On finite homomorphic images of the multiplicative group of a division algebra

By Yoav Segev*

Introduction

The purpose of this paper, together with [6], is to prove that the following Conjecture 1 holds:

Conjecture 1 (A. Potapchik and A. Rapinchuk). Let D be a finite dimensional division algebra over an arbitrary field. Then $D^{\#}$ does not have any normal subgroup N such that $D^{\#} / N$ is a nonabelian finite simple group.

Of course $D^{\#}$ is the multiplicative group of D. Conjecture 1 appears in [4]. It is related to the following conjecture of G. Margulis and V. Platonov (Conjectures 9.1 and 9.2 , pages 510-511 in [3], or Conjecture (PM) in [4]).

Conjecture 2 (G. Margulis and V. Platonov). Let \mathfrak{G} be a simple, simply connected algebraic group defined over an algebraic number field K. Let T be the set of all nonarchimedean places v of K such that \mathfrak{G} is K_{v}-anisotropic; then for any noncentral normal subgroup $N \leq \mathfrak{G}(K)$ there exists an open normal subgroup $W \leq \mathfrak{G}(K, T)=\prod_{v \in T} \mathfrak{G}\left(K_{v}\right)$ such that $N=\mathfrak{G}(K) \cap W$; in particular, if $T=\emptyset$ then $\mathfrak{G}(K)$ does not have proper noncentral normal subgroups.

In Corollary 2.5 of [4], Potapchik and Rapinchuk prove that if D is a finite dimensional division algebra over an algebraic number field K, then for $\mathfrak{G}=\mathrm{SL}_{1, D}$, Conjecture 2 is equivalent to the nonexistence of a normal subgroup $N \triangleleft D^{\#}$ such that $D^{\#} / N$ is a nonabelian finite simple group. Of course this was the main motivation for the conjecture of Potapchik and Rapinchuk in [4]. Thus as a corollary, we get that if D is a finite dimensional division algebra over an algebraic number field K and $\mathfrak{G}=\mathrm{SL}_{1, D}$, then the normal subgroup structure of $\mathfrak{G}(K)$ is given by Conjecture 2 .

Hence we prove Conjecture 2, in one of the cases when \mathfrak{G} is of type A_{n}. The case when \mathfrak{G} is of type A_{n} is the main case left open in Conjecture 2. For

[^0]further information about the historical background and the current state of Conjecture 2, we refer the reader to Chapter 9 in [3] and to the introduction in [4].

More generally we are interested in the possible structure of finite homomorphic images of the multiplicative group of a division algebra. Let D be a division algebra and let $D^{\#}$ denote the multiplicative group of D. Various papers dealt with subgroups of finite index in $D^{\#}$, e.g., [2], [4], [7] and the references therein. We refer the reader to [1], for a survey article on the history of finite dimensional central division algebras.

Let X be a finite group. Define the commuting graph of $X, \Delta(X)$ as follows. Its vertex set is $X \backslash\{1\}$. Its edges are pairs $\{a, b\}$, such that $a, b \in$ $X \backslash\{1\}, a \neq b$, and $[a, b]=1$ (a and b commute). We denote the diameter of $\Delta(X)$ by $\operatorname{diam}(\Delta(X))$.

Let d : $\Delta(X) \times \Delta(X) \rightarrow \mathbb{Z} \geq 0$ be the distance function on $\Delta(X)$. We say that $\Delta(X)$ is balanced if there exist $x, y \in \Delta(X)$ such that the distances $d(x, y), d(x, x y), d(y, x y), d\left(x, x^{-1} y\right), d\left(y, x^{-1} y\right)$ are all bigger than 3.

The Main Theorem of this paper is:
Theorem A. Let L be a nonabelian finite simple group. Suppose that either $\operatorname{diam}(\Delta(L))>4$, or $\Delta(L)$ is balanced. Let D be a finite dimensional division algebra over an arbitrary field. Then $D^{\#}$ does not have any normal subgroup N such that $D^{\#} / N \simeq L$.

The proof of Theorem A does not rely on the classification of finite simple groups. However, in [6] we prove (using classification) that all nonabelian finite simple groups L have the property that $\Delta(L)$ is balanced or $\operatorname{diam}(\Delta(L))>4$. Thus Theorem A together with [6] prove the assertion of Conjecture 1.

The organization of the proof of Theorem A is as follows. Let D be a division algebra (not necessarily finite dimensional over its center $F:=Z(D)$). Let $G:=D^{\#}$ be the multiplicative group of D and let N be a normal subgroup of G such that $G^{*}:=G / N$ is finite (not necessarily simple). Let $\Delta=\Delta\left(G^{*}\right)$ be the commuting graph of G^{*}.

In Section 1 we introduce some notation and preliminaries. In particular we introduce the set $N(a)$, for $a \in G$, which plays a crucial role in the paper. In Section 2 we deal with Δ and note that severe restrictions are imposed on Δ.

In Section 3 we introduce the U-Hypothesis which plays a central role throughout the paper. In addition, we establish in Section 3 some notation and preliminary results regarding the U-Hypothesis and we prove that if $\operatorname{diam}(\Delta)$ >4, then G satisfies the U-Hypothesis. In Section 4 we show that if Δ is balanced then G satisfies the U-Hypothesis. Sections 5 and 6 are independent of the rest of the paper and deal with further consequences of the U-Hypothesis.

From Section 7 to the end of the paper, we specialize to the case when D is finite dimensional over F and G^{*} is nonabelian simple. We assume that either $\operatorname{diam}(\Delta)>4$, or Δ is balanced and set out to obtain our contradiction. Section 7 gives some preliminaries and technical results. In particular, we introduce in Section 7 (see the definitions at the beginning) the set \hat{K}, which plays a crucial role in the proof. Sections 8 and 9 are basically devoted to the proof that $\hat{K}=\mathbb{O} U \backslash N$ (Theorem 9.1), which is the main target of the paper. Once Theorem 9.1 is proved, we can use it in Section 10 to construct a local ring R, whose existence yields a contradiction and proves Theorem A.

1. Notation and preliminaries

All through this paper D is a division algebra over its center $F:=Z(D)$. In some sections we will assume that D is finite dimensional over F, but in general we do not assume this. We let $D^{\#}=D \backslash\{0\}$ and $G=D^{\#}$ be the multiplicative group of D. Letting $F^{\#}=F \backslash\{0\}$, we denote N a normal subgroup of G such that $F^{\#} \leq N$ and G / N is finite. The following notational convention is used: $G^{*}=G / N$ and for $a \in G$, we let a^{*} denote its image in G^{*} under the canonical homomorphism; that is, $a^{*}=N a$. If H^{*} is a subgroup of G^{*}, then by convention $H \leq G$ is the full inverse image of H^{*} in G.
(1.1) Remark. Note that since $F^{\#} \leq N$, for all $a \in G$ and $\alpha \in F^{\#}$, $(\alpha a)^{*}=a^{*}$, and in particular, $(-a)^{*}=a^{*}$. We use this fact without further reference.
(1.2) Notation. (1) Let $a \in G$. We denote

$$
N(a)=\{n \in N: a+n \in N\} .
$$

(2) Let $A, B \subseteq D$. We denote $A+B=\{a+b: a \in A, b \in B\}, A-B=$ $\{a-b: a \in A, b \in B\}$ and $-A=\{-a: a \in A\}$.
(3) Let $A, B \subseteq D$ and $x \in D$. We denote $A B=\{a b: a \in A, b \in B\}$, $A x=\{a x: a \in A\}$ and $x A=\{x a: a \in A\}$.
(4) We denote by $[D: F]$ the dimension of D as a vector space over F. If $[D: F]<\infty$, then as is well known $[D: F]=n^{2}$, for some natural $n \geq 1$. We denote $\operatorname{deg}(D)=n$.
(1.3) Notation for the case $[D: F]<\infty$. If $[D: F]<\infty$, we denote

$$
\begin{equation*}
\nu: G \rightarrow F^{\#} \tag{1}
\end{equation*}
$$

the reduced-norm function. Of course ν is a group homomorphism.

$$
\begin{equation*}
\mathbb{O}=\mathbb{O}(D)=\left\{a \in D^{\#}: \nu(a)=1\right\} \tag{2}
\end{equation*}
$$

(1.4) Suppose $[D: F]<\infty$. Then for all $a \in G, \nu(a)$ is a product of conjugates of a in G.

Proof. This is well known and follows from Wedderburn's Factorization Theorem. See, e.g., [5, p. 253].
(1.5) If $[D: F]<\infty$ and $\left[G^{*}, G^{*}\right]=G^{*}$, then $G=\mathbb{O} N$.

Proof. Since G / \mathbb{O} is isomorphic to a subgroup of $F^{\#}, G / \mathbb{O}$ is abelian, and hence $G / \mathbb{O} N$ is abelian. But $G / \mathbb{O} N \simeq(G / N) /(\mathbb{O} N / N)$, and hence $G^{*}=$ $\left[G^{*}, G^{*}\right] \leq \mathbb{O} N / N$. Hence $G=\mathbb{O} N$.
(1.6) Theorem (G. Turnwald). Let \mathfrak{D} be an infinite division algebra. Let $H \leq \mathfrak{D}^{\#}$ be a subgroup of finite index. Then $\mathfrak{D}=H-H$.

Proof. This is a special case of Theorem 1 in [7].
(1.7) Corollary. $N+N=D=N-N$.

Proof. This follows from 1.6. Note that as $-1 \in N, N+N=N-N$.
(1.8) Let $a \in G \backslash N$ and let $n \in N$. Then
(1) $N(n a)=n N(a)$ and $N(a n)=N(a) n$.
(2) For all $b \in G, N\left(b^{-1} a b\right)=b^{-1} N(a) b$.
(3) $N(a) \neq \emptyset$.
(4) If $n \in N(a)$, then $n^{-1} \notin N\left(a^{-1}\right)$.
(5) There exists $a^{\prime} \in N a$, with $1 \in N\left(a^{\prime}\right)$.

Proof. In (1), we prove that $N(n a)=n N(a)$. The proof that $N(a n)=$ $N(a) n$ is similar. Let $m \in N(n a)$. Then $n a+m \in N$. Hence $a+n^{-1} m \in N$, so $n^{-1} m \in N(a)$. Hence $m \in n N(a)$. Let $m \in n N(a)$. Then there exists $s \in N(a)$ such that $m=n s$. Then $n a+m=n a+n s=n(a+s)$. Since $s \in N(a), a+s \in N$, so $n a+m \in N$. Hence $m \in N(n a)$.

For (2), let $m \in N\left(b^{-1} a b\right)$. Then $b^{-1} a b+m \in N$, and hence $a+b m b^{-1} \in N$. Hence $b m b^{-1} \in N(a)$, so $m \in b^{-1} N(a) b$. Let $m \in b^{-1} N(a) b$. Then there exists $s \in N(a)$, with $m=b^{-1} s b$. Then $b^{-1} a b+m=b^{-1} a b+b^{-1} s b=b^{-1}(a+s) b \in N$. Thus $m \in N\left(b^{-1} a b\right)$.

For (3), note that by 1.7 there exists $m, n \in N$ such that $a=n-m$. Hence $m \in N(a)$. Let $n \in N(a)$. Then $a+n \in N$. Multiplying by a^{-1} on the right and by n^{-1} on the left we get that $a^{-1}+n^{-1} \in N a^{-1}$, hence $n^{-1} \notin N\left(a^{-1}\right)$. This proves (4). Finally to prove (5), let $n \in N(a)$. Then $1 \in n^{-1} N(a)=N\left(n^{-1} a\right)$.
(1.9) Let K be a finite group and let $\emptyset \neq \mathcal{A} \varsubsetneqq K$ be a proper normal subset of K. Set $X:=\{x \in K: x \mathcal{A} \subseteq \mathcal{A}\}$. Then X is a proper normal subgroup of K. In particular, if $X \neq 1$, then K is not simple.

Proof. Since \mathcal{A} is finite, $X=\{x \in K: x \mathcal{A}=\mathcal{A}\}$. Hence clearly X is a subgroup of K. Let $y \in K$ and $x \in X$; then $\left(y^{-1} x y\right) \mathcal{A}=\left(y^{-1} x y\right)\left(y^{-1} \mathcal{A} y\right)=$ $y^{-1}(x \mathcal{A}) y=y^{-1} \mathcal{A} y=\mathcal{A}$, since \mathcal{A} is a normal subset of K. Hence $y^{-1} x y \in X$, so X is a normal subgroup of K. Clearly since \mathcal{A} is a proper nonempty subset, $X \neq G$.

2. The commuting graph of G^{*}

Throughout the paper we let Δ be the graph whose vertex set is $G^{*} \backslash\left\{1^{*}\right\}$ and whose edges are $\left\{a^{*}, b^{*}\right\}$ such that $\left[a^{*}, b^{*}\right]=1^{*}$. We call Δ the commuting graph of G^{*} and let $\mathrm{d}: \Delta \times \Delta \rightarrow \mathbb{Z}^{\geq 0}$ be the distance function of Δ.
(2.1) Let $a \in G \backslash N$ and $n \in N$. Suppose that $a+n \in G \backslash N$. Let $H \leq G$, with $H^{*}=C_{G^{*}}\left(a^{*}\right)$. Then $(a+n)^{*} \in H^{*}$, so $a+n \in H$.

Proof. Note that $n^{-1} a+1 \in C_{G}\left(n^{-1} a\right)$. Thus $\left(n^{-1} a+1\right)^{*} \in C_{G^{*}}\left(\left(n^{-1} a\right)^{*}\right)$ $=C_{G^{*}}\left(a^{*}\right)$. But since $a+n=n\left(n^{-1} a+1\right),(a+n)^{*}=\left(n^{-1} a+1\right)^{*}$.
(2.2) Remark. Note that by 2.1, if $a, b \in G \backslash N$ and $n \in N$, then if $a+b \in N$, or $a-b \in N, \mathrm{~d}\left(a^{*}, b^{*}\right) \leq 1$ and if $n \notin N(a)$, then $\mathrm{d}\left((a+n)^{*}, a^{*}\right) \leq 1$. We use these facts without further reference.
(2.3) Let $a, b, c \in G \backslash N$, with $a+b=c$. Then
(1) If $\mathrm{d}\left(a^{*}, b^{*}\right)>2$, then $N(c) \subseteq N(a) \cap N(b)$.
(2) If $\mathrm{d}\left(a^{*}, b^{*}\right)>2$, and $\mathrm{d}\left(a^{*}, c^{*}\right)>2$, then $N(b)=N(c) \subseteq N(a) \cap N(-a)$.
(3) If $\mathrm{d}\left(a^{*}, b^{*}\right)>4$, then either $N(a)=N(c) \subseteq N(b) \cap N(-b)$, or $N(b)=$ $N(c) \subseteq N(a) \cap N(-a)$.

Proof. For (1), let $n \in N(c) \backslash(N(a) \cap N(b))$. Suppose $n \notin N(a)$. Then

$$
c+n=(a+n)+b
$$

As $c+n \in N, 2.2$ implies that $\mathrm{d}\left(a^{*},(a+n)^{*}\right) \leq 1 \geq \mathrm{d}\left(b^{*},(a+n)^{*}\right)$; thus $\mathrm{d}\left(a^{*}, b^{*}\right) \leq 2$, a contradiction.

Assume the hypotheses of (2). By (1), N(c) $\subseteq N(a) \cap N(b)$ and since $b=c-a$, (1) implies that $N(b) \subseteq N(c) \cap N(-a)$. Hence (2) follows. (3) follows from (2) since we must have either $\mathrm{d}\left(a^{*}, c^{*}\right)>2$, or $\mathrm{d}\left(b^{*}, c^{*}\right)>2$.
(2.4) Remark. Note that by 2.3 .3 , if $a, b \in G \backslash N$, with $\mathrm{d}\left(a^{*}, b^{*}\right)>4$, then $N(a) \subseteq N(b)$, or $N(b) \subseteq N(a)$. We use this fact without further reference.
(2.5) Let $a, b \in G \backslash N$ such that $\mathrm{d}\left(a^{*}, b^{*}\right)>1$ and $N(a) \nsubseteq N(b)$. Then
(1) $b^{*}(b+n)^{*}(a-b)^{*}$ is a path in Δ, for any $n \in N(a) \backslash N(b)$.
(2) If $-1 \notin N\left(a b^{-1}\right)$, then for all $n \in N(a) \backslash N(b)$,

$$
b^{*}(b+n)^{*}\left(a b^{-1}-1\right)^{*}\left(a b^{-1}\right)^{*} \text { is a path in } \Delta .
$$

(3) If $-1 \notin N\left(b^{-1} a\right)$, then for all $n \in N(a) \backslash N(b)$,

$$
b^{*}(b+n)^{*}\left(b^{-1} a-1\right)^{*}\left(b^{-1} a\right)^{*} \text { is a path in } \Delta .
$$

Proof. Let $c=a-b$. Since $\mathrm{d}\left(a^{*}, b^{*}\right)>1, c \notin N$. Next note that $c+b=a$. Let $n \in N(a) \backslash N(b)$. Then $c+(b+n)=a+n \in N$. Hence $\mathrm{d}\left(c^{*},(b+n)^{*}\right) \leq 1$. This show (1).

Suppose $-1 \notin N\left(a b^{-1}\right)$ and let $n \in N(a) \backslash N(b)$. Note that $c=\left(a b^{-1}-1\right) b$. Further, c^{*} commutes with $(b+n)^{*}$ and b^{*} commutes with $(b+n)^{*}$. It follows that $\mathrm{d}\left(\left(a b^{-1}-1\right)^{*},(b+n)^{*}\right) \leq 1$. Clearly $\mathrm{d}\left(\left(a b^{-1}-1\right)^{*},\left(a b^{-1}\right)^{*}\right) \leq 1$, so (2) follows. The proof of (3) is similar to the proof of (2) when we notice that $c=b\left(b^{-1} a-1\right)$.
(2.6) Let $a, b \in G \backslash N$ with $\mathrm{d}\left(a^{*}, b^{*}\right)>4$. Suppose $N(a) \subseteq N(b)$. Then
(1) $N(a+b)=N(a) \subseteq N(b) \cap N(-b)$.
(2) $N(a-b)=N(a) \subseteq N(b) \cap N(-b)$.

Proof. For (1) we use 2.3.3. Suppose (1) is false. Set $c=a+b$. Then by 2.3.3, $N(b)=N(c) \subseteq N(a) \cap N(-a)$. Since $N(a) \subseteq N(b)$, we must have $N(b)=N(c)=N(a) \cap N(-a)=N(a)$. It follows that $N(a) \subseteq N(-a)=$ $-N(a)$. Multiplying by -1 , we get that $N(-a) \subseteq N(a)$, so $N(a)=N(-a)$. Thus $N(b)=N(c)=N(a)=N(-a)$. Hence $N(a)=N(c) \subseteq N(b) \cap N(-b)$ in this case too.

Suppose (2) is false. Set $c=a-b$. Then by 2.3.3, $N(-b)=N(c) \subseteq$ $N(a) \cap N(-a)$. In particular $N(-b) \subseteq N(-a)$, so $N(b) \subseteq N(a)$. Hence we must have $N(-b)=N(c)=N(a) \cap N(-a)=N(-a)$. As above we get that $N(a)=N(-a)=N(b)=N(c)$, so again $N(c)=N(a) \subseteq N(b) \cap N(-b)$.
(2.7) Let $a, b \in G \backslash N$. Suppose
(a) $\mathrm{d}\left(a^{*}, b^{*}\right)>4$.
(b) $N(a) \subseteq N(b)$.

Then
(1) If $1 \in N(a)$, then $\pm 1 \in N(b)$.
(2) For all $n \in N \backslash N(b)$

$$
N(a) \subseteq N(a+n) \text { and }-N(a) \subseteq N(b+n) \supseteq N(a)
$$

Proof. Set $x=a-b$. Note first that by 2.6.2,

$$
\begin{equation*}
N(a)=N(x) \subseteq N(b) \cap N(-b) . \tag{*}
\end{equation*}
$$

Note that this already implies (1). Next note that

$$
x=(a+n)-(b+n) .
$$

Since $\mathrm{d}\left(a^{*}, b^{*}\right)>4$, we get that $\mathrm{d}\left((a+n)^{*},(b+n)^{*}\right)>2$. Hence by 2.3.1, $N(x) \subseteq N(a+n) \cap N(-(b+n))$. Thus $N(a)=N(x) \subseteq N(a+n)$ and $N(a)=N(x) \subseteq N(-(b+n))$, so that $-N(a) \subseteq N(b+n)$.

Finally, note that by $(*), N(-a) \subseteq N(b)$, so by the previous paragraph of the proof $-N(-a) \subseteq N(b+n)$, that is $N(a) \subseteq N(b+n)$ and the proof of 2.7 is complete.
(2.8) Let $a, b \in G \backslash N$ be such that $a b \in G \backslash N$. Then
(1) Assume $N(a b) \nsupseteq N(b)$ and $-1 \notin N\left(a^{-1}\right)$. Then for all $m \in N(b) \backslash N(a b)$,

$$
a^{*}\left(a^{-1}-1\right)^{*}(a b+m)^{*}(a b)^{*} \text { is a path in } \Delta .
$$

(2) Assume $N(a b) \nsupseteq N(a)$, and $-1 \notin N\left(b^{-1}\right)$; then for all $m \in N(a) \backslash N(a b)$

$$
b^{*}\left(b^{-1}-1\right)^{*}(a b+m)^{*}(a b)^{*} \text { is a path in } \Delta .
$$

Proof. We have

$$
(1-a) b+a b=b .
$$

Let $m \in N(b) \backslash N(a b)$. Then

$$
(1-a) b+a b+m=b+m \in N .
$$

This implies that $(a b+m)^{*}$ commutes with $(1-a)^{*} b^{*}$. Of course $(a b+m)^{*}$ commutes also with $a^{*} b^{*}$. Hence $(a b+m)^{*}$ commutes with $\left((1-a)^{*} b^{*}\right)\left(b^{*}\right)^{-1}\left(a^{*}\right)^{-1}$ $=\left(a^{-1}-1\right)^{*}$. Hence we conclude that $a^{*}\left(a^{-1}-1\right)^{*}(a b+m)^{*}(a b)^{*}$ is a path in Δ, this completes the proof of (1). The proof of (2) is similar since $a(1-b)+a b=a$.
(2.9) Let $a, b \in G \backslash N$. Then
(1) Assume that $N(a b) \nsubseteq N(a)$ and $-1 \notin N(b)$. Then for all $m \in N(a b) \backslash N(a)$,

$$
a^{*}(a+m)^{*}(b-1)^{*} b^{*} \text { is a path in } \Delta \text {. }
$$

(2) Assume that $N(a b) \nsubseteq N(b)$ and $-1 \notin N(a)$. Then for all $m \in N(a b) \backslash N(b)$,

$$
a^{*}(a-1)^{*}(b+m)^{*} b^{*} \text { is a path in } \Delta .
$$

Proof. First note that

$$
a(b-1)+a=a b .
$$

Let $m \in N(a b) \backslash N(a)$. Then

$$
a(b-1)+a+m=a b+m \in N .
$$

Hence $(a+m)^{*}$ commutes with $a^{*}(b-1)^{*}$. Of course $(a+m)^{*}$ commutes with a^{*}, so $(a+m)^{*}$ commutes with $(b-1)^{*}$. Hence $a^{*}(a+m)^{*}(b-1)^{*} b^{*}$ is a path in Δ. This proves (1). The proof of (2) is similar because $(a-1) b+b=a b$.
(2.10) Let $a, b \in G \backslash N$. Assume
(i) $-1 \notin N(a) \cup N(b)$.
(ii) For all $g \in G,-1 \in N\left(a b^{g}\right)$.

Then G^{*} is not simple.
Proof. Let $g \in G$. Note that by 1.8.2, $-1 \notin N\left(b^{g}\right)$, for all $g \in G$. Thus by (ii), $N\left(a b^{g}\right) \nsubseteq N\left(b^{g}\right)$ and $-1 \in N\left(a b^{g}\right) \backslash N\left(b^{g}\right)$. Hence by 2.9.2, $a^{*}(a-1)^{*}\left(b^{g}-1\right)^{*} b^{*}$ is a path in Δ. In particular

$$
\begin{equation*}
d\left((a-1)^{*},\left(b^{g}-1\right)^{*}\right) \leq 1, \text { for all } g \in G \tag{*}
\end{equation*}
$$

Note now that $\left(b^{g}-1\right)^{*}=\left((b-1)^{*}\right)^{g^{*}}$, so that $C^{*}:=\left\{\left(b^{g}-1\right)^{*}: g \in G\right\}$ is a conjugacy class of G^{*}. Now (*) implies that $(a-1)^{*}$ commutes with every element of C^{*}, so that G^{*} is not simple.
(2.11) Let $x, y \in G \backslash N$ and $n, m \in N$ such that
(a) $x n y \notin N$.
(b) $m \in N(x n) \cap N(n y)$.
(c) $-1 \notin N(n y) \cap N(x n)$.
(d) $m \notin N(x) \cup N(y)$.
(e) $-1 \notin N\left(x^{-1}\right) \cup N\left(y^{-1}\right)$.

Then
(1) If $m \in N(x n y)$ and $-1 \notin N(n y)$, then $x^{*}(x+m)^{*}(n y-1)^{*} y^{*}$ is a path in Δ.
(2) If $m \in N(x n y)$ and $-1 \notin N(x n)$, then $x^{*}(x n-1)^{*}(y+m)^{*} y^{*}$ is a path in Δ.
(3) If $m \notin N(x n y)$, then $x^{*}\left(x^{-1}-1\right)^{*}(x n y+m)^{*}\left(y^{-1}-1\right)^{*} y^{*}$ is a path in Δ. (4) $\mathrm{d}\left(x^{*}, y^{*}\right) \leq 4$.

Proof. Suppose first that $m \in N(x n y)$ and $-1 \notin N(n y)$; then since $m \notin N(x)$, we see that $m \in N(x n y) \backslash N(x)$. Since $-1 \notin N(n y)$, we get (1) from 2.9.1.

Suppose next that $m \in N(x n y)$ and $-1 \notin N(x n)$; then since $m \notin N(y)$, we see that $m \in N(x n y) \backslash N(y)$. Since $-1 \notin N(x n)$, we get (2) from 2.9.2.

Now assume $m \notin N(x n y)$. Since $m \in N(x n)$, we see that $m \in N(x n) \backslash$ $N(x n y)$. Further, $-1 \notin N\left(y^{-1}\right)$; hence, by $2.8 .2, y^{*}\left(y^{-1}-1\right)^{*}(x n y+m)^{*}$ is a path in Δ. Next, since $m \in N(n y)$, we see that $m \in N(n y) \backslash N(x n y)$. Further $-1 \notin N\left(x^{-1}\right)$; hence, by 2.8.1, $x^{*}\left(x^{-1}-1\right)^{*}(x n y+m)^{*}$ is a path in Δ. Hence (3) follows and (4) is immediate from (1), (2) and (3).

3. The definition of the U-Hypothesis; notation and preliminaries; the proof that if $\operatorname{diam}(\Delta)>4$ then G satisfies the U-Hypothesis

In this section we define the U-Hypothesis which will play a crucial role in the paper. We also establish some notation which will hold throughout the paper and give some preliminary results. Finally, in Theorem 3.18, we prove that if $\operatorname{diam}(\Delta)>4$, then G satisfies the U-Hypothesis.

Definition. We say that G satisfies the U-Hypothesis with respect to \mathbb{N} (or just that G satisfies the U-Hypothesis) if there exists a normal subset $\emptyset \neq \mathbb{N} \varsubsetneqq G$ such that $\mathbb{N} \varsubsetneqq N$ is a proper subset of N and if we set $\overline{\mathbb{N}}=N \backslash \mathbb{N}$, then
(U1) $1,-1 \in \mathbb{N}$.
(U2) $\mathbb{N}^{2}=\mathbb{N}$.
(U3) For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}+1 \in \mathbb{N}$ and $\bar{n}-1 \in N$.
Notation. Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and let $C^{*} \subseteq G^{*}-\left\{1^{*}\right\}$ be a conjugacy class of G^{*}.
(1) Denote $\mathbb{P}_{x^{*}}=\{a \in N x: 1 \in N(a)\}$.
(2) Denote

$$
\begin{aligned}
& \mathbb{N}_{x^{*}}=\left\{n \in N: n \in N(a), \text { for all } a \in \mathbb{P}_{x^{*}}\right\}, \\
& \overline{\mathbb{N}}_{x^{*}}=N \backslash \mathbb{N}_{x^{*}} .
\end{aligned}
$$

(3) Let $U_{x^{*}}=\left\{n \in N: n, n^{-1} \in \mathbb{N}_{x^{*}}\right\}$.
(4) Let $\mathbb{M}_{x^{*}}=\mathbb{N}_{x^{*}} \backslash U_{x^{*}}$.
(5) Let $\mathbb{O}_{x^{*}}=\left\{x_{1} \in N x:-1 \notin N\left(x_{1}\right) \cup N\left(x_{1}^{-1}\right)\right\}$.
(6) Denote by $C_{x^{*}}$ the conjugacy class of x^{*} in G^{*}.
(7) Denote $\hat{C}=\left\{c \in G: c^{*} \in C^{*}\right\}$.
(8) Let $\mathbb{P}_{C^{*}}=\bigcup_{y^{*} \in C^{*}} \mathbb{P}_{y^{*}}$.
(9) Denote

$$
\begin{aligned}
\mathbb{N}_{C^{*}} & =\bigcap_{y^{*} \in C^{*}} \mathbb{N}_{y^{*}}, \\
\overline{\mathbb{N}}_{C^{*}} & =N \backslash \mathbb{N}_{C^{*}}
\end{aligned}
$$

(10) Denote $U_{C^{*}}=\bigcap_{y^{*} \in C^{*}} U_{y^{*}}=\left\{n \in N: n, n^{-1} \in \mathbb{N}_{C^{*}}\right\}$.
(11) Let $\mathbb{M}_{C^{*}}=\mathbb{N}_{C^{*}} \backslash U_{C^{*}}$.

Definition. We define three binary relations on $\left(G^{*} \backslash\left\{1^{*}\right\}\right) \times\left(G^{*} \backslash\left\{1^{*}\right\}\right)$. These relations will play a crucial role throughout this paper. Given a binary relation R on $\left(G^{*} \backslash\left\{1^{*}\right\}\right) \times\left(G^{*} \backslash\left\{1^{*}\right\}\right), R\left(x^{*}, y^{*}\right)$ means that $\left(x^{*}, y^{*}\right) \in R$. Here are our binary relations: Let $\left(x^{*}, y^{*}\right) \in\left(G^{*} \backslash\left\{1^{*}\right\}\right) \times\left(G^{*} \backslash\left\{1^{*}\right\}\right)$.
$\operatorname{In}\left(x^{*}, y^{*}\right):$ For all $a \in N x$ and $b \in N y$, either $N(a) \subseteq N(b)$, or $N(b) \subseteq$ $N(a)$. Note that $\operatorname{In}\left(x^{*}, y^{*}\right)$ is a symmetric relation.
$\operatorname{Inc}\left(y^{*}, x^{*}\right): \operatorname{In}\left(y^{*}, x^{*}\right)$ and for all $b \in \mathbb{P}_{y^{*}}$, there exists $a \in \mathbb{P}_{x^{*}}$ such that $N(b) \supseteq N(a)$. Note that $\operatorname{Inc}\left(y^{*}, x^{*}\right)$ is not necessarily symmetric.
$T\left(x^{*}, y^{*}\right):$ For all $(a, b) \in N x \times N y$, and all $n \in N \backslash(N(a) \cup N(b))$

$$
N(a+n) \supseteq N(a) \cap N(b) \subseteq N(b+n)
$$

Note that $T\left(x^{*}, y^{*}\right)$ is symmetric.
(3.1) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and let $g \in G$. Then
(1) $g^{-1} \mathbb{P}_{x^{*}} g=\mathbb{P}_{\left(g^{-1} x g\right)^{*}}$.
(2) $g^{-1} \mathbb{N}_{x^{*}} g=\mathbb{N}_{\left(g^{-1} x g\right)^{*}}$ and $g^{-1} \overline{\mathbb{N}}_{x^{*}} g=\overline{\mathbb{N}}_{\left(g^{-1} x g\right)^{*}}$.
(3) $\mathbb{N}_{C_{x^{*}}}$ is a normal subset of G.
(4) If $-1 \in \mathbb{N}_{x^{*}}$, then $-1 \in \mathbb{N}_{C_{x^{*}}}$.
(5) If $\mathbb{N}_{y^{*}} \supseteq \mathbb{N}_{x^{*}}$, then $\mathbb{N}_{C_{y^{*}}} \supseteq \mathbb{N}_{C_{x^{*}}}$.
(6) $g^{-1} \mathbb{M}_{x^{*}} g=\mathbb{M}_{\left(g^{-1} x g\right)^{*}}, g^{-1} U_{x^{*}} g=U_{\left(g^{-1} x g\right)^{*}}$ and $g^{-1} \mathbb{O}_{x^{*}} g=\mathbb{O}_{\left(g^{-1} x g\right)^{*}}$.

Proof. For (1), it suffices to show that $g^{-1} \mathbb{P}_{x^{*}} g \subseteq \mathbb{P}_{\left(g^{-1} x g\right)^{*}}$. Let $a \in \mathbb{P}_{x^{*}}$. Then $a \in N x$ and $1 \in N(a)$, so that, by $1.8,1 \in N\left(a^{g}\right)$, and clearly, $a^{g} \in N x^{g}$. Hence $a^{g} \in \mathbb{P}_{\left(x^{g}\right)^{*}}$. For (2), it suffices to show that $g^{-1} \mathbb{N}_{x^{*}} g \subseteq \mathbb{N}_{\left(g^{-1} x g\right)^{*}}$. Let $n \in \mathbb{N}_{x^{*}}$. Then $n \in N(a)$, for all $a \in \mathbb{P}_{x^{*}}$; hence, by $1.8, n^{g} \in N(c)$, for all $c \in g^{-1} \mathbb{P}_{x^{*}} g$. Now, by (1), $n^{g} \in \mathbb{N}_{\left(g^{-1} x g\right)^{*}}$. Note that (3) and (4) are immediate from (2).

For (5), let $z^{*} \in C_{y^{*}}$. Let $g \in G$, with $\left(y^{g}\right)^{*}=z^{*}$. By (2), $\mathbb{N}_{z^{*}} \supseteq \mathbb{N}_{\left(x^{g}\right)^{*}} \supseteq$ $\mathbb{N}_{C_{x^{*}}}$. As this holds for all $z^{*} \in C_{y^{*}}$, we see that $\mathbb{N}_{C_{y^{*}}} \supseteq \mathbb{N}_{C_{x^{*}}}$.

The proof of (6) is similar to the proof of (2) and we omit the details.
(3.2) Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$, let $\alpha \in\left\{x^{*}, C_{x^{*}}\right\}$ and set $\mathbb{P}=\mathbb{P}_{\alpha}$ and $\mathbb{N}=\mathbb{N}_{\alpha}$. Then
(1) $1 \in \mathbb{N}$.
(2) $n \in \mathbb{N}$ if and only if $n^{-1} \mathbb{P} \subseteq \mathbb{P}$.
(3) If $n \in \mathbb{N}$, then $n \mathbb{N} \subseteq \mathbb{N}$.
(4) If $\alpha=C_{x^{*}}$, then \mathbb{N} is a normal subset of G.
(5) If $-1 \in \mathbb{N}$, then $-\mathbb{N}=\mathbb{N}$.

Proof. (1) is by the definition of \mathbb{N}. Let $n \in N$. Suppose $n^{-1} \mathbb{P} \subseteq \mathbb{P}$. Let $a \in \mathbb{P}$. Then $n^{-1} a \in \mathbb{P}$ and hence, $1 \in N\left(n^{-1} a\right)$; so by 1.8.1, $n \in N(a)$. As this holds for all $a \in \mathbb{P}, n \in \mathbb{N}$. Suppose $n \in \mathbb{N}$ and let $a \in \mathbb{P}$; then $n \in N(a)$; so by 1.8.1, $1 \in N\left(n^{-1} a\right)$, and $n^{-1} a \in \mathbb{P}$.

Let $n \in \mathbb{N}$. Then by (2), for all $a \in \mathbb{P}, \mathbb{N} \subseteq N\left(n^{-1} a\right)$. Hence $n \mathbb{N} \subseteq N(a)$, for all $a \in \mathbb{P}$; that is, $n \mathbb{N} \subseteq \mathbb{N}$. (4) is 3.1.3. (5) is immediate from (3).
(3.3) Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}, \alpha \in\left\{x^{*}, C_{x^{*}}\right\}$ and set $\mathbb{N}=\mathbb{N}_{\alpha}$ and $U=U_{\alpha}$. Then
(1) $U=\{n \in N: n \mathbb{N}=\mathbb{N}\}=\{n \in N: n \overline{\mathbb{N}}=\overline{\mathbb{N}}\}$.
(2) $U=\{n \in N: \mathbb{N} n=\mathbb{N}\}=\{n \in N: \overline{\mathbb{N}} n=\overline{\mathbb{N}}\}$.
(3) U is a subgroup of G; further, if $\alpha=C_{x^{*}}$, then U is normal in G.
(4) If $-1 \in \mathbb{N}$, then $-1 \in U$.

Proof. We start with a proof of (1). Clearly since N is a disjoint union of \mathbb{N} and $\overline{\mathbb{N}},\{n \in N: n \mathbb{N}=\mathbb{N}\}=\{n \in N: n \overline{\mathbb{N}}=\overline{\mathbb{N}}\}$. Let $u \in U$; then by 3.2.3, $u \mathbb{N} \subseteq \mathbb{N}$ and $u^{-1} \mathbb{N} \subseteq \mathbb{N}$. Hence $u \mathbb{N}=\mathbb{N}$. Conversely let $n \in N$ and suppose $n \mathbb{N}=\mathbb{N}$. As $1 \in \mathbb{N}, n \in \mathbb{N}$ and as $n^{-1} \mathbb{N}=\mathbb{N}, n^{-1} \in \mathbb{N}$, so $n \in U$. This proves (1). The proof of (2) is identical to the proof of (1). (3) follows from (1) and the fact that if $\alpha=C_{x^{*}}, \mathbb{N}$ is a normal subset of G. (4) is immediate from the definition of U.
(3.4) Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and set $\mathbb{P}=\mathbb{P}_{x^{*}}, U=U_{x^{*}}$. Let $a \in N x$ and $n \in N$. Then $n \in N(a)$ if and only if $(n U) \cup(U n) \subseteq N(a)$.

Proof. If $(n U) \cup(U n) \subseteq N(a)$, then since $1 \in U, n \in N(a)$. Suppose $n \in N(a)$. Then $1 \in N\left(n^{-1} a\right) \cap N\left(a n^{-1}\right)$, by 1.8.1. Hence, by definition, $n^{-1} a, a n^{-1} \in \mathbb{P}$, so that $U \subseteq N\left(n^{-1} a\right) \cap N\left(a n^{-1}\right)$. Now 1.8.1 implies that $(n U) \cup(U n) \subseteq N(a)$, as asserted.
(3.5) Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and set $U=U_{x^{*}}$. Suppose that $U=U_{\left(x^{-1}\right)^{*}}$ and that $-1 \in U$. Let $x_{1} \in \mathbb{O}_{x^{*}}$. Then $\mathbb{O}_{x^{*}} \supseteq\left(U x_{1}\right) \cup\left(x_{1} U\right)$.

Proof. Let $u \in U$. Suppose $-1 \in N\left(u x_{1}\right)$. Then $-u^{-1} \in N\left(x_{1}\right)$. By $3.4, U \subseteq N\left(x_{1}\right)$, and in particular, $-1 \in N\left(x_{1}\right)$, a contradiction. Similarly $-1 \notin N\left(x_{1}^{-1} u\right)$, so that $U x_{1} \subseteq \mathbb{O}_{x^{*}}$. The proof that $x_{1} U \subseteq \mathbb{O}_{x^{*}}$ is similar.
(3.6) Let $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$. Then the following conditions are equivalent.
(1) $\mathbb{O}_{x^{*}}=\emptyset$.
(2) For all $a \in N x,-1 \in N(a) \cup N\left(a^{-1}\right)$.
(3) For all $a \in N x$, and $n \in N \backslash N(a), a+n \in N x$.
(4) There exists $a \in N x$ such that for all $n \in N \backslash N(a), a+n \in N x$.

Proof. (1) if and only if (2) is by definition.
(2) \rightarrow (3). Let $a \in N x$ and $n \in N \backslash N(a)$. Then $-1 \notin N\left(-n^{-1} a\right)$; so by (2), $-1 \in N\left(-a^{-1} n\right)$; that is, $n^{-1} \in N\left(a^{-1}\right)$. Hence $a^{-1}+n^{-1} \in N$ and multiplying by a on the right and n on the left we get $a+n \in N a=N x$.
(3) \rightarrow (4). This is immediate.
(4) \rightarrow (3). Let $b \in N x$ and write $b=m a$, for some $m \in N$. Then $N(b)=m N(a)$. Let $n \in N \backslash N(b)$; then $n \notin m N(a)$, so $m^{-1} n \notin N(a)$. Hence, by (4), $a+m^{-1} n \in N x$, so that $m a+n \in N x$; that is, $b+n \in N x$, so (3) holds.
$(3) \rightarrow(2)$. Let $a \in N x$, and suppose $-1 \notin N(a)$. Then by (3), $a-1 \in N a$. Now, multiplying by a^{-1} on the right we see that $a^{-1}-1 \in N$; that is, $-1 \in N\left(a^{-1}\right)$.
(3.7) Let $a, b \in G \backslash N$ and $\varepsilon \in\{1,-1\}$. Then
(1) If $a+b \neq 0$ and $N(a+b) \nsubseteq N(a)$, then

$$
a^{*}(a+n)^{*} b^{*} \text { is a path in } \Delta \text {, for any } n \in N(a+b) \backslash N(a) .
$$

(2) If $a+b \notin N$ and $N(a) \nsubseteq N(a+b)$, then

$$
b^{*}(a+b+n)^{*}(a+b)^{*} \text { is a path in } \Delta \text {, for any } n \in N(a) \backslash N(a+b) .
$$

(3) If $a^{*} z^{*}(a+\varepsilon b)^{*}$ is a path in Δ, $\varepsilon \notin N\left(a^{-1} b\right)$ and $a^{-1} b \notin N$, then $a^{*} z^{*}\left(\varepsilon+a^{-1} b\right)^{*}\left(a^{-1} b\right)^{*}$ is a path in Δ; so in particular, $\mathrm{d}\left(a^{*},\left(a^{-1} b\right)^{*}\right) \leq 3$.

Proof. For (1), set $c=a+b$ and let $n \in N(a+b) \backslash N(a)$. Then $(a+n)+b=$ $c+n \in N$. By Remark 2.2, $\mathrm{d}\left((a+n)^{*}, b^{*}\right) \leq 1 \geq \mathrm{d}\left((a+n)^{*}, a^{*}\right)$, and (1) follows.

For (2), note that $a=(a+b)-b$, so (2) follows from (1).
Finally, for (3), note that $a+\varepsilon b=\varepsilon a\left(\varepsilon+a^{-1} b\right)$. Further, z^{*} commutes with a^{*} and $(a+\varepsilon b)^{*}$, so that z^{*} commutes with $\left(\varepsilon+a^{-1} b\right)^{*}$, and of course $a^{-1} b$ commutes with $\left(\varepsilon+a^{-1} b\right)$. Hence, if $\left(\varepsilon+a^{-1} b\right), a^{-1} b \notin N, a^{*} z^{*}(\varepsilon+$ $\left.a^{-1} b\right)^{*}\left(a^{-1} b\right)^{*}$ is a path in Δ.
(3.8) Let $x, y \in G \backslash N$ and let $\bar{n} \in N \backslash(N(x) \cup N(y))$. Suppose $\mathrm{d}\left(x^{*}, y^{*}\right)>2$. Then $\bar{n}+m \in N$, for all $m \in N(x+\bar{n}) \cap N(y+\bar{n})$.

Proof. Let $m \in N(x+\bar{n}) \cap N(y+\bar{n})$. Then $x+(\bar{n}+m) \in N$ and $y+(\bar{n}+m) \in N$. Suppose $\bar{n}+m \notin N$. Then, by Remark 2.2, $\mathrm{d}\left(\left(x^{*},(\bar{n}+m)^{*}\right) \leq\right.$ $1 \geq \mathrm{d}\left(y^{*},(\bar{n}+m)^{*}\right)$. It follows that $\mathrm{d}\left(x^{*}, y^{*}\right) \leq 2$, a contradiction.
(3.9) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$. Then each of the following conditions imply $\operatorname{In}\left(x^{*}, y^{*}\right)$.
(1) $\mathrm{d}\left(x^{*}, y^{*}\right)>4$.
(2) $\mathrm{d}\left(x^{*}, y^{*}\right)>2$, and $\mathrm{d}\left(x^{*},\left(x^{-1} y\right)^{*}\right)>3$.

Proof. The fact that (1) implies $\operatorname{In}\left(x^{*}, y^{*}\right)$ derives from Remark 2.4. Now suppose (2) holds. Let $(a, b) \in N x \times N y$. Note that since $\mathrm{d}\left(a^{*}, b^{*}\right)>2,2.3 .1$ implies that

$$
\begin{equation*}
N(a+b) \subseteq N(a) \cap N(b) \tag{i}
\end{equation*}
$$

Suppose $N(b) \neq N(a+b) \neq N(a)$. Then $N(a) \nsubseteq N(a+b)$ and $N(b) \nsubseteq N(a+b)$, so by 3.7.2,
(ii) $b^{*}(a+b+n)^{*}(a+b)^{*}$ is a path in Δ, for any $n \in N(a) \backslash N(a+b)$
$a^{*}(a+b+m)^{*}(a+b)^{*}$ is a path in Δ, for any $m \in N(b) \backslash N(a+b)$.
From (ii) we get that

$$
\begin{equation*}
a^{*}(a+b+m)^{*}(a+b)^{*}(a+b+n)^{*} b^{*} \text { is a path in } \Delta \tag{iii}
\end{equation*}
$$

for any $m \in N(b) \backslash N(a+b)$ and $n \in N(a) \backslash N(a+b)$. Suppose $1+a^{-1} b \in N$, then $(a+b)^{*}=a^{*}$, and then from (iii) we get that $\mathrm{d}\left(a^{*}, b^{*}\right) \leq 2$, contradicting the choice of a^{*}, b^{*}. Hence $1+a^{-1} b \notin N$, so by $3.7 .3, \mathrm{~d}\left(a^{*},\left(a^{-1} b\right)^{*}\right) \leq 3$, a contradiction.

We may now conclude that either $N(a+b)=N(a)$, or $N(a+b)=N(b)$. Hence, by (i), either $N(a) \subseteq N(b)$, or $N(b) \subseteq N(a)$, as asserted.
(3.10) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and assume $\operatorname{In}\left(x^{*}, y^{*}\right)$. Then either $\operatorname{Inc}\left(y^{*}, x^{*}\right)$ or $\operatorname{Inc}\left(x^{*}, y^{*}\right)$.

Proof. Suppose that $\operatorname{Inc}\left(y^{*}, x^{*}\right)$ is false. Then, there exists $b \in \mathbb{P}_{y^{*}}$, such that $N(a) \supsetneqq N(b)$, for all $a \in \mathbb{P}_{x^{*}}$. Thus $\operatorname{Inc}\left(x^{*}, y^{*}\right)$ holds.
(3.11) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ such that $\operatorname{In}\left(x^{*}, y^{*}\right)$. Then
(1) If $\operatorname{Inc}\left(y^{*}, x^{*}\right)$, then $\mathbb{N}_{y^{*}} \supseteq \mathbb{N}_{x^{*}}$, and $U_{y^{*}} \geq U_{x^{*}}$.
(2) If $(a, b) \in N x \times N y$ such that $N(b) \supseteq N(a)$, then $N(-b) \supseteq N(a)$.
(3) If $(a, b) \in N x \times N y$ such that $N(b) \supsetneqq N(a)$, then $N(-b) \supsetneqq N(a)$.
(4) If $\operatorname{Inc}\left(y^{*}, x^{*}\right)$, then $-1 \in \mathbb{N}_{y^{*}}$ and hence $-1 \in U_{y^{*}}$.

Proof. For (1), let $b \in \mathbb{P}_{y^{*}}$. By $\operatorname{Inc}\left(y^{*}, x^{*}\right)$, there exists $a \in \mathbb{P}_{x^{*}}$ such that $N(b) \supseteq N(a)$. But, by definition, $N(a) \supseteq \mathbb{N}_{x^{*}}$. Hence $N(b) \supseteq \mathbb{N}_{x^{*}}$. As this holds for all $b \in \mathbb{P}_{y^{*}}, \mathbb{N}_{y^{*}} \supseteq \mathbb{N}_{x^{*}}$. Then, it is immediate from the definition of $U_{x^{*}}$ that $U_{y^{*}} \geq U_{x^{*}}$.

Let $(a, b) \in N x \times N y$ such that $N(b) \supseteq N(a)$. Let $s \in N(b)$. Suppose $-s \notin N(b)$. Then $-s \notin N(a)$ and $-s \in N(-b)$. Hence, by $\operatorname{In}\left(x^{*}, y^{*}\right), N(-b) \supsetneqq$ $N(a)$. Thus we may assume that $-s \in N(b)$, for all $s \in N(b)$. But then $N(-b)=N(b)$, by 1.8.1, and again $N(-b) \supseteq N(a)$; in addition, if $N(b) \supsetneqq$ $N(a)$, then $N(-b)=N(b) \supsetneqq N(a)$. This show (2) and (3).

Suppose $\operatorname{Inc}\left(y^{*}, x^{*}\right)$. Let $b \in \mathbb{P}_{y^{*}} ;$ then there exists $a \in \mathbb{P}_{x^{*}}$, such that $N(b) \supseteq N(a)$. By $(2), N(b) \supseteq N(-a)$, so as $-1 \in N(-a),-1 \in N(b)$, as this holds for all $b \in \mathbb{P}_{y^{*}},-1 \in \mathbb{N}_{y^{*}}$. This proves the first part of (4) and the second part of (4) is immediate from the definitions.
(3.12) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and assume
(i) $\mathrm{d}\left(x^{*}, y^{*}\right)>2$.
(ii) $\operatorname{In}\left(x^{*}, y^{*}\right)$.

Let $(a, b) \in N x \times N y$ and suppose $N(b) \supseteq N(a)$. Then
(1) $N(a+\varepsilon b)=N(a)$, for $\varepsilon \in\{1,-1\}$.
(2) If $N(b) \supsetneqq N(a)$, then $a^{*}\left(a+\varepsilon b+n_{\varepsilon}\right)^{*}(a+\varepsilon b)^{*}$ is a path in Δ, for any $n_{\varepsilon} \in N(\varepsilon b) \backslash N(a)$, where $\varepsilon \in\{1,-1\}$.

Proof. First note that by 3.11.2, $N(-b) \supseteq N(a)$. Let $\varepsilon \in\{1,-1\}$. As $\mathrm{d}\left(a^{*}, b^{*}\right)>2, N(a+\varepsilon b) \subseteq N(a)$, by 2.3.1. Let $m \in N(a)$. Then $m \in N(\varepsilon b)$. Suppose $m \notin N(a+\varepsilon b)$. Consider the element $z=a+\varepsilon b+m$. Since $m \notin$ $N(a+\varepsilon b), z \notin N$. However, since $z=a+(\varepsilon b+m)($ and $\varepsilon b+m \in N)$, Remark 2.2 implies that $\mathrm{d}\left(z^{*}, a^{*}\right) \leq 1$. Similarly as $z=\varepsilon b+(a+m)$ (and $a+m \in N), \mathrm{d}\left(z^{*}, b^{*}\right) \leq 1$. Thus $\mathrm{d}\left(a^{*}, b^{*}\right) \leq 2$, a contradiction. This shows (1).

Assume $N(b) \supsetneqq N(a)$. Then by 3.11.3, $N(-b) \supsetneqq N(a)$. Let $n_{\varepsilon} \in$ $N(\varepsilon b) \backslash N(a)$; then (2) follows from 3.7.2.
(3.13) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and assume that $\mathrm{d}\left(x^{*}, y^{*}\right)>3<\mathrm{d}\left(x^{*},\left(x^{-1} y\right)^{*}\right)$. Let $x_{1} \in \mathbb{O}_{x^{*}}$ and $b \in N y$, such that $1 \notin N(b)$. Then $N\left(x_{1}\right) \supseteq N(b)$.

Proof. First note that by $3.9, \operatorname{In}\left(x^{*}, y^{*}\right)$. Suppose $N\left(x_{1}\right) \varsubsetneqq N(b)$. Then, by $3.12, N\left(x_{1}-b\right)=N\left(x_{1}\right)$, and

$$
\begin{equation*}
x_{1}^{*}\left(x_{1}+b+s\right)^{*}\left(x_{1}+b\right)^{*} \tag{*}
\end{equation*}
$$

is a path in Δ, for any $s \in N(b) \backslash N\left(x_{1}\right)$. Suppose $x_{1}^{-1} b+1 \in N$; that is, $1 \in N\left(x_{1}^{-1} b\right)$. Then $-1 \in N\left(-x_{1}^{-1} b\right)$, so $N\left(x_{1}^{-1}(-b)\right) \nsubseteq N\left(x_{1}^{-1}\right)$. As $-1 \notin N(-b)$, 2.9.1 implies that $\mathrm{d}\left(x_{1}^{*}, b^{*}\right) \leq 3$, contradicting $\mathrm{d}\left(x^{*}, y^{*}\right)>3$. Thus $1 \notin N\left(x_{1}^{-1} b\right)$. Hence by 3.7.3, $\mathrm{d}\left(x^{*},\left(x^{-1} y\right)^{*}\right) \leq 3$, a contradiction.
(3.14) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and assume one of the following conditions holds
(1) $\mathrm{d}\left(x^{*}, y^{*}\right)>4$.
(2) $\mathrm{d}\left(x^{*}, y^{*}\right)>3, \operatorname{In}\left(x^{*}, y^{*}\right)$ and either $\mathbb{O}_{x^{*}}=\emptyset$ or $\mathbb{O}_{y^{*}}=\emptyset$.

Then, $\mathrm{T}\left(x^{*}, y^{*}\right)$.

Proof. If $\mathrm{d}\left(x^{*}, y^{*}\right)>4$, then by $3.9, \operatorname{In}\left(x^{*}, y^{*}\right)$ holds. Let $(a, b) \in N x \times N y$ and let $\bar{n} \in N \backslash(N(a) \cup N(b))$. By $\operatorname{In}\left(x^{*}, y^{*}\right)$, we may assume without loss of generality that $N(b) \supseteq N(a)$. By 3.12, $N(a-b)=N(a)$. Note that if (2) holds, then, by 3.6, either $a+\bar{n} \in N a$, or $b+\bar{n} \in N b$; hence, in any case, by Remark 2.2, $\mathrm{d}(a+\bar{n}, b+\bar{n})>2$. But $a-b=(a+\bar{n})-(b+\bar{n})$, and then 2.3.1 implies that $N(a+\bar{n}) \supseteq N(a-b)=N(a)$. Further, by 3.11, $N(-b) \supseteq N(a)$, and as $-\bar{n} \notin N(-b),-\bar{n} \notin N(a)$. Also $a+b=(a-\bar{n})+(b+\bar{n})$, and if (2) holds, then by 3.6, either $a-\bar{n} \in N a$, or $b+\bar{n} \in N b$. Hence again, in any case $\mathrm{d}(a-\bar{n}, b+\bar{n})>2$ and as above we get $N(b+\bar{n}) \supseteq N(a+b)=N(a)$. This shows $\mathrm{T}\left(x^{*}, y^{*}\right)$.

(3.15) Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$. Suppose that

(a) $\mathrm{d}\left(x^{*}, y^{*}\right)>2$.
(b) $-1 \in \mathbb{N}_{y^{*}}$.
(c) For all $\bar{n} \in \overline{\mathbb{N}}_{C_{y^{*}}}$ and $m \in \mathbb{N}_{C_{x^{*}}}, \bar{n}+m \in N$.

Then G satisfies the U-Hypothesis with respect to $\mathbb{N}_{C_{y^{*}}}$.
Proof. Set $\mathbb{N}=\mathbb{N}_{C_{y^{*}}}$ and $\mathbb{P}=\mathbb{P}_{C_{y^{*}}}$. First note that by (b) and 3.1.4, $-1 \in \mathbb{N}$. We first claim that

$$
\begin{equation*}
b+m \in \mathbb{N}_{C_{x^{*}}}, \text { for all } b \in \mathbb{P} \text { and } m \in \mathbb{N}_{C_{x^{*}}} \tag{i}
\end{equation*}
$$

To prove (i), let $b \in \mathbb{P}$ and $m \in \mathbb{N}_{C_{x^{*}}}$. Let $a \in \mathbb{P}_{C_{x^{*}}}$. Suppose $a+m \in \overline{\mathbb{N}}$. Then, by 3.2.5, $-a-m \in \mathbb{N}$, and by (c), $(-a-m)+m \in N$; hence $-a \in N$, a contradiction. Thus $a+m \in \mathbb{N}$ and hence $b+(a+m) \in N$. We have shown that

$$
\begin{equation*}
a+(b+m) \in N, \text { for all } a \in \mathbb{P}_{C_{x^{*}}}, b \in \mathbb{P} \text { and } m \in \mathbb{N}_{C_{x^{*}}} \tag{ii}
\end{equation*}
$$

Since $\mathrm{d}\left(x^{*}, y^{*}\right)>2$, we can choose $a_{1} \in \mathbb{P}_{C_{x^{*}}}$ so that $\mathrm{d}\left(a_{1}^{*}, b^{*}\right)>2$ (see 1.8.5). By (ii), given $m \in \mathbb{N}_{C_{x^{*}}}, a_{1}+(b+m) \in N$, so if $b+m \notin N$, then by Remark 2.2 , $\mathrm{d}\left(a_{1}^{*},(b+m)^{*}\right) \leq 1 \geq \mathrm{d}\left(b^{*},(b+m)^{*}\right)$, so $\mathrm{d}\left(a_{1}^{*}, b^{*}\right) \leq 2$, a contradiction. This shows that $b+m \in N$. Now (ii) implies (i). Next we claim:

$$
\begin{equation*}
\text { For all } \bar{n} \in \overline{\mathbb{N}} \text { and } m \in \mathbb{N}_{C_{x^{*}}}, \bar{n}+m \in \mathbb{N} \text {. } \tag{iii}
\end{equation*}
$$

Let $b \in \mathbb{P}, \bar{n} \in \overline{\mathbb{N}}$ and $m \in \mathbb{N}_{C_{x^{*}}}$. By (i), $b+m \in \mathbb{N}_{C_{x^{*}}}$, and by (c), $b+m+\bar{n} \in N$. As this holds for all $b \in \mathbb{P}, m+\bar{n} \in \mathbb{N}$, and (iii) is proved.

Finally, let $\bar{n} \in \overline{\mathbb{N}}$. Then by $3.2 .5,-\bar{n} \in \overline{\mathbb{N}}$, and since $1 \in \mathbb{N}_{C_{x^{*}}}$, (iii) implies that $-\bar{n}+1 \in \mathbb{N}$. Hence

$$
\begin{equation*}
\bar{n}-1 \in \mathbb{N} \tag{iv}
\end{equation*}
$$

Now (iii), (iv), our assumption (b) and 3.2 imply that G satisfies the U Hypothesis with respect to \mathbb{N}.
(3.16) Theorem. Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$. Suppose that
(a) $\mathrm{d}\left(x^{*}, y^{*}\right)>2$.
(b) $-1 \in \mathbb{N}_{y^{*}}$.
(c) For all $\bar{n} \in \overline{\mathbb{N}}_{y^{*}}$ and $m \in \mathbb{N}_{x^{*}}, \bar{n}+m \in N$.

Then
(1) For all $\bar{n} \in \mathbb{N}_{C_{y^{*}}}$ and $m \in \mathbb{N}_{C_{x^{*}}}, \bar{n}+m \in N$.
(2) G satisfies the U-Hypothesis with respect to $\mathbb{N}_{C_{y^{*}}}$.

Proof. Set $\mathbb{N}=\mathbb{N}_{C_{y^{*}}}$ and let $\bar{n} \in \overline{\mathbb{N}}$ and $m \in \mathbb{N}_{C_{x^{*}}}$. We want to show that $\bar{n}+m \in N$. After conjugation with some element of G, and using 3.1, we may assume that $\bar{n} \in \overline{\mathbb{N}}_{y^{*}}$. But $m \in \mathbb{N}_{C_{x^{*}}} \subseteq \mathbb{N}_{x^{*}}$, so (1) follows from our assumption (c). Then (2) follows from 3.15.
(3.17) Theorem. Let $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ and assume
(i) $\mathrm{d}\left(x^{*}, y^{*}\right)>2$.
(ii) $\operatorname{Inc}\left(y^{*}, x^{*}\right)$ and $\mathrm{T}\left(x^{*}, y^{*}\right)$.

Then G satisfies the U-Hypothesis with respect to $\mathbb{N}_{C_{y^{*}}}$.
Proof. Set $\mathbb{N}=\mathbb{N}_{C_{y^{*}}}$. We verify assumptions (b) and (c) of Theorem 3.16. Assumption (b) follows from $\operatorname{Inc}\left(y^{*}, x^{*}\right)$ and 3.11.4.

It remains to verify assumption (c) of Theorem 3.16. Let $\bar{n} \in \overline{\mathbb{N}}_{y^{*}}$ and let $m \in \mathbb{N}_{x^{*}}$. By definition, there exists $b \in \mathbb{P}_{y^{*}}$, such that $\bar{n} \notin N(b)$. Let $a \in \mathbb{P}_{x^{*}}$, such that $N(b) \supseteq N(a)\left(u \operatorname{sing} \operatorname{Inc}\left(y^{*}, x^{*}\right)\right) . \operatorname{By} \mathrm{T}\left(x^{*}, y^{*}\right), N(a+\bar{n}) \supseteq$ $N(a) \subseteq N(b+\bar{n})$. In particular, $m \in \mathbb{N}_{x^{*}} \subseteq N(a) \subseteq N(a+\bar{n}) \cap N(b+\bar{n})$. Since $\mathrm{d}\left(x^{*}, y^{*}\right)>2,3.8$ implies that $\bar{n}+m \in N$, as asserted.
(3.18) Theorem. Suppose that $\operatorname{diam}(\Delta)>4$. Then there exist conjugacy classes $A^{*}, B^{*} \subseteq G^{*} \backslash\left\{1^{*}\right\}$ such that
(1) G satisfies the U-Hypothesis with respect to $\mathbb{N}_{B^{*}}$.
(2) For all $b \in \mathbb{P}_{B^{*}}$, there exists $a \in \mathbb{P}_{A^{*}}$ such that $\mathrm{d}\left(a^{*}, b^{*}\right)>4$ and $N(b) \supseteq$ $N(a)$.

Proof. Let $x^{*}, y^{*} \in \Delta$ be such that $\mathrm{d}\left(x^{*}, y^{*}\right)>4$. By $3.9, \operatorname{In}\left(x^{*}, y^{*}\right)$ and by 3.10 , we may assume that $\operatorname{Inc}\left(y^{*}, x^{*}\right)$. Further by $3.14, \mathrm{~T}\left(x^{*}, y^{*}\right)$. Set $B^{*}=C_{y^{*}}$ and $A^{*}=C_{x^{*}}$. By Theorem 3.17, (1) holds. Let $b \in \mathbb{P}_{B^{*}}$. Then there exists $g \in G$, such that $b^{g} \in \mathbb{P}_{y^{*}}$ (see 3.1.1). Since $\operatorname{Inc}\left(y^{*}, x^{*}\right)$, there exists $a \in \mathbb{P}_{x^{*}}$ such that $N\left(b^{g}\right) \supseteq N(a)$. By 1.8.2, $N(b) \supseteq N\left(a^{g^{-1}}\right)$. Of course $a^{g^{-1}} \in \mathbb{P}_{A^{*}}$ and $\mathrm{d}\left(b^{*},\left(a^{g^{-1}}\right)^{*}\right)>4$, so (2) holds.

4. The proof that if Δ is balanced then G satisfies the U-Hypothesis

In this section we continue the notation and definitions of Sections 2 and 3.

Definitions. (1) We define a binary relation \mathfrak{B} on $\left(G^{*} \backslash\left\{1^{*}\right\}\right) \times\left(G^{*} \backslash\left\{1^{*}\right\}\right)$ as follows. Let $\left(x^{*}, y^{*}\right) \in\left(G^{*} \backslