its vertex set is X \ {1}. Its edges are pairs {a, b}, such that a, b ∈
X \ {1}, a 6= b, and [a, b] = 1 (a and b commute). We denote the diameter of
∆(X) by diam(∆(X)).

Let d : ∆(X) × ∆(X) → Z≥0 be the distance function on ∆(X). We
say that ∆(X) is balanced if there exist x, y ∈ ∆(X) such that the distances
d(x, y), d(x, xy), d(y, xy), d(x, x−1y), d(y, x−1y) are all bigger than 3.

The Main Theorem of this paper is:

Theorem A. Let L be a nonabelian finite simple group. Suppose that
either diam(∆(L)) > 4, or ∆(L) is balanced. Let D be a finite dimensional
division algebra over an arbitrary field. Then D# does not have any normal
subgroup N such that D#/N ' L.

The proof of Theorem A does not rely on the classification of finite simple
groups. However, in [6] we prove (using classification) that all nonabelian finite
simple groups L have the property that ∆(L) is balanced or diam(∆(L)) > 4.
Thus Theorem A together with [6] prove the assertion of Conjecture 1.

The organization of the proof of Theorem A is as follows. Let D be a
division algebra (not necessarily finite dimensional over its center F := Z(D)).
Let G := D# be the multiplicative group of D and let N be a normal subgroup
of G such that G∗ := G/N is finite (not necessarily simple). Let ∆ = ∆(G∗)
be the commuting graph of G∗.

In Section 1 we introduce some notation and preliminaries. In particular
we introduce the set N(a), for a ∈ G, which plays a crucial role in the paper.
In Section 2 we deal with ∆ and note that severe restrictions are imposed
on ∆.

In Section 3 we introduce the U-Hypothesis which plays a central role
throughout the paper. In addition, we establish in Section 3 some notation and
preliminary results regarding the U -Hypothesis and we prove that if diam(∆)
> 4, then G satisfies the U -Hypothesis. In Section 4 we show that if ∆ is
balanced then G satisfies the U -Hypothesis. Sections 5 and 6 are independent
of the rest of the paper and deal with further consequences of the U -Hypothesis.



MULTIPLICATIVE GROUP OF A DIVISION ALGEBRA 221

From Section 7 to the end of the paper, we specialize to the case when
D is finite dimensional over F and G∗ is nonabelian simple. We assume that
either diam(∆) > 4, or ∆ is balanced and set out to obtain our contradiction.
Section 7 gives some preliminaries and technical results. In particular, we
introduce in Section 7 (see the definitions at the beginning) the set K̂, which
plays a crucial role in the proof. Sections 8 and 9 are basically devoted to the
proof that K̂ = OU \N (Theorem 9.1), which is the main target of the paper.
Once Theorem 9.1 is proved, we can use it in Section 10 to construct a local
ring R, whose existence yields a contradiction and proves Theorem A.

1. Notation and preliminaries

All through this paper D is a division algebra over its center F := Z(D).
In some sections we will assume that D is finite dimensional over F , but in
general we do not assume this. We let D# = D \ {0} and G = D# be the
multiplicative group of D. Letting F# = F \ {0}, we denote N a normal
subgroup of G such that F# ≤ N and G/N is finite. The following notational
convention is used: G∗ = G/N and for a ∈ G, we let a∗ denote its image in G∗

under the canonical homomorphism; that is, a∗ = Na. If H∗ is a subgroup of
G∗, then by convention H ≤ G is the full inverse image of H∗ in G.

(1.1) Remark. Note that since F# ≤ N , for all a ∈ G and α ∈ F#,
(αa)∗ = a∗, and in particular, (−a)∗ = a∗. We use this fact without further
reference.

(1.2) Notation. (1) Let a ∈ G. We denote

N(a) = {n ∈ N : a+ n ∈ N}.

(2) Let A,B ⊆ D. We denote A + B = {a + b : a ∈ A, b ∈ B}, A − B =
{a− b : a ∈ A, b ∈ B} and −A = {−a : a ∈ A}.

(3) Let A,B ⊆ D and x ∈ D. We denote AB = {ab : a ∈ A, b ∈ B},
Ax = {ax : a ∈ A} and xA = {xa : a ∈ A}.

(4) We denote by [D : F ] the dimension of D as a vector space over F . If
[D : F ] <∞, then as is well known [D : F ] = n2, for some natural n ≥ 1.
We denote deg(D) = n.

(1.3) Notation for the case [D : F ] <∞. If [D : F ] <∞, we denote

(1) ν : G→ F#

the reduced-norm function. Of course ν is a group homomorphism.

(2) O = O(D) = {a ∈ D# : ν(a) = 1}.
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(1.4) Suppose [D : F ] < ∞. Then for all a ∈ G, ν(a) is a product of
conjugates of a in G.

Proof. This is well known and follows from Wedderburn’s Factorization
Theorem. See, e.g., [5, p. 253].

(1.5) If [D : F ] <∞ and [G∗, G∗] = G∗, then G = ON .

Proof. Since G/O is isomorphic to a subgroup of F#, G/O is abelian,
and hence G/ON is abelian. But G/ON ' (G/N)/(ON/N), and hence G∗ =
[G∗, G∗] ≤ ON/N . Hence G = ON .

(1.6) Theorem (G. Turnwald). Let D be an infinite division algebra. Let
H ≤ D# be a subgroup of finite index. Then D = H −H.

Proof. This is a special case of Theorem 1 in [7].

(1.7) Corollary. N +N = D = N −N .

Proof. This follows from 1.6. Note that as −1 ∈ N , N +N = N −N .

(1.8) Let a ∈ G \N and let n ∈ N . Then

(1) N(na) = nN(a) and N(an) = N(a)n.
(2) For all b ∈ G, N(b−1ab) = b−1N(a)b.
(3) N(a) 6= ∅.
(4) If n ∈ N(a), then n−1 6∈ N(a−1).
(5) There exists a′ ∈ Na, with 1 ∈ N(a′).

Proof. In (1), we prove that N(na) = nN(a). The proof that N(an) =
N(a)n is similar. Let m ∈ N(na). Then na+m ∈ N . Hence a+ n−1m ∈ N ,
so n−1m ∈ N(a). Hence m ∈ nN(a). Let m ∈ nN(a). Then there exists
s ∈ N(a) such that m = ns. Then na + m = na + ns = n(a + s). Since
s ∈ N(a), a+ s ∈ N , so na+m ∈ N . Hence m ∈ N(na).

For (2), letm ∈ N(b−1ab). Then b−1ab+m ∈ N , and hence a+bmb−1 ∈ N .
Hence bmb−1 ∈ N(a), so m ∈ b−1N(a)b. Let m ∈ b−1N(a)b. Then there exists
s ∈ N(a), with m = b−1sb. Then b−1ab+m = b−1ab+b−1sb = b−1(a+s)b ∈ N .
Thus m ∈ N(b−1ab).

For (3), note that by 1.7 there exists m,n ∈ N such that a = n − m.
Hence m ∈ N(a). Let n ∈ N(a). Then a + n ∈ N . Multiplying by a−1

on the right and by n−1 on the left we get that a−1 + n−1 ∈ Na−1, hence
n−1 6∈ N(a−1). This proves (4). Finally to prove (5), let n ∈ N(a). Then
1 ∈ n−1N(a) = N(n−1a).
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(1.9) Let K be a finite group and let ∅ 6= A $ K be a proper normal subset
of K. Set X := {x ∈ K : xA ⊆ A}. Then X is a proper normal subgroup of
K. In particular, if X 6= 1, then K is not simple.

Proof. Since A is finite, X = {x ∈ K : xA = A}. Hence clearly X is a
subgroup of K. Let y ∈ K and x ∈ X; then (y−1xy)A = (y−1xy)(y−1Ay) =
y−1(xA)y = y−1Ay = A, since A is a normal subset of K. Hence y−1xy ∈ X,
so X is a normal subgroup of K. Clearly since A is a proper nonempty subset,
X 6= G.

2. The commuting graph of G∗

Throughout the paper we let ∆ be the graph whose vertex set is G∗ \{1∗}
and whose edges are {a∗, b∗} such that [a∗, b∗] = 1∗. We call ∆ the commuting
graph of G∗ and let d : ∆×∆→ Z≥0 be the distance function of ∆.

(2.1) Let a ∈ G \N and n ∈ N . Suppose that a+ n ∈ G \N . Let H ≤ G,
with H∗ = CG∗(a∗). Then (a+ n)∗ ∈ H∗, so a+ n ∈ H.

Proof. Note that n−1a+1 ∈ CG(n−1a). Thus (n−1a+1)∗ ∈ CG∗((n−1a)∗)
= CG∗(a∗). But since a+ n = n(n−1a+ 1), (a+ n)∗ = (n−1a+ 1)∗.

(2.2) Remark. Note that by 2.1, if a, b ∈ G \ N and n ∈ N , then if
a+b ∈ N , or a−b ∈ N , d(a∗, b∗) ≤ 1 and if n 6∈ N(a), then d((a+n)∗, a∗) ≤ 1.
We use these facts without further reference.

(2.3) Let a, b, c ∈ G \N , with a+ b = c. Then
(1) If d(a∗, b∗) > 2, then N(c) ⊆ N(a) ∩N(b).
(2) If d(a∗, b∗) > 2, and d(a∗, c∗) > 2, then N(b) = N(c) ⊆ N(a) ∩N(−a).
(3) If d(a∗, b∗) > 4, then either N(a) = N(c) ⊆ N(b) ∩ N(−b), or N(b) =

N(c) ⊆ N(a) ∩N(−a).

Proof. For (1), let n ∈ N(c) \ (N(a) ∩N(b)). Suppose n 6∈ N(a). Then

c+ n = (a+ n) + b.

As c + n ∈ N , 2.2 implies that d(a∗, (a + n)∗) ≤ 1 ≥ d(b∗, (a + n)∗); thus
d(a∗, b∗) ≤ 2, a contradiction.

Assume the hypotheses of (2). By (1), N(c) ⊆ N(a) ∩ N(b) and since
b = c − a, (1) implies that N(b) ⊆ N(c) ∩ N(−a). Hence (2) follows. (3)
follows from (2) since we must have either d(a∗, c∗) > 2, or d(b∗, c∗) > 2.

(2.4) Remark. Note that by 2.3.3, if a, b ∈ G \N , with d(a∗, b∗) > 4, then
N(a) ⊆ N(b), or N(b) ⊆ N(a). We use this fact without further reference.
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(2.5) Let a, b ∈ G \N such that d(a∗, b∗) > 1 and N(a) 6⊆ N(b). Then

(1) b∗(b+ n)∗(a− b)∗ is a path in ∆, for any n ∈ N(a) \N(b).
(2) If −1 6∈ N(ab−1), then for all n ∈ N(a) \N(b),

b∗(b+ n)∗(ab−1 − 1)∗(ab−1)∗ is a path in ∆.

(3) If −1 6∈ N(b−1a), then for all n ∈ N(a) \N(b),

b∗(b+ n)∗(b−1a− 1)∗(b−1a)∗ is a path in ∆.

Proof. Let c = a− b. Since d(a∗, b∗) > 1, c 6∈ N . Next note that c+ b = a.
Let n ∈ N(a) \N(b). Then c+ (b+n) = a+n ∈ N . Hence d(c∗, (b+n)∗) ≤ 1.
This show (1).

Suppose −1 6∈ N(ab−1) and let n ∈ N(a)\N(b). Note that c = (ab−1−1)b.
Further, c∗ commutes with (b+ n)∗ and b∗ commutes with (b+ n)∗. It follows
that d((ab−1 − 1)∗, (b + n)∗) ≤ 1. Clearly d((ab−1 − 1)∗, (ab−1)∗) ≤ 1, so (2)
follows. The proof of (3) is similar to the proof of (2) when we notice that
c = b(b−1a− 1).

(2.6) Let a, b ∈ G \N with d(a∗, b∗) > 4. Suppose N(a) ⊆ N(b). Then

(1) N(a+ b) = N(a) ⊆ N(b) ∩N(−b).
(2) N(a− b) = N(a) ⊆ N(b) ∩N(−b).

Proof. For (1) we use 2.3.3. Suppose (1) is false. Set c = a + b. Then
by 2.3.3, N(b) = N(c) ⊆ N(a) ∩ N(−a). Since N(a) ⊆ N(b), we must have
N(b) = N(c) = N(a) ∩ N(−a) = N(a). It follows that N(a) ⊆ N(−a) =
−N(a). Multiplying by −1, we get that N(−a) ⊆ N(a), so N(a) = N(−a).
Thus N(b) = N(c) = N(a) = N(−a). Hence N(a) = N(c) ⊆ N(b) ∩N(−b) in
this case too.

Suppose (2) is false. Set c = a − b. Then by 2.3.3, N(−b) = N(c) ⊆
N(a) ∩ N(−a). In particular N(−b) ⊆ N(−a), so N(b) ⊆ N(a). Hence we
must have N(−b) = N(c) = N(a) ∩ N(−a) = N(−a). As above we get that
N(a) = N(−a) = N(b) = N(c), so again N(c) = N(a) ⊆ N(b) ∩N(−b).

(2.7) Let a, b ∈ G \N . Suppose
(a) d(a∗, b∗) > 4.
(b) N(a) ⊆ N(b).
Then

(1) If 1 ∈ N(a), then ±1 ∈ N(b).
(2) For all n ∈ N \N(b)

N(a) ⊆ N(a+ n) and −N(a) ⊆ N(b+ n) ⊇ N(a).
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Proof. Set x = a− b. Note first that by 2.6.2,

(∗) N(a) = N(x) ⊆ N(b) ∩N(−b).

Note that this already implies (1). Next note that

x = (a+ n)− (b+ n).

Since d(a∗, b∗) > 4, we get that d((a + n)∗, (b + n)∗) > 2. Hence by 2.3.1,
N(x) ⊆ N(a + n) ∩ N(−(b + n)). Thus N(a) = N(x) ⊆ N(a + n) and
N(a) = N(x) ⊆ N(−(b+ n)), so that −N(a) ⊆ N(b+ n).

Finally, note that by (∗), N(−a) ⊆ N(b), so by the previous paragraph of
the proof −N(−a) ⊆ N(b+ n), that is N(a) ⊆ N(b+ n) and the proof of 2.7
is complete.

(2.8) Let a, b ∈ G \N be such that ab ∈ G \N . Then

(1) Assume N(ab) 6⊇ N(b) and −1 6∈ N(a−1). Then for all m ∈ N(b) \N(ab),

a∗(a−1 − 1)∗(ab+m)∗(ab)∗ is a path in ∆.

(2) Assume N(ab) 6⊇ N(a), and −1 6∈ N(b−1); then for all m ∈ N(a) \N(ab)

b∗(b−1 − 1)∗(ab+m)∗(ab)∗ is a path in ∆.

Proof. We have
(1− a)b+ ab = b.

Let m ∈ N(b) \N(ab). Then

(1− a)b+ ab+m = b+m ∈ N.

This implies that (ab+m)∗ commutes with (1−a)∗b∗. Of course (ab+m)∗ com-
mutes also with a∗b∗. Hence (ab+m)∗ commutes with ((1−a)∗b∗)(b∗)−1(a∗)−1

= (a−1−1)∗. Hence we conclude that a∗(a−1−1)∗(ab+m)∗(ab)∗ is a path in ∆,
this completes the proof of (1). The proof of (2) is similar since a(1−b)+ab = a.

(2.9) Let a, b ∈ G \N . Then

(1) Assume that N(ab) 6⊆N(a) and −1 6∈N(b). Then for all m ∈ N(ab)\N(a),

a∗(a+m)∗(b− 1)∗b∗ is a path in ∆.

(2) Assume that N(ab) 6⊆N(b) and −1 6∈N(a). Then for all m ∈ N(ab)\N(b),

a∗(a− 1)∗(b+m)∗b∗ is a path in ∆.
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Proof. First note that

a(b− 1) + a = ab.

Let m ∈ N(ab) \N(a). Then

a(b− 1) + a+m = ab+m ∈ N.

Hence (a+m)∗ commutes with a∗(b− 1)∗. Of course (a+m)∗ commutes with
a∗, so (a+m)∗ commutes with (b− 1)∗. Hence a∗(a+m)∗(b− 1)∗b∗ is a path
in ∆. This proves (1). The proof of (2) is similar because (a− 1)b+ b = ab.

(2.10) Let a, b ∈ G \N . Assume

(i) −1 6∈ N(a) ∪N(b).
(ii) For all g ∈ G, −1 ∈ N(abg).

Then G∗ is not simple.

Proof. Let g ∈ G. Note that by 1.8.2, −1 6∈ N(bg), for all g ∈ G.
Thus by (ii), N(abg) 6⊆ N(bg) and −1 ∈ N(abg) \ N(bg). Hence by 2.9.2,
a∗(a− 1)∗(bg − 1)∗b∗ is a path in ∆. In particular

(∗) d((a− 1)∗, (bg − 1)∗) ≤ 1, for all g ∈ G.

Note now that (bg − 1)∗ = ((b − 1)∗)g
∗
, so that C∗ := {(bg − 1)∗ : g ∈ G} is

a conjugacy class of G∗. Now (∗) implies that (a − 1)∗ commutes with every
element of C∗, so that G∗ is not simple.

(2.11) Let x, y ∈ G \N and n,m ∈ N such that
(a) xny 6∈ N .
(b) m ∈ N(xn) ∩N(ny).
(c) −1 6∈ N(ny) ∩N(xn).
(d) m 6∈ N(x) ∪N(y).
(e) −1 6∈ N(x−1) ∪N(y−1).

Then

(1) If m ∈ N(xny) and −1 6∈ N(ny), then x∗(x+m)∗(ny − 1)∗y∗ is a path in
∆.

(2) If m ∈ N(xny) and −1 6∈ N(xn), then x∗(xn− 1)∗(y+m)∗y∗ is a path in
∆.

(3) If m 6∈ N(xny), then x∗(x−1 − 1)∗(xny +m)∗(y−1 − 1)∗y∗ is a path in ∆.
(4) d(x∗, y∗) ≤ 4.

Proof. Suppose first that m ∈ N(xny) and −1 6∈ N(ny); then since
m 6∈ N(x), we see that m ∈ N(xny) \ N(x). Since −1 6∈ N(ny), we get (1)
from 2.9.1.
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Suppose next that m ∈ N(xny) and −1 6∈ N(xn); then since m 6∈ N(y),
we see that m ∈ N(xny) \N(y). Since −1 6∈ N(xn), we get (2) from 2.9.2.

Now assume m 6∈ N(xny). Since m ∈ N(xn), we see that m ∈ N(xn)\
N(xny). Further, −1 6∈ N(y−1); hence, by 2.8.2, y∗(y−1 − 1)∗(xny +m)∗ is a
path in ∆. Next, since m ∈ N(ny), we see that m ∈ N(ny) \N(xny). Further
−1 6∈ N(x−1); hence, by 2.8.1, x∗(x−1 − 1)∗(xny +m)∗ is a path in ∆. Hence
(3) follows and (4) is immediate from (1), (2) and (3).

3. The definition of the U-Hypothesis; notation and preliminaries;
the proof that if diam(∆) > 4 then G satisfies the U-Hypothesis

In this section we define the U -Hypothesis which will play a crucial role
in the paper. We also establish some notation which will hold throughout the
paper and give some preliminary results. Finally, in Theorem 3.18, we prove
that if diam(∆) > 4, then G satisfies the U -Hypothesis.

Definition. We say that G satisfies the U -Hypothesis with respect to N
(or just that G satisfies the U -Hypothesis) if there exists a normal subset
∅ 6= N $ G such that N $ N is a proper subset of N and if we set N̄ = N \ N,
then

(U1) 1,−1 ∈ N.
(U2) N2 = N.
(U3) For all n̄ ∈ N̄, n̄+ 1 ∈ N and n̄− 1 ∈ N .

Notation. Let x∗ ∈ G∗ \{1∗} and let C∗ ⊆ G∗−{1∗} be a conjugacy class
of G∗.

(1) Denote Px∗ = {a ∈ Nx : 1 ∈ N(a)}.
(2) Denote

Nx∗ = {n ∈ N : n ∈ N(a), for all a ∈ Px∗},
N̄x∗ = N \ Nx∗ .

(3) Let Ux∗ = {n ∈ N : n, n−1 ∈ Nx∗}.
(4) Let Mx∗ = Nx∗ \ Ux∗ .
(5) Let Ox∗ = {x1 ∈ Nx : −1 6∈ N(x1) ∪N(x−1

1 )}.
(6) Denote by Cx∗ the conjugacy class of x∗ in G∗.
(7) Denote Ĉ = {c ∈ G : c∗ ∈ C∗}.
(8) Let PC∗ =

⋃
y∗∈C∗ Py∗ .

(9) Denote
NC∗ =

⋂
y∗∈C∗

Ny∗ ,

N̄C∗ = N \ NC∗ .
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(10) Denote UC∗ =
⋂
y∗∈C∗ Uy∗ = {n ∈ N : n, n−1 ∈ NC∗}.

(11) Let MC∗ = NC∗ \ UC∗ .

Definition. We define three binary relations on (G∗ \ {1∗})× (G∗ \ {1∗}).
These relations will play a crucial role throughout this paper. Given a binary
relation R on (G∗ \ {1∗}) × (G∗ \ {1∗}), R(x∗, y∗) means that (x∗, y∗) ∈ R.
Here are our binary relations: Let (x∗, y∗) ∈ (G∗ \ {1∗})× (G∗ \ {1∗}).

In(x∗, y∗): For all a ∈ Nx and b ∈ Ny, either N(a) ⊆ N(b), or N(b) ⊆
N(a). Note that In(x∗, y∗) is a symmetric relation.

Inc(y∗, x∗): In(y∗, x∗) and for all b ∈ Py∗ , there exists a ∈ Px∗ such that
N(b) ⊇ N(a). Note that Inc(y∗, x∗) is not necessarily symmetric.

T (x∗, y∗): For all (a, b) ∈ Nx×Ny, and all n ∈ N \ (N(a) ∪N(b))

N(a+ n) ⊇ N(a) ∩N(b) ⊆ N(b+ n).

Note that T (x∗, y∗) is symmetric.

(3.1) Let x∗, y∗ ∈ G∗ \ {1∗} and let g ∈ G. Then

(1) g−1Px∗g = P(g−1xg)∗ .
(2) g−1Nx∗g = N(g−1xg)∗ and g−1N̄x∗g = N̄(g−1xg)∗ .
(3) NCx∗ is a normal subset of G.
(4) If −1 ∈ Nx∗ , then −1 ∈ NCx∗ .
(5) If Ny∗ ⊇ Nx∗ , then NCy∗ ⊇ NCx∗ .
(6) g−1Mx∗g = M(g−1xg)∗ , g−1Ux∗g = U(g−1xg)∗ and g−1Ox∗g = O(g−1xg)∗ .

Proof. For (1), it suffices to show that g−1Px∗g ⊆ P(g−1xg)∗ . Let a ∈ Px∗ .
Then a ∈ Nx and 1 ∈ N(a), so that, by 1.8, 1 ∈ N(ag), and clearly, ag ∈ Nxg.
Hence ag ∈ P(xg)∗ . For (2), it suffices to show that g−1Nx∗g ⊆ N(g−1xg)∗ . Let
n ∈ Nx∗ . Then n ∈ N(a), for all a ∈ Px∗ ; hence, by 1.8, ng ∈ N(c), for all
c ∈ g−1Px∗g. Now, by (1), ng ∈ N(g−1xg)∗ . Note that (3) and (4) are immediate
from (2).

For (5), let z∗ ∈ Cy∗ . Let g ∈ G, with (yg)∗ = z∗. By (2), Nz∗ ⊇ N(xg)∗ ⊇
NCx∗ . As this holds for all z∗ ∈ Cy∗ , we see that NCy∗ ⊇ NCx∗ .

The proof of (6) is similar to the proof of (2) and we omit the details.

(3.2) Let x∗ ∈ G∗ \ {1∗}, let α ∈ {x∗, Cx∗} and set P = Pα and N = Nα.
Then

(1) 1 ∈ N.
(2) n ∈ N if and only if n−1P ⊆ P.
(3) If n ∈ N, then nN ⊆ N.
(4) If α = Cx∗ , then N is a normal subset of G.
(5) If −1 ∈ N, then −N = N.
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Proof. (1) is by the definition of N. Let n ∈ N . Suppose n−1P ⊆ P. Let
a ∈ P. Then n−1a ∈ P and hence, 1 ∈ N(n−1a); so by 1.8.1, n ∈ N(a). As
this holds for all a ∈ P, n ∈ N. Suppose n ∈ N and let a ∈ P; then n ∈ N(a);
so by 1.8.1, 1 ∈ N(n−1a), and n−1a ∈ P.

Let n ∈ N. Then by (2), for all a ∈ P, N ⊆ N(n−1a). Hence nN ⊆ N(a),
for all a ∈ P; that is, nN ⊆ N. (4) is 3.1.3. (5) is immediate from (3).

(3.3) Let x∗ ∈ G∗ \ {1∗}, α ∈ {x∗, Cx∗} and set N = Nα and U = Uα.
Then

(1) U = {n ∈ N : nN = N} = {n ∈ N : nN̄ = N̄}.
(2) U = {n ∈ N : Nn = N} = {n ∈ N : N̄n = N̄}.
(3) U is a subgroup of G; further, if α = Cx∗ , then U is normal in G.
(4) If −1 ∈ N, then −1 ∈ U .

Proof. We start with a proof of (1). Clearly since N is a disjoint union of
N and N̄, {n ∈ N : nN = N} = {n ∈ N : nN̄ = N̄}. Let u ∈ U ; then by 3.2.3,
uN ⊆ N and u−1N ⊆ N. Hence uN = N. Conversely let n ∈ N and suppose
nN = N. As 1 ∈ N, n ∈ N and as n−1N = N, n−1 ∈ N, so n ∈ U . This proves
(1). The proof of (2) is identical to the proof of (1). (3) follows from (1) and
the fact that if α = Cx∗ , N is a normal subset of G. (4) is immediate from the
definition of U .

(3.4) Let x∗ ∈ G∗ \ {1∗} and set P = Px∗ , U = Ux∗ . Let a ∈ Nx and
n ∈ N . Then n ∈ N(a) if and only if (nU) ∪ (Un) ⊆ N(a).

Proof. If (nU) ∪ (Un) ⊆ N(a), then since 1 ∈ U , n ∈ N(a). Suppose
n ∈ N(a). Then 1 ∈ N(n−1a) ∩ N(an−1), by 1.8.1. Hence, by definition,
n−1a, an−1 ∈ P, so that U ⊆ N(n−1a) ∩ N(an−1). Now 1.8.1 implies that
(nU) ∪ (Un) ⊆ N(a), as asserted.

(3.5) Let x∗ ∈ G∗ \ {1∗} and set U = Ux∗. Suppose that U = U(x−1)∗ and
that −1 ∈ U . Let x1 ∈ Ox∗. Then Ox∗ ⊇ (Ux1) ∪ (x1U).

Proof. Let u ∈ U . Suppose −1 ∈ N(ux1). Then −u−1 ∈ N(x1). By
3.4, U ⊆ N(x1), and in particular, −1 ∈ N(x1), a contradiction. Similarly
−1 6∈ N(x−1

1 u), so that Ux1 ⊆ Ox∗ . The proof that x1U ⊆ Ox∗ is similar.

(3.6) Let x∗ ∈ G∗ \ {1∗}. Then the following conditions are equivalent.

(1) Ox∗ = ∅.
(2) For all a ∈ Nx, −1 ∈ N(a) ∪N(a−1).
(3) For all a ∈ Nx, and n ∈ N \N(a), a+ n ∈ Nx.
(4) There exists a ∈ Nx such that for all n ∈ N \N(a), a+ n ∈ Nx.
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Proof. (1) if and only if (2) is by definition.
(2) → (3). Let a ∈ Nx and n ∈ N \ N(a). Then −1 6∈ N(−n−1a); so

by (2), −1 ∈ N(−a−1n); that is, n−1 ∈ N(a−1). Hence a−1 + n−1 ∈ N and
multiplying by a on the right and n on the left we get a+ n ∈ Na = Nx.

(3) → (4). This is immediate.
(4) → (3). Let b ∈ Nx and write b = ma, for some m ∈ N . Then

N(b) = mN(a). Let n ∈ N \N(b); then n 6∈ mN(a), so m−1n 6∈ N(a). Hence,
by (4), a + m−1n ∈ Nx, so that ma + n ∈ Nx; that is, b + n ∈ Nx, so (3)
holds.

(3)→ (2). Let a ∈ Nx, and suppose −1 6∈ N(a). Then by (3), a−1 ∈ Na.
Now, multiplying by a−1 on the right we see that a−1 − 1 ∈ N ; that is,
−1 ∈ N(a−1).

(3.7) Let a, b ∈ G \N and ε ∈ {1,−1}. Then

(1) If a+ b 6= 0 and N(a+ b) 6⊆ N(a), then

a∗(a+ n)∗b∗ is a path in ∆, for any n ∈ N(a+ b) \N(a).

(2) If a+ b 6∈ N and N(a) 6⊆ N(a+ b), then

b∗(a+ b+ n)∗(a+ b)∗ is a path in ∆, for any n ∈ N(a) \N(a+ b).

(3) If a∗z∗(a + εb)∗ is a path in ∆, ε 6∈ N(a−1b) and a−1b 6∈ N , then
a∗z∗(ε+a−1b)∗(a−1b)∗ is a path in ∆; so in particular, d(a∗, (a−1b)∗) ≤ 3.

Proof. For (1), set c = a+b and let n ∈ N(a+b)\N(a). Then (a+n)+b =
c+n ∈ N . By Remark 2.2, d((a+n)∗, b∗) ≤ 1 ≥ d((a+n)∗, a∗), and (1) follows.

For (2), note that a = (a+ b)− b, so (2) follows from (1).
Finally, for (3), note that a + εb = εa(ε + a−1b). Further, z∗ commutes

with a∗ and (a + εb)∗, so that z∗ commutes with (ε + a−1b)∗, and of course
a−1b commutes with (ε + a−1b). Hence, if (ε + a−1b), a−1b 6∈ N, a∗z∗(ε +
a−1b)∗(a−1b)∗ is a path in ∆.

(3.8) Let x, y ∈ G\N and let n̄ ∈ N\(N(x)∪N(y)). Suppose d(x∗, y∗) > 2.
Then n̄+m ∈ N , for all m ∈ N(x+ n̄) ∩N(y + n̄).

Proof. Let m ∈ N(x + n̄) ∩ N(y + n̄). Then x + (n̄ + m) ∈ N and
y+(n̄+m) ∈ N . Suppose n̄+m 6∈ N . Then, by Remark 2.2, d((x∗, (n̄+m)∗) ≤
1 ≥ d(y∗, (n̄+m)∗). It follows that d(x∗, y∗) ≤ 2, a contradiction.

(3.9) Let x∗, y∗ ∈ G∗ \ {1∗}. Then each of the following conditions imply
In(x∗, y∗).

(1) d(x∗, y∗) > 4.
(2) d(x∗, y∗) > 2, and d(x∗, (x−1y)∗) > 3.
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Proof. The fact that (1) implies In(x∗, y∗) derives from Remark 2.4. Now
suppose (2) holds. Let (a, b) ∈ Nx ×Ny. Note that since d(a∗, b∗) > 2, 2.3.1
implies that

(i) N(a+ b) ⊆ N(a) ∩N(b).

Suppose N(b) 6= N(a+b) 6= N(a). Then N(a) 6⊆ N(a+b) and N(b) 6⊆ N(a+b),
so by 3.7.2,

b∗(a+ b+ n)∗(a+ b)∗ is a path in ∆, for any n ∈ N(a) \N(a+ b)(ii)

a∗(a+ b+m)∗(a+ b)∗ is a path in ∆, for any m ∈ N(b) \N(a+ b).

From (ii) we get that

(iii) a∗(a+ b+m)∗(a+ b)∗(a+ b+ n)∗b∗ is a path in ∆

for any m ∈ N(b) \N(a+ b) and n ∈ N(a) \N(a+ b). Suppose 1 + a−1b ∈ N ,
then (a+ b)∗ = a∗, and then from (iii) we get that d(a∗, b∗) ≤ 2, contradicting
the choice of a∗, b∗. Hence 1 + a−1b 6∈ N , so by 3.7.3, d(a∗, (a−1b)∗) ≤ 3, a
contradiction.

We may now conclude that either N(a+ b) = N(a), or N(a+ b) = N(b).
Hence, by (i), either N(a) ⊆ N(b), or N(b) ⊆ N(a), as asserted.

(3.10) Let x∗, y∗ ∈ G∗\{1∗} and assume In(x∗, y∗). Then either Inc(y∗, x∗)
or Inc(x∗, y∗).

Proof. Suppose that Inc(y∗, x∗) is false. Then, there exists b ∈ Py∗ , such
that N(a) % N(b), for all a ∈ Px∗ . Thus Inc(x∗, y∗) holds.

(3.11) Let x∗, y∗ ∈ G∗ \ {1∗} such that In(x∗, y∗). Then

(1) If Inc(y∗, x∗), then Ny∗ ⊇ Nx∗ , and Uy∗ ≥ Ux∗ .
(2) If (a, b) ∈ Nx×Ny such that N(b) ⊇ N(a), then N(−b) ⊇ N(a).
(3) If (a, b) ∈ Nx×Ny such that N(b) % N(a), then N(−b) % N(a).
(4) If Inc(y∗, x∗), then −1 ∈ Ny∗ and hence −1 ∈ Uy∗ .

Proof. For (1), let b ∈ Py∗ . By Inc(y∗, x∗), there exists a ∈ Px∗ such that
N(b) ⊇ N(a). But, by definition, N(a) ⊇ Nx∗ . Hence N(b) ⊇ Nx∗ . As this
holds for all b ∈ Py∗ , Ny∗ ⊇ Nx∗ . Then, it is immediate from the definition of
Ux∗ that Uy∗ ≥ Ux∗ .

Let (a, b) ∈ Nx × Ny such that N(b) ⊇ N(a). Let s ∈ N(b). Suppose
−s 6∈ N(b). Then −s 6∈ N(a) and −s ∈ N(−b). Hence, by In(x∗, y∗), N(−b) %
N(a). Thus we may assume that −s ∈ N(b), for all s ∈ N(b). But then
N(−b) = N(b), by 1.8.1, and again N(−b) ⊇ N(a); in addition, if N(b) %
N(a), then N(−b) = N(b) % N(a). This show (2) and (3).
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Suppose Inc(y∗, x∗). Let b ∈ Py∗ ; then there exists a ∈ Px∗ , such that
N(b) ⊇ N(a). By (2), N(b) ⊇ N(−a), so as −1 ∈ N(−a), −1 ∈ N(b), as this
holds for all b ∈ Py∗ , −1 ∈ Ny∗ . This proves the first part of (4) and the second
part of (4) is immediate from the definitions.

(3.12) Let x∗, y∗ ∈ G∗ \ {1∗} and assume

(i) d(x∗, y∗) > 2.
(ii) In(x∗, y∗).

Let (a, b) ∈ Nx×Ny and suppose N(b) ⊇ N(a). Then

(1) N(a+ εb) = N(a), for ε ∈ {1,−1}.
(2) If N(b) % N(a), then a∗(a + εb + nε)∗(a + εb)∗ is a path in ∆, for any

nε ∈ N(εb) \N(a), where ε ∈ {1,−1}.

Proof. First note that by 3.11.2, N(−b) ⊇ N(a). Let ε ∈ {1,−1}. As
d(a∗, b∗) > 2, N(a + εb) ⊆ N(a), by 2.3.1. Let m ∈ N(a). Then m ∈ N(εb).
Suppose m 6∈ N(a + εb). Consider the element z = a + εb + m. Since m 6∈
N(a + εb), z 6∈ N . However, since z = a + (εb + m) (and εb + m ∈ N),
Remark 2.2 implies that d(z∗, a∗) ≤ 1. Similarly as z = εb + (a + m) (and
a + m ∈ N), d(z∗, b∗) ≤ 1. Thus d(a∗, b∗) ≤ 2, a contradiction. This shows
(1).

Assume N(b) % N(a). Then by 3.11.3, N(−b) % N(a). Let nε ∈
N(εb) \N(a); then (2) follows from 3.7.2.

(3.13) Let x∗, y∗∈G∗\{1∗} and assume that d(x∗, y∗) > 3 < d(x∗, (x−1y)∗).
Let x1 ∈ Ox∗ and b ∈ Ny, such that 1 6∈ N(b). Then N(x1) ⊇ N(b).

Proof. First note that by 3.9, In(x∗, y∗). Suppose N(x1) $ N(b). Then,
by 3.12, N(x1 − b) = N(x1), and

(∗) x∗1(x1 + b+ s)∗(x1 + b)∗

is a path in ∆, for any s ∈ N(b) \ N(x1). Suppose x−1
1 b + 1 ∈ N ; that

is, 1 ∈ N(x−1
1 b). Then −1 ∈ N(−x−1

1 b), so N(x−1
1 (−b)) 6⊆ N(x−1

1 ). As
−1 6∈ N(−b), 2.9.1 implies that d(x∗1, b

∗) ≤ 3, contradicting d(x∗, y∗) > 3.
Thus 1 6∈ N(x−1

1 b). Hence by 3.7.3, d(x∗, (x−1y)∗) ≤ 3, a contradiction.

(3.14) Let x∗, y∗ ∈ G∗ \ {1∗} and assume one of the following conditions
holds

(1) d(x∗, y∗) > 4.
(2) d(x∗, y∗) > 3, In(x∗, y∗) and either Ox∗ = ∅ or Oy∗ = ∅ .

Then, T(x∗, y∗).
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Proof. If d(x∗, y∗) > 4, then by 3.9, In(x∗, y∗) holds. Let (a, b) ∈ Nx×Ny
and let n̄ ∈ N \ (N(a) ∪ N(b)). By In(x∗, y∗), we may assume without loss
of generality that N(b) ⊇ N(a). By 3.12, N(a − b) = N(a). Note that if (2)
holds, then, by 3.6, either a + n̄ ∈ Na, or b + n̄ ∈ Nb; hence, in any case, by
Remark 2.2, d(a+ n̄, b+ n̄) > 2. But a− b = (a+ n̄)− (b+ n̄), and then 2.3.1
implies that N(a + n̄) ⊇ N(a − b) = N(a). Further, by 3.11, N(−b) ⊇ N(a),
and as −n̄ 6∈ N(−b), −n̄ 6∈ N(a). Also a + b = (a − n̄) + (b + n̄), and if (2)
holds, then by 3.6, either a− n̄ ∈ Na, or b+ n̄ ∈ Nb. Hence again, in any case
d(a − n̄, b + n̄) > 2 and as above we get N(b + n̄) ⊇ N(a + b) = N(a). This
shows T(x∗, y∗).

(3.15) Let x∗, y∗ ∈ G∗ \ {1∗}. Suppose that

(a) d(x∗, y∗) > 2.
(b) −1 ∈ Ny∗ .
(c) For all n̄ ∈ N̄Cy∗ and m ∈ NCx∗ , n̄+m ∈ N .

Then G satisfies the U -Hypothesis with respect to NCy∗ .

Proof. Set N = NCy∗ and P = PCy∗ . First note that by (b) and 3.1.4,
−1 ∈ N. We first claim that

(i) b+m ∈ NCx∗ , for all b ∈ P and m ∈ NCx∗ .

To prove (i), let b ∈ P and m ∈ NCx∗ . Let a ∈ PCx∗ . Suppose a + m ∈ N̄.
Then, by 3.2.5, −a−m ∈ N̄, and by (c), (−a−m) +m ∈ N ; hence −a ∈ N ,
a contradiction. Thus a+m ∈ N and hence b+ (a+m) ∈ N . We have shown
that

(ii) a+ (b+m) ∈ N, for all a ∈ PCx∗ , b ∈ P and m ∈ NCx∗ .

Since d(x∗, y∗) > 2, we can choose a1 ∈ PCx∗ so that d(a∗1, b
∗) > 2 (see 1.8.5).

By (ii), given m ∈ NCx∗ , a1+(b+m) ∈ N , so if b+m 6∈ N , then by Remark 2.2,
d(a∗1, (b + m)∗) ≤ 1 ≥ d(b∗, (b + m)∗), so d(a∗1, b

∗) ≤ 2, a contradiction. This
shows that b+m ∈ N . Now (ii) implies (i). Next we claim:

(iii) For all n̄ ∈ N̄ and m ∈ NCx∗ , n̄+m ∈ N.

Let b ∈ P, n̄ ∈ N̄ and m ∈ NCx∗ . By (i), b + m ∈ NCx∗ , and by (c),
b+m+ n̄ ∈ N . As this holds for all b ∈ P, m+ n̄ ∈ N, and (iii) is proved.

Finally, let n̄ ∈ N̄. Then by 3.2.5, −n̄ ∈ N̄, and since 1 ∈ NCx∗ , (iii)
implies that −n̄+ 1 ∈ N. Hence

(iv) n̄− 1 ∈ N.

Now (iii), (iv), our assumption (b) and 3.2 imply that G satisfies the U -
Hypothesis with respect to N.
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(3.16) Theorem. Let x∗, y∗ ∈ G∗ \ {1∗}. Suppose that

(a) d(x∗, y∗) > 2.
(b) −1 ∈ Ny∗ .
(c) For all n̄ ∈ N̄y∗ and m ∈ Nx∗ , n̄+m ∈ N .

Then

(1) For all n̄ ∈ NCy∗ and m ∈ NCx∗ , n̄+m ∈ N .
(2) G satisfies the U -Hypothesis with respect to NCy∗ .

Proof. Set N = NCy∗ and let n̄ ∈ N̄ and m ∈ NCx∗ . We want to show
that n̄ + m ∈ N . After conjugation with some element of G, and using 3.1,
we may assume that n̄ ∈ N̄y∗ . But m ∈ NCx∗ ⊆ Nx∗ , so (1) follows from our
assumption (c). Then (2) follows from 3.15.

(3.17) Theorem. Let x∗, y∗ ∈ G∗ \ {1∗} and assume

(i) d(x∗, y∗) > 2.
(ii) Inc(y∗, x∗) and T(x∗, y∗).

Then G satisfies the U -Hypothesis with respect to NCy∗ .

Proof. Set N = NCy∗ . We verify assumptions (b) and (c) of Theorem 3.16.
Assumption (b) follows from Inc(y∗, x∗) and 3.11.4.

It remains to verify assumption (c) of Theorem 3.16. Let n̄ ∈ N̄y∗ and
let m ∈ Nx∗ . By definition, there exists b ∈ Py∗ , such that n̄ 6∈ N(b). Let
a ∈ Px∗ , such that N(b) ⊇ N(a) (using Inc(y∗, x∗)). By T(x∗, y∗), N(a+ n̄) ⊇
N(a) ⊆ N(b + n̄). In particular, m ∈ Nx∗ ⊆ N(a) ⊆ N(a + n̄) ∩ N(b + n̄).
Since d(x∗, y∗) > 2, 3.8 implies that n̄+m ∈ N , as asserted.

(3.18) Theorem. Suppose that diam(∆) > 4. Then there exist conjugacy
classes A∗, B∗ ⊆ G∗ \ {1∗} such that

(1) G satisfies the U -Hypothesis with respect to NB∗ .
(2) For all b ∈ PB∗ , there exists a ∈ PA∗ such that d(a∗, b∗) > 4 and N(b) ⊇

N(a).

Proof. Let x∗, y∗ ∈ ∆ be such that d(x∗, y∗) > 4. By 3.9, In(x∗, y∗)
and by 3.10, we may assume that Inc(y∗, x∗). Further by 3.14, T(x∗, y∗). Set
B∗ = Cy∗ and A∗ = Cx∗ . By Theorem 3.17, (1) holds. Let b ∈ PB∗ . Then
there exists g ∈ G, such that bg ∈ Py∗ (see 3.1.1). Since Inc(y∗, x∗), there
exists a ∈ Px∗ such that N(bg) ⊇ N(a). By 1.8.2, N(b) ⊇ N(ag

−1
). Of course

ag
−1 ∈ PA∗ and d(b∗, (ag

−1
)∗) > 4, so (2) holds.

4. The proof that if ∆ is balanced then G satisfies the U-Hypothesis

In this section we continue the notation and definitions of Sections 2 and 3.
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Definitions. (1) We define a binary relation B on (G∗ \{1∗})×(G∗ \{1∗})
as follows. Let (x∗, y∗) ∈ (G∗ \ {1∗})× (G∗ \ {1∗}),
B(x∗, y∗): The distances d(x∗, y∗), d(x∗, x∗y∗), d(y∗, x∗y∗), d(x∗, (x−1y)∗),
d(y∗, (x−1y)∗) are all greater than 3.

(2) We say that ∆ is balanced if there exists x∗, y∗ ∈ G∗ \ {1∗} such that
B(x∗, y∗).

The purpose of this section is to prove the following theorem.

(4.1) Theorem. Suppose that ∆ is balanced. Then there exists a conju-
gacy class C∗ ⊆ G∗ \ {1∗} such that

(1) G satisfies the U -Hypothesis with respect to NC∗ .
(2) One of the following holds:

(2a) Ox∗ = ∅, for some x∗ ∈ G∗ \ {1∗}.
(2b) For all m ∈ MC∗ , there exists z∗ ∈ C∗, such that m ∈ N(z1), for all

z1 ∈ Oz∗ .

(4.2) (1) B is symmetric.

(2) If B(x∗, y∗), then B((x−1)∗, y∗).

Proof. Suppose B(x∗, y∗). We must show that B(y∗, x∗). By defini-
tion, d(y∗, x∗) > 3. Next since d(y∗, x∗y∗) > 3, conjugating with y∗ we
get that d(y∗, y∗x∗) > 3. Since d(x∗, x∗y∗) > 3, conjugating with x∗ we
get d(x∗, y∗x∗) > 3. Since d(y∗, (x−1y)∗), inverting (x−1y)∗, we see that
d(y∗, (y−1x)∗) > 3, finally since d(x∗, (x−1y)∗), inverting (x−1y)∗, we get that
d(x∗, (y−1x)∗) > 3. Hence B(y∗, x∗). The proof of (2) is similar.

Notation. From now until the end of Section 4 we fix x, y ∈ G \ N such
that B(x∗, y∗). We set

S := ({x, x−1} × {y, y−1}) ∪ ({y, y−1} × {x, x−1})

and
OS = Ox∗ ∪O(x−1)∗ ∪Oy∗ ∪O(y−1)∗ .

(4.3) Let (g, h) ∈ S, then

(1) B(g∗, h∗).
(2) In(g∗, h∗).

Proof. (1) follows from 4.2 and (2) follows from (1) and 3.9.

(4.4) Suppose Ox∗ = ∅ or Oy∗ = ∅. Then G satisfies the U -Hypothesis.
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Proof. First note that by B(x∗, y∗), 4.3 and 3.14, T(x∗, y∗). Then, by
4.3, and 3.10, we may assume without loss that Inc(y∗, x∗). Now the lemma
follows from Theorem 3.17.

In view of 4.4, and symmetry, we assume from now on that

The sets Ox∗ ,O(x−1)∗ ,Oy∗ , and O(y−1)∗ are not empty.

Notation. Given z ∈ {x, x−1, y, y−1}, z1 will always denote an element
in Oz∗ .

(4.5) Let g ∈ {x, x−1, y, y−1}; then −1 ∈ Ng∗ , −1 ∈ NCg∗ and −1 ∈ Ug∗ .

Proof. Let g 6= h ∈ {x, x−1, y, y−1}, with h 6∈ {g, g−1}. By 4.3.1,
B(g∗, h∗). It suffices to show that −1 ∈ Ng∗ , then by 3.1.4, −1 ∈ NCg∗ , and
by 3.3.4, −1 ∈ Ug∗ . Letting a ∈ Pg∗ , we must show that −1 ∈ N(a). Suppose
−1 6∈ N(a), then, 1 6∈ N(−a), so by 3.13, N(g1) ⊇ N(−a). But −1 ∈ N(−a),
a contradiction.

(4.6) Let z ∈ OS. Then
(1) N(z) = N(h), for all h ∈ OS .
(2) 1 6∈ N(z).
(3) If a ∈ Nz such that 1 6∈ N(a), then N(z) ⊇ N(a).
(4) If n̄ ∈ N̄z∗ , then n̄−1 ∈ N(z).
(5) N(z) = Mz∗ .
(6) Nz∗ is independent of the choice of z.
(7) Uz∗ is independent of the choice of z.

Proof. We show that B(x∗, y∗) implies N(x1) ⊇ N(y1). Then, (1) follows
from 4.3.1. A similar application of 4.3.1 will be used throughout the proof.
Now 1 6∈ N(−y1), so by 3.13, N(x1) ⊇ N(−y1). Then, by 3.11, N(x1) ⊇ N(y1).

Suppose 1 ∈ N(x1). Then −1 ∈ N(−x1), so that N(−x1) % N(y1). By
3.11, N(x1) % N(y1), contradicting (1). Hence (2) holds.

(3) is immediate from 3.11, (1) and 4.3.2. To show (4), let n̄ ∈ N̄z∗ . By
definition, there exists a ∈ Pz∗ , such that n̄ 6∈ N(a). Then, 1 6∈ N(n̄−1a), and
so by (3), N(z) ⊇ N(n̄−1a). But n̄−1 ∈ N(n̄−1a), so that n̄−1 ∈ N(z).

Next let h ∈ OS , with h∗ 6= z∗, (z−1)∗. Note that N(h) ⊆ N(b), for all
b ∈ Pz∗ , by In(h∗, z∗), so N(z) = N(h) ⊆ Nz∗ . Let u ∈ Uz∗ . If u ∈ N(z); then,
by 3.4, Uz∗ ⊆ N(z), a contradiction, as −1 ∈ Uz∗ . Hence N(z) ⊆ Mz∗ . Let
m ∈ Mz∗ ; then, by definition, m−1 ∈ N̄z∗ , so by (4), m = (m−1)−1 ∈ N(z).
Hence N(z) = Mz∗ , and (5) holds.

To show (6), by 4.3.1, it suffices to show that N̄x∗ ⊆ N̄y∗ (so Nx∗ ⊇ Ny∗).
Let n̄ ∈ N̄x∗ ; then by (4) and (1), n̄−1 ∈ N(y1). But by (5), N(y1) = My∗ , so
by definition, n̄ = (n̄−1)−1 ∈ N̄y∗ . Finally (7) is immediate from (6).
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(4.7) Let n̄ ∈ N̄x∗ and m ∈ Ny∗. Then n̄+m ∈ N .

Proof. Set N = Nx∗ , M = Mx∗ and U = Ux∗ . Note that by 4.6, N = Nz∗ ,
M = Mz∗ = N(z), and U = Uz∗ , for all z ∈ OS . First we claim that

(i) z + n̄ ∈ Nz, for all z ∈ OS .
Indeed, by 4.6.4, n̄−1 ∈M, so as M = N(z−1), z−1 + n̄−1 ∈ N and (i) holds.

Further, by 3.12, N(x1 − y1) = N(x1) = M, and by (i), d((x1 + n̄)∗,
(y1 + n̄)∗) > 3, hence, by 2.3.1, M = N(x1 − y1) = N((x1 + n̄) − (y1 + n̄)) ⊆
N(x1 + n̄). Similarly, M ⊆ N(y1 + n̄), so that

(ii) N(x1 + n̄) ⊇M ⊆ N(y1 + n̄)

by 3.8, n̄+M ⊆ N , for all n̄ ∈ N̄. We have shown

(iii) n̄+m ∈ N, for all n̄ ∈ N̄ and m ∈M.
Next we show that n̄+ 1 ∈ N , for all n̄ ∈ N̄. We first claim that

(iv) N(x1 + 1) ⊇M.
Suppose not and let m ∈ M \ N(x1 + 1); recall that by 3.12, N(x1 − y1) =
N(x1) = M. But x1− y1 = (x1 + 1)− (y1 + 1), so m ∈ N(x1− y1) \N(x1 + 1).
Hence, by 3.7.1,

(v) (x1 + 1)∗(x1 + 1 +m)∗(y1 + 1)∗ is a path in ∆.

Replacing y1, by y−1
1 , the same argument shows that

(vi) (x1 + 1)∗(x1 + 1 +m)∗(y−1
1 + 1)∗ is a path in ∆.

It follows from (v) and (vi) that (x1 + 1 +m)∗ commutes with (y−1
1 + 1) and

(y1 + 1). But y1 + 1 = y1(y−1
1 + 1), so (x1 + 1 + m)∗ commutes with y∗1.

However, applying Remark 2.2 twice, we see that d((x1 + 1 + m)∗, x∗1) ≤ 2.
Hence we get that d(x∗1, y

∗
1) ≤ 3, contradicting B(x∗, y∗). This shows (iv).

Similarly, N(y1 + 1) ⊇ M. Since n̄−1 ∈ M, 3.8 implies that n̄−1 + 1 ∈ N , so
n̄+ 1 = n̄(n̄−1 + 1) ∈ N . We have shown

(vii) n̄+ 1 ∈ N, for all n̄ ∈ N̄.
Let u ∈ U . Then u−1n̄ ∈ N̄, by 3.3, so by (vii), u−1n̄+1 ∈ N , so n̄+u ∈ N .

We have shown

(viii) n̄+ u ∈ N, for all u ∈ U.
Since N is the union of M and U , (iii) and (viii) complete the proof.

(4.8) G satisfies the U -Hypothesis with respect to NCx∗ .

Proof. This follows immediately from 4.5, 4.7 and Theorem 3.16.
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(4.9) Let N = NCx∗ and M = MCx∗ . Then N = NCz∗ and M = MCz∗ , for
all z ∈ OS .

Proof. Let z ∈ OS . By definition, NCx∗ =
⋂
{Nv∗ : v∗ ∈ Cx∗} and

NCz∗ =
⋂
{Nv∗ : v∗ ∈ Cz∗}. But, by 4.6.6 and 3.1.2, {Nv∗ : v∗ ∈ Cx∗} = {Nv∗ :

v∗ ∈ Cz∗}, so N = NCz∗ . Then, by definition, M = MCz∗ .

(4.10) Set M = MCx∗ , and let m ∈ M. Then there exists z∗ ∈ Cx∗ , such
that m ∈ N(z1), for all z1 ∈ Oz∗ .

Proof. Since m ∈ M, m ∈ NCx∗ . Since m 6∈ UCx∗ , there exists z∗ ∈ Cx∗ ,
such that m 6∈ Uz∗ . Hence m ∈Mz∗ . After conjugation, and using 3.1, we may
assume that z = x. But then the lemma follows from 4.6.

Note now that by 4.4, 4.9 and 4.10, Theorem 4.1 holds.

5. The U-Hypothesis

In this section ∅ 6= N $ N is a proper subset of N such that N is a normal
subset of G. We denote N̄ = N \ N and assume the U -Hypothesis.
(U1) 1,−1 ∈ N.
(U2) N2 = N.
(U3) For all n̄ ∈ N̄, n̄+ 1 ∈ N and n̄− 1 ∈ N .

(5.1) Remark. Notice that if diam(∆) > 4 or ∆ is balanced, then by
Theorems 3.18 and 4.1, G satisfies the U -Hypothesis with respect to N = NX∗ ,
where X∗ = B∗, if diam(∆) > 4 (B∗ as in Theorem 3.18) and X∗ = C∗ if ∆ is
balanced (C∗ as in Theorem 4.1).

(5.2) Let U = {n ∈ N : n−1 ∈ N}. Then
(1) U = {n ∈ N : nN = N} = {n ∈ N : nN̄ = N̄}.
(2) U = {n ∈ N : Nn = N} = {n ∈ N : N̄n = N̄}.
(3) U is a normal subgroup of G.
(4) −1 ∈ U .

Proof. This was already proved in 3.3 in a slightly different context; for
completeness we include a proof. Clearly since N is a disjoint union of N and
N̄, {n ∈ N : nN = N} = {n ∈ N : nN̄ = N̄}. Let u ∈ U , then by (U2), uN ⊆ N
and u−1N ⊆ N. Hence uN = N. Conversely let n ∈ N and suppose nN = N.
As 1 ∈ N, n ∈ N and as n−1N = N, n−1 ∈ N, so that n ∈ U . This proves (1).
The proof of (2) is identical to the proof of (1). (3) follows from (1) and the
fact that N is a normal subset of G. Note that (4) follows immediately from
(U1).
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(5.3) Notation. We denote M = N \ U . Hence N = M∪̇U ∪̇N̄ is a disjoint
union.

(5.4) (1) For all n̄ ∈ N̄, n̄+ U = U .

(2) For all n̄ ∈ N̄, n̄−1 ∈ N.

Proof. We first show

(i) For all n̄ ∈ N̄, n̄− 1 ∈ N.

Let n̄ ∈ N̄ and suppose n̄−1 6∈ N, then, n̄−1 ∈ N̄ and by (U3), (n̄−1)+1 ∈ N,
a contradiction. This shows (i).

Let m̄ ∈ N̄. Suppose that m̄−1 ∈ N, then by (U2), m̄−1N ⊆ N. We
conclude that m̄−1(m̄± 1) ∈ N. Hence m̄−1± 1 ∈ N. Suppose m̄−1 ∈ N̄. Then
by (U3) and (i), m̄−1 ± 1 ∈ N. Hence in either case we get that

(ii) m̄−1 ± 1 ∈ N, for all m̄ ∈ N̄.

Next we show

(iii) For all n̄ ∈ N̄, n̄± 1 ∈ U.

Let n̄ ∈ N̄ and let ε ∈ {1,−1}. By (i) and (U3), n̄ + ε ∈ N. Hence we must
show that (n̄ + ε)−1 ∈ N. Suppose (n̄ + ε)−1 6∈ N. Set m̄ = (n̄ + ε)−1. Then
m̄ ∈ N̄, so by (ii), m̄−1 − ε ∈ N. But m̄−1 − ε = n̄ ∈ N̄, a contradiction.

We can now prove (1). Let u ∈ U and n̄ ∈ N̄. Then by 5.2.1, u−1n̄ ∈ N̄
and by (iii), u−1n̄+ 1 ∈ U . It follows that n̄+ u = u(u−1n̄+ 1) ∈ U . Hence

(iv) n̄+ U ⊆ U.

Next by 5.2.4, −u ∈ U , and by (iv), n̄−u ∈ U . Again by 5.2.4, u− n̄ ∈ U
and hence u = n̄+ (u− n̄) ∈ n̄+ U . Hence U ⊆ n̄+ U and (1) is proved.

Finally we prove (2). Let n̄ ∈ N̄ and suppose n̄−1 6∈ N. Then n̄−1 ∈ N̄, so
by (1), n̄−1 + 1 ∈ U . Then by 5.2.2, n̄+ 1 = n̄(n̄−1 + 1) ∈ N̄, which contradicts
(U3).

(5.5) (1) For all s ∈ N \ U , s ∈M if and only if s−1 ∈ N̄.

(2) For all n̄ ∈ N̄, n̄+ U = U .
(3) For all u ∈ U, uN̄ = N̄u = N̄ and uM = Mu = M.
(4) N̄2 ⊆ N̄ and M2 ⊆M.

Proof. For (1) let m ∈ M ⊆ N. If m−1 ∈ N, then, by definition, m ∈ U ,
a contradiction. Hence m−1 ∈ N̄. Let n ∈ N̄. By 5.4.2, n−1 ∈ N, and since
n 6∈ U, n−1 ∈ M. This shows (1). (2) is from 5.4.1 and (3) is from 5.2.1 and
5.2.2.
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Let n̄, m̄ ∈ N̄ and suppose n̄m̄ ∈ N. By (1), n̄−1 ∈ N, and by (U2),
m̄ = n̄−1(n̄m̄) ∈ N, a contradiction. Hence N̄2 ⊆ N̄. Let m,m′ ∈ M. Suppose
mm′ ∈ U ∪ N̄. Then m−1 ∈ N̄ (by (1)) and by (3) and the fact that N̄2 ⊆ N̄,
m′ = m−1(mm′) ∈ N̄, a contradiction. Hence M2 ⊆M.

6. Further consequences of the U-Hypothesis

In this section we continue the notation and hypotheses of Section 5,
deriving further consequences. We denote Γ = N/U (note that by 5.2.3, U is
a normal subgroup of G and hence of N). Recall from 1.3 that we denote by
ν : G→ F# the reduced norm function, in the case when [D : F ] <∞.

(6.1) Definition. We define an order relation ≤ on Γ as follows. For
Ua,Ub ∈ Γ, Ua < Ub if and only if Ua 6= Ub and ba−1 ∈ N̄.

(6.2) (1) The relation ≤ is a well defined linear order relation on Γ.

(2) If Ua,Ub, Uc, Ud ∈ Γ, with Ua ≤ Uc and Ub ≤ Ud, then Uab ≤ Ucd.

Proof. It is clear from 5.5.3 that ≤ is independent on coset representatives
and hence it is a well defined relation on Γ. We show it is an order relation.
If Ua < Ub, then ba−1 ∈ N̄; hence by 5.5.1, ab−1 ∈ M and it follows that
Ub 6< Ua. Also if Ua < Ub < Uc, then ba−1 ∈ N̄ and cb−1 ∈ N̄. Hence by
5.5.4, ca−1 = (cb−1)(ba−1) ∈ N̄ and hence Ua < Uc. Finally let Ua, Ub ∈ Γ,
with Ua 6= Ub. Then by 5.5.1 either ab−1 ∈ N̄ or ba−1 ∈ N̄; hence either
Ua < Ub, or Ub < Ua, so ≤ is linear.

For (2), if Ua = Uc, or Ub = Ud, then (2) follows directly from the
definition of ≤ and the fact that N̄ is a normal subset of G. So suppose
Ua < Uc and Ub < Ud. Then ca−1, db−1 ∈ N̄. Now (cd)(ab)−1 = cdb−1a−1 =
ca−1adb−1a−1. Since N̄ is a normal subset of G, adb−1a−1 ∈ N̄. By 5.5.4,
N̄2 ⊆ N̄, so ca−1adb−1a−1 ∈ N̄. Hence, (cd)(ab)−1 ∈ N̄ and Uab < Ucd, as
asserted.

(6.3) Let Ua,Ub ∈ Γ, with Ua 6= Ub. Then

(1) Ua+ Ub ⊆ N , and
(2) Ua+ Ub = min{Ua,Ub}.

Proof. Without loss of generality we may assume that Ua < Ub. Let
x ∈ Ua and y ∈ Ub. Then yx−1 ∈ N̄. Hence by 5.5.2, 1 + yx−1 ∈ U and
multiplying by x on the right we see that x + y ∈ Ux = Ua. This shows (1)
and the fact that Ua + Ub ⊆ Ua. But Ua + Ub contains the coset U(a + b),
and it follows that Ua+ Ub = Ua.
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(6.4) Corollary. Let Ua ∈ Γ and let x, y ∈ Ua. Suppose x + y ∈ N .
Then U(x+ y) ≥ Ua.

Proof. Suppose U(x + y) < Ua = Ux. Then by 6.3, y = (x + y) − x ∈
U(x+ y). But y ∈ Ua, a contradiction.

(6.5) Corollary. Let a1, a2, . . . , ak ∈ N and assume there exists some
1 ≤ i ≤ k, such that Uai < Uaj , for all j 6= i. Then Ua1 + Ua2 + · · ·+ Uak =
Uai.

Proof. This follows immediately from 6.3 by induction.

(6.6) Suppose [D : F ] < ∞ and let n ∈ N \ UF#. Then there exists
r ≤ deg(D) such that nr ∈ UF#.

Proof. Let
α0 + α1x

k1 + · · ·+ αtx
kt

be the minimal polynomial of n over F with αi 6= 0, for all 0 ≤ i ≤ t and
0 < k1 < k2 < · · · < kt. Suppose there exists some 0 ≤ i ≤ t, such that
Uαin

ki < Uαjn
kj , for all j 6= i. Then by 6.5, α0 +α1n

k1 +· · ·+αtnkt ∈ Uαinki .
In particular, α0 + α1n

k1 + · · ·+ αtn
kt 6= 0, a contradiction. Hence the set of

minimal elements in the set {Uα0, Uα1n
k1 , . . . , Uαtn

kt} is of size larger than 1.
It follows that there are indices 0 ≤ i < j ≤ t, such that Uαinki = Uαjn

kj . We
conclude that nkj−ki ∈ U(αiα−1

j ). Note now that r = kj − ki ≤ kt ≤ deg(D)
and that nr ∈ UF#.

(6.7) Suppose [D : F ] <∞ and let n ∈ N , with ν(n) ∈ U . Then n ∈ U .

Proof. Suppose first that n ∈ UF#. Note that as U / G, for each u ∈ U,
ν(u) ∈ U . This is because ν(u) is a product of conjugates of u (see 1.4). Write
n = αu, with u ∈ U and α ∈ F#. Then

ν(n) = αdeg(D)ν(u)

and it follows that αdeg(D) = ν(n)ν(u)−1 ∈ U . By 5.5.4, α ∈ U , and hence
n ∈ U .

Next suppose n ∈ N \ UF#. Then by (6.6), nr ∈ UF#, for some 1 < r ≤
deg(D). Note now that ν(nr) = ν(n)r ∈ U , so by the previous paragraph of
the proof, nr ∈ U , this contradicts 5.5.4.

(6.8) Corollary. If [D : F ] <∞, then N/U ≤ Z(G/U).

Proof. Here Z(G/U) is the center of G/U . Let g ∈ G and n ∈ N . Then
ν([g, n]) = 1 ∈ U . Hence by 6.7, [g, n] ∈ U .
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(6.9) Remark. Note that if [D : F ] < ∞, then the canonical homo-
morphism v : N → Γ behaves like a valuation on N in the sense that v is
a group homomorphism, and Γ is a linearly ordered abelian group. Further
v(a + b) ≥ min{v(a), v(b)}, whenever a + b ∈ N . In particular the restriction
v : F# → v(F#) is a valuation on F .

(6.10) If [D : F ] <∞, then F# 6⊆ U .

Proof. Suppose F# ⊆ U and let n̄ ∈ N̄. Let

α0 + α1x
k1 + · · ·+ αtx

kt

be the minimal polynomial of n̄ over F with αi 6= 0, for all 0 ≤ i ≤ t and
0 < k1 < k2 < · · · < kt . Then

α0 + α1n̄
k1 + · · ·+ αtn̄

kt = 0.

We show by induction on j that α0 + α1n̄
k1 + · · · + αjn̄

kj ∈ U , for all 0 ≤
j ≤ t. By hypothesis α0 ∈ U . Suppose α0 + α1n̄

k1 + · · · + αjn̄
kj ∈ U .

Note that as αj+1 ∈ U , 5.5.3 and 5.5.4 imply that αj+1n̄
kj+1 ∈ N̄; hence

by 5.5.2, (α0 + α1n̄
k1 + · · · + αjn̄

kj ) + αj+1n̄
kj+1 ∈ U . But we cannot have

α0 + α1n̄
k1 + · · ·+ αtn̄

kt ∈ U , a contradiction.

7. Towards the proof of Theorem A

In this and the following sections we finally prove Theorem A. We continue
the notation of the previous sections. In particular, ∆ is the commuting graph
of G∗. We assume that either diam(∆) > 4, or ∆ is balanced. If diam(∆) > 4
then we fix A∗, B∗ to denote the conjugacy classes as in Theorem 3.18. Recall
that Â = {a ∈ G : a∗ ∈ A∗} and B̂ = {b ∈ G : b∗ ∈ B∗}. If ∆ is balanced, then
we fix C∗ to denote the conjugacy class as in Theorem 4.1; again Ĉ = {c ∈ G :
c∗ ∈ C∗}.

If diam(∆) > 4, let X∗ = B∗, while if ∆ is balanced let X∗ = C∗. We let
P = PX∗ , N = NX∗ , N̄ = N̄X∗ , M = MX∗ and U = UX∗ . Note that by Remark
5.1, all the results of Sections 5 and 6 apply here.

In this section we further assume that G∗ is a nonabelian finite simple
group and that [D : F ] <∞. We draw the attention of the reader to Remarks
2.2 and 2.4.

Definitions and Notation. (1) K̂ = {a ∈ OU \N : N(a) ⊇M}.
(2) K∗ = {a∗ : a ∈ K̂}.
(3) An element a ∈ G \ N is a standard element if it satisfies the following

condition: If n ∈ N(a), then Un ⊆ N(a).
(4) We denote by Φ the set of all standard elements in G \N .
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(7.1) (1) G = ON .
(2) (OU) ∩N = U .
(3) OU/U ' G∗.
(4) [G,N ] ≤ U .

Proof. (1) follows from our assumption that G∗ is simple and from 1.5.
Let n ∈ (OU) ∩ N ; then n = au, for some a ∈ O, so ν(n) = ν(u). Since
U is normal in G, ν(u) ∈ U , by 1.4. Then by 6.7, n ∈ U . Next, since
G = (OU)N,G∗ = G/N ' OU/(OU) ∩ N = OU/U , by (2). Finally, (4) is
from 6.8.

(7.2) Let a, b ∈ G \N . Then
(1) Let n ∈ N(a), then a+ n ∈ Un.
(2) Let n ∈ N(a), then Um ⊆ N(a), for all Um < Un. Further if a ∈ Φ, then

also Un ⊆ N(a).
(3) Let n ∈ N \ N(a), then Um ≤ Un, for all m ∈ N(a). Further if a ∈ Φ,

then Um < Un, for all m ∈ N(a).
(4) If a ∈ Φ and b ∈ G \N , then N(a) ⊆ N(b) or N(b) ⊆ N(a).
(5) Let n ∈ N . Then N ⊆ N(n) if and only if n ∈ N̄ and M ⊆ N(n) if and

only if n ∈ U ∪ N̄.

Proof. For (1), suppose a+ n = m 6∈ Un. Note that as −1 ∈ U , −n ∈ Un
and hence a = m− n ∈ Um+ Un ⊆ N , by 6.3.1, a contradiction.

For (2), assume Um < Un. By (1), a = n + nu, for some u ∈ U . Then
a + m = n + nu + m ∈ Um, by 6.5. Hence m ∈ N(a). This proves the first
part of (2) and the second part of (2) is obvious. Now (3) is an immediate
consequence of (2).

Let a ∈ Φ and b ∈ G \N and suppose N(b) 6⊆ N(a). Let n ∈ N(b) \N(a);
then by (2), Um ⊆ N(b), for all Um < Un. By (3), if m ∈ N(a), then
Um < Un. Hence, N(a) ⊆ N(b). This proves (4).

We now prove (5). Let n ∈ N. Then −n 6∈ N(n), by definition, and
−n ∈ N, thus N 6⊆ N(n). Let n̄ ∈ N̄; then by 6.3, N ⊆ N(n). This proves the
first part of (5). The proof of the second part of (5) is similar.

(7.3) Let a ∈ G \N . Then
(1) If a ∈ Φ, then Na ⊆ Φ.
(2) a ∈ Φ if and only if

(∗) For each b ∈ Na such that 1 ∈ N(b), U ⊆ N(b).

In particular, if a 6∈ Φ, then there exists b ∈ Na, with N(b) ∩ U 6= ∅, but
U 6⊆ N(b).

(3) If a ∈ Φ, then N(a) is a normal subset of G.
(4) Φ is a normal subset of G.
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Proof. Suppose a ∈ Φ. Let b ∈ Na and m ∈ N(b). Write b = sa,
s ∈ N . Then s−1m ∈ N(a). Let u ∈ U . Since a ∈ Φ, s−1mu ∈ N(a), so that
mu ∈ N(sa) = N(b). Thus Um ⊆ N(b) as asserted.

For (2), note that (1) implies that if a ∈ Φ, then (∗) holds. So assume (∗)
holds. Let m ∈ N(a). Then 1 ∈ N(m−1a), so by (∗), U ⊆ N(m−1a). Hence
Um ⊆ N(a) and a ∈ Φ.

Next let a ∈ Φ, n ∈ N(a) and g ∈ G. By 7.1.4, ng ∈ Un ⊆ N(a), so
N(a) is a normal subset of G. (4) follows from (3) since for a ∈ Φ and g ∈ G,
N(ag) = g−1N(a)g = N(a); so ag ∈ Φ.

(7.4) (1) If diam(∆) > 4, then B̂ ⊆ Φ.

(2) If ∆ is balanced, then Ĉ ⊆ Φ.

Proof. (1) and (2) follow from the definition of U and from 7.3.2.

(7.5) Let a ∈ Φ. Then

(1) For all u ∈ U,N(ua) = N(a) = N(au).
(2) If n ∈ N \N(a), then N(a+ n) ⊇ N(a).
(3) Let x, y ∈ (OU) ∩Na. Then N(x) = N(y).

Proof. For (1) note that N(ua) = uN(a) ⊆ N(a), as a ∈ Φ. Similarly
u−1N(a) ⊆ N(a), so N(a) ⊆ uN(a) = N(ua). This proves the first part of (1)
and the proof of the second part of (1) is the same. For (2), let m ∈ N(a);
then, by 7.2.3, Um < Un, and by 6.3.2, a+ n+m = a+ um, for some u ∈ U .
Then, since a ∈ Φ, a+ um ∈ N , so that m ∈ N(a+ n).

Next we prove (3): notice that xy−1 ∈ (OU) ∩N . Hence, by 7.1.2, xy−1

∈ U , so (3) follows from (1).

(7.6) Let a ∈ G \ N and m ∈ N . Suppose Um ⊆ N(x), for some x ∈
Ĉa∗ ∩ (OU); then Um ⊆ N(z), for all z ∈ Ĉa∗ ∩ (OU).

Proof. Recall that Ca∗ is the conjugacy class of a∗ in G∗ and Ĉa∗ = {c ∈
G : c∗ ∈ Ca∗}. First we claim that

(∗) Um ⊆ N(xg), for all g ∈ G.

Let g ∈ G. Then, by 1.8.2, N(xg) = g−1N(x)g. Hence N(xg) ⊇ g−1(Um)g =
Umg = Um, where the last equality follows from 7.1.4.

Let z ∈ Ĉa∗ ∩ (OU). Then there exists g ∈ G, such that z∗ = (xg)∗.
By (∗), Um ⊆ N(xg). Hence, we may assume that Nx = Nz. But then
xz−1 ∈ N ∩ (OU) = U (see 7.1.2). Hence, there exists u ∈ U such that z = ux.
Then N(z) = uN(x), so that N(z) ⊇ u(Um) = Um, as asserted.
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(7.7) Let a, b ∈ G \N . Then

(1) If U ⊆ N(a) ∩N(b), then U ⊆ N(ab).
(2) If U ∩N(a) 6= ∅ and M ⊆ N(b), then M ⊆ N(ab).
(3) If U ⊆ N(a) ∩N(b), then U ⊆ N(a+ b).
(4) If M ⊆ N(a) ∩N(b), then M ⊆ N(a+ b).
(5) Suppose a ∈ OU \N and let ` > 1, such that a` ∈ N . Then a` ∈ U .
(6) Suppose a ∈ OU \ N . Then U 6⊆ N(a). In particular, if a ∈ Φ, then

N(a) ⊆M.

Proof. For (1), let u ∈ U . Then ab+u = ab−b+b+u = (a−1)b+(b+u).
As −1 ∈ U , a− 1 ∈ U , by 7.2.1. Further by 7.2.1, b+ u ∈ U , write v = a− 1
and w = b+ u. Then ab+ u = vb+ w = v(b+ v−1w) ∈ N . Hence u ∈ N(ab).

For (2), let u ∈ U∩N(a) and letm ∈M. Then ab+m = ab+ub+(m−ub) =
(a+ u)b+ (m− ub). Note now that by 7.2.1, a+ u = v and m− ub = wm, for
some v, w ∈ U . Hence ab + m = vb + wm = v(b + v−1wm) ∈ N , where the
last equality is because M ⊆ N(b) and because (v−1w)M = M.

For (3), let u ∈ U ; then (a + b) + u = a + (b + u). But since u ∈ N(b),
b+ u = v ∈ U , by 7.2.1. Hence (a+ b) + u = a+ v ∈ N . Thus U ⊆ N(a+ b).
The proof of (4) is similar.

Assume the hypotheses of (5). Since a ∈ OU , ν(a) ∈ U , so ν(a`) ∈ U .
Hence by 6.7, a` ∈ U . Let a ∈ OU \ N . Since G∗ is finite there exists
r ≥ 2, with ar ∈ N . By (5), ar ∈ U . Hence a−1 = uar−1, for some u ∈ U .
Suppose U ⊆ N(a). Then by (1), U ⊆ N(ar−1), so U ⊆ N(a−1). In particular
1 ∈ N(a) ∩ N(a−1) contradicting 1.8.4. The second part of (6) follows from
the first part of (6) and by 7.2.2.

(7.8) Let s ∈M and suppose that

(∗) s2 ∈ N(z), for all z ∈ OU \N.

Then s ∈ N(z), for all z ∈ OU \N .

Proof. Assume that there exists x ∈ OU \ N , such that s 6∈ N(x). Set
y := −s−1x. Then −1 6∈ N(y). First we claim that

(∗∗) −1 ∈ N(yyg), for all g ∈ G.

This is because yyg = (s−1x)(s−1)gxg = s−2xxgu, for some u ∈ U , where
the last equality follows from 7.1.4. Since x ∈ OU , −xxgu ∈ OU , so, if
−xxgu 6∈ N , then, by hypothesis (∗), s2 ∈ N(−xxgu). If −xxgu ∈ N , then
−xxgu ∈ (OU) ∩ N = U (see 7.1.2). Since s ∈ M, s2 ∈ M, by 5.5.4, so, by
7.2.5, s2 ∈ N(−xxgu) in this case too. Now in any case s2 ∈ N(−xxgu), and
it follows that −1 ∈ N(yyg).
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Now, taking a = y = b in 2.10, we get from 2.10 and (∗∗), that G∗ is not
simple, a contradiction.

8. Some properties of K̂ and the proof that K̂ 6= ∅

In this section we continue the notation and hypotheses of Section 7 re-
calling from there that we defined

K̂ = {a ∈ OU \N : N(a) ⊇M}.

(8.1) (1) K̂ is a normal subset of G.

(2) If a ∈ K̂, then Ua ⊆ K̂.

Proof. (1) follows immediately from the fact that M and OU are normal
subsets of G and from 1.8.2. (2) follows from the fact that uM = M, from
1.8.1 and the definition of K̂.

(8.2) Suppose there exists a ∈ OU \N such that N(a) ∩ U 6= ∅. Then

(1) For all b ∈ K̂ such that ab ∈ G \N, ab ∈ K̂.
(2) K̂ = OU \N .

Proof. First note that by 7.2.2, M ⊆ N(a), so that a ∈ K̂. Next, for (1),
let b ∈ K̂. Then N(b) ⊇M. By 7.7.2, M ⊆ N(ab), and clearly ab ∈ OU , hence
ab ∈ K̂.

Next, since K̂ is a normal subset of G, K∗ ∪ {1∗} is a normal subset of
G∗. Further note that by (1), a∗(K∗ ∪ {1∗}) ⊆ K∗ ∪ {1∗}. Hence, by 1.9,
K∗ ∪ {1∗} = G∗. Let b ∈ OU \ N . Then b∗ = k∗, for some k ∈ K̂, and then
bk−1 ∈ (OU) ∩ N ≤ U . Hence b = uk, for some u ∈ U , so b ∈ K̂. It follows
that K̂ = OU \N .

(8.3) Assume that diam(∆) > 4 and that for all m ∈ M, there exists
z ∈ (Â ∪ B̂) ∩ (OU) such that Um ⊆ N(z). Then K̂ 6= ∅ .

Proof. Let V =
⋂
x∈Â∩OU N(x) and W =

⋂
y∈B̂∩OU N(y). Let m ∈ V,

u ∈ U and x ∈ Â ∩ (OU). Then u−1x ∈ Â ∩ (OU), so m ∈ N(u−1x). Thus
um ∈ N(x) and Um ⊆ N(x). As this holds for all x ∈ Â ∩ (OU), Um ⊆ V.
Similarly, Um ⊆W, for all m ∈W. Next, if Um ⊆ V and Us ≤ Um, for some
s ∈ N , then, by 7.2.2, Us ⊆ V. Similarly if Um ⊆W and Us ≤ Um, for some
s ∈ N, then Us ⊆W.



MULTIPLICATIVE GROUP OF A DIVISION ALGEBRA 247

Next we claim that either V ⊆ W, or W ⊆ V. Suppose V 6⊆ W. Let
Um ⊆ V, such that Um ∩W = ∅. Then, by the previous paragraph of the
proof, Us < Um, for all Us ⊆ W. Hence, by the previous paragraph of the
proof, Us ⊆ V and hence W ⊆ V.

Finally, by 7.6, and by the hypothesis of the lemma,M ⊆ V∪W, so, by the
second paragraph of the proofM ⊆ V, orM ⊆W. Hence either Â∩(OU) ⊆ K̂,
or B̂ ∩ (OU) ⊆ K̂ and K̂ 6= ∅.

(8.4) Theorem. K̂ 6= ∅.

Proof. Suppose K̂ = ∅. By 8.2, we may assume

(∗) U ∩N(x) = ∅, for all x ∈ OU \N.

Case 1. diam(∆) > 4. We shall show that for all m ∈ M, there exists
z ∈ (Â ∪ B̂) ∩ (OU) such that Um ⊆ N(z). Then, by 8.3, K̂ 6= ∅, a
contradiction. Let m ∈ M. Since m−1 ∈ N̄, there exists b ∈ P, such
that m−1 6∈ N(b). By 3.18.2, there exists a ∈ PA∗ such that N(a) ⊆ N(b)
and d(a∗, b∗) > 4. Note that by 3.9, In(a∗, b∗). Further, since b ∈ Φ,
−m−1 6∈ N(b) (see 7.2.2), and hence −m−1 6∈ N(a). Let x ∈ Na ∩ (OU) and
y ∈ Nb ∩ (OU) and suppose that Um 6⊆ N(x) and Um 6⊆ N(y). Since y ∈ Φ,
m 6∈ N(y) and, after replacing x by ux, for some u ∈ U , we may assume that
m 6∈ N(x).

Suppose first that N(y) ⊇ N(x). Let a′ = ma. Notice that m ∈ N(a′)
and −1 6∈ N(a′). Write a′ = xn, n ∈ N . Notice that mn−1 ∈ N(x), so
mn−1 ∈ N(y). Thus m ∈ N(yn). But y ∈ Φ, so n−1N(y)n = N(y) (see 7.3.3);
thus m ∈ N(ny). Note now that by (∗), all the hypotheses of 2.11 are met, for
x, y,m and n, so by 2.11, d(x∗, y∗) ≤ 4, contradicting d(a∗, b∗) > 4.

Suppose next that N(x) ⊇ N(y). Let b′ = mb. Notice that m ∈ N(b′) and
−1 6∈ N(b′). Write b′ = ny, n ∈ N. Notice that n−1m ∈ N(y) and since y ∈ Φ,
mn−1 ∈ N(y). Thus mn−1 ∈ N(x) and hence, m ∈ N(xn). Again we see
that by (∗), all the hypotheses of 2.11 are met, for x, y,m and n; so by 2.11,
d(x∗, y∗) ≤ 4, a contradiction. Hence, either Um ⊆ N(x), or Um ⊆ N(y).
This completes the proof of the theorem, in the case when diam(∆) > 4.

Case 2. ∆ is balanced. We use Theorem 4.1. First note that by (∗) and
3.6.2, we are in case (2b) of Theorem 4.1. Let m ∈M. By Theorem 4.1, there
exists z ∈ Ĉ such that m ∈ N(z1), for all z1 ∈ Oz∗ . By (∗), Nz ∩ (OU) ⊆ Oz∗ ;
thus m ∈ N(z1), for some z1 ∈ Nz ∩ (OU). Since z1 ∈ Φ, Um ⊆ N(z1) and
hence, by 7.6, Um ⊆ N(x), for all x ∈ Ĉ ∩ (OU). As this holds for all m ∈M,
Ĉ ∩ (OU) ⊆ K̂ and K̂ 6= ∅.
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9. The proof that K̂ = OU \N

In this section we continue the notation and hypotheses of Section 7. Note
that by Theorem 8.4, K̂ 6= ∅. The purpose of this section is to prove

(9.1) Theorem. K̂ = OU \N .

In view of 8.2, we may (and do) assume that N(a) ∩ U = ∅, for all
a ∈ OU \N .

(9.2) Suppose that for all m ∈M there exists s ∈M, with Um < Us. Then

(1) Let a1, b1 ∈ K̂ such that a1b1 ∈ G \N . Then a1b1 ∈ K̂.
(2) K̂ = OU \N .

Proof. For (1), let m ∈M and let s ∈M, with Um < Us. Then

a1b1 +m = a1b1 − a1s+ (a1s+m) = a1(b1 − s) + (a1s+m).

By 7.2.1, b1−s = us, for some u ∈ U . Next a1s+m = (a1 +ms−1)s. Note that
as Um < Us, ms−1 ∈M, and hence a1 +ms−1 ∈ N . Hence a1s+m ∈ N , so by
7.2.1, a1s+m = vm, for some v ∈ U . Hence we get that a1b1+m = a1(us)+vm
and as above a1(us) + vm ∈ N , so m ∈ N(a1b1). Hence N(a1b1) = M. Since
a1b1 ∈ OU \N , a1b1 ∈ K̂.

The proof of (2) is exactly like the proof of 8.2.2; all we need is the property
established in (1).

Notation. We fix the letter m to denote an element m ∈ M such that
Us ≤ Um, for all s ∈M (see 9.2).

(9.3) (1) Let k, ` ∈ Z such that 0 < k ≤ `. Suppose x, y ∈ OU \ N such
that N(x) ⊇ Umk and N(y) ⊇ Um`. Then N(xy) ⊇ Umk+`.

(2) There exists t > 0, such that for all z ∈ OU \N , N(z) ⊇ Umt.

Proof. For (1), we have

xy +mk+` = xy + xm` − xm` +mk+` = uxm` − xm` +mk+`

= (ux− x+mk)m` = (ux+ vmk)m` ∈ N.
Here, u, v ∈ U and we used 7.2.1 for the equalities.

For (2), let x ∈ K̂. Let X∗ be the conjugacy class of x∗ in G∗. Let
X̂ = {x ∈ G \N : x∗ ∈ X∗}. Note that by 7.6, X̂ ∩OU ⊆ K̂. Now G∗ = 〈X∗〉,
and every element g∗ ∈ G∗ can be written as a product of elements in X∗. For
g∗ ∈ G∗, let `(g∗) be the minimal length of a word in the alphabet X∗ which
equals g∗. Let t = max{`(g∗) : g∗ ∈ G∗}. Note that every element in OU \N
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can be written as a word of length at most t in the alphabet X̂ ∩ (OU). Hence,
by (1), as Um ⊆ N(y), for y ∈ X̂ ∩OU , Umt ⊆ N(z), for all z ∈ OU \N .

We now complete the proof of Theorem 9.1. Suppose K̂ 6= OU \N . Let
1 ≤ t ∈ Z, minimal subject to Umt ⊆ N(z), for all z ∈ OU \ N . Since
K̂ 6= OU \N , t ≥ 2. Since there exists y ∈ OU \N such that Umt−1 6⊆ N(y),
we may assume without loss of generality that mt−1 6∈ N(y). Set s = mt−1.
Notice that s2 = m2(t−1), and as 2(t− 1) ≥ t, we conclude that s2 ∈ N(z), for
all z ∈ OU \N . But now, by 7.8, s ∈ N(z), for all z ∈ OU \N . This implies
that Us ⊆ N(z), for all z ∈ OU \N , a contradiction.

10. The construction of the local ring R

and the proof of Theorem A

In this section we continue the hypotheses of Section 7. In addition, in
view of Theorem 9.1, we know that K̂ = OU \ N . We will construct a local
ring R and finally prove Theorem A.

(10.1) Let a ∈ G. Then

(1) If a 6∈ N , then M ⊆ N(a) if and only if a = na1, for some n ∈ U ∪ N̄ and
some a1 ∈ K̂.

(2) If a 6∈ N , then U ⊆ N(a) if and only if a = n̄a1, for some n̄ ∈ N̄ and some
a1 ∈ K̂.

(3) If a ∈ N , then M ⊆ N(a), if and only if a ∈ U ∪ N̄.
(4) If a ∈ N , then N ⊆ N(a) if and only if a ∈ N̄.

Proof. Note first that if a 6∈ N , then by Theorem 9.1, and by 7.1.1,
a = na1, for some n ∈ N and some a1 ∈ K̂.

Suppose a 6∈ N . Write a = na1, with n ∈ N and a1 ∈ K̂. Now suppose
that M ⊆ N(a) and let u ∈ U such that u 6∈ N(a1) (see 7.7.6). Then a+nu =
n(a1 + u) 6∈ N . Hence nu 6∈ M, so nu ∈ U ∪ N̄. It follows that n ∈ U ∪ N̄.
Suppose that U ⊆ N(a); then Un−1 ⊆ N(a1). But by 7.7.6, U 6⊆ N(a1) and
hence, by 7.2.2, n−1 ∈M, so that n ∈ N̄.

Conversely, let a1 ∈ K̂ and n ∈ U ∪ N̄. If n ∈ U , then na1 ∈ K̂, so that
M ⊆ N(na1). If n ∈ N̄, then for all u ∈ U, na1 + u = n(a1 + n−1u), and as
n−1u ∈M, na1 + u ∈ N . Hence U ⊆ N(na1). This completes the proof of (1)
and (2). (3) and (4) are as in 7.2.5.

Definition. We define

R = {x ∈ D : x = 0, or M ⊆ N(x)},
I = {r ∈ R : r = 0 or U ⊆ N(r)}.



250 YOAV SEGEV

(10.2) (1) R ∩N = U ∪ N̄.

(2) R ∩ (G \N) = {nk : n ∈ U ∪ N̄ and k ∈ K̂}.
(3) R is a subring of D.
(4) I is the unique maximal ideal of R.
(5) R \ I = OU is the group of unites of R.

Proof. (1) and (2) are as in 10.1.3 and 10.1.1 respectively. Let x, y ∈ R#.
To show x+y ∈ R, suppose x 6= −y. Assume first that x, y ∈ N . If x+y ∈ N ,
then by 6.3, 6.4 and (1), x+y ∈ U ∪N̄, so x+y ∈ R. Suppose x+y 6∈ N . Then
since −x ∈ N(x+ y), and −x ∈ U ∪ N̄, we get from 7.2.2 that M ⊆ N(x+ y),
so x+ y ∈ R.

Now assume x 6∈ N . If y ∈ N(x), then x + y ∈ Uy, by 7.2.1, and as
y ∈ U ∪ N̄, Uy ⊆ U ∪ N̄, so x+ y ∈ R. If y ∈ N \N(x), then since y ∈ U ∪ N̄,
y + m ∈ M, for all m ∈ M and hence x + y + m ∈ N , for all m ∈ M. Hence
M ⊆ N(x+ y), so x+ y ∈ R.

Suppose x, y 6∈ N ; then by 7.7.4, x + y ∈ R. Let x, y ∈ R#. It is easy to
see that xy ∈ R by (1) and (2).

The proof of (4) is similar to the proof of (3) from (1), (2), 10.1 and 7.7.3,
and we omit the details. Let r ∈ R \ I. Then M ⊆ N(r) 6⊇ U , so by 10.1.1 and
10.1.2, if r 6∈ N , then r = uk, for some k ∈ K̂ and u ∈ U ; so r ∈ OU , while if
r ∈ N , then by 10.1.3 and 10.1.4, r ∈ U which shows that R \ I ⊆ OU . The
inclusion OU ⊆ R \ I follows from the fact that OU ⊆ R and from 7.7.6. This
proves (5).

Let
φ : R→ R/I

be the canonical homomorphism. Let

ψ : OU → (R/I)#

be the multiplicative group homomorphism induced by φ.

(10.3) (1) R/I is a division algebra.

(2) ψ is surjective and kerψ ≤ U .
(3) R/I is infinite.

Proof. (1) and the first part of (2) are obvious. Let r ∈ kerψ. Then
r − 1 ∈ I. Hence r − 1 = a ∈ I. But then r = a+ 1, and as a ∈ I, a+ 1 ∈ N ;
thus r ∈ N . It follows that r ∈ (OU) ∩ N = U , by 7.1.2. Next we prove
(3). Since kerψ ≤ U and since, by 7.1.3, OU/U ' G∗, we see that G∗ is a
homomorphic image of OU/kerψ (OU/U ' (OU/kerψ)/(U/kerψ)). Hence G∗

is a homomorphic image of (R/I)#. But if R/I is finite, then R/I is a field,
which is impossible. Hence R/I is infinite.
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(10.4) OU ⊆ U + U .

Proof. We apply Theorem 1.6 to the division ring R/I. Since ψ(U) is a
subgroup of finite index in (R/I)#, Theorem 1.6 implies that for all r ∈ R \ I,
there are u1, u2 ∈ U such that r + I = u1 − u2 + I. Hence r = u1 − u2 + a,
with a ∈ I. Note now that by 6.3.2, 7.2.1, 10.1.4 and the definition of I,
−u2 + a ∈ U . Hence for all r ∈ R \ I, r = u+ v, with u, v ∈ U . But by 10.2.5,
R \ I = OU ; so the proof is complete.

We can now reach the final contradiction and complete the proof of The-
orem A. Note that by 7.3.1 and 7.4, K̂ ∩ Φ 6= ∅ and by 7.7.6, if k ∈ K̂ ∩ Φ,
then N(k) = M. Let k ∈ K̂ ∩ Φ. By 10.4, there are u, v ∈ U , with k = u + v.
Thus, −u ∈ N(k). But N(k) = M, a contradiction.
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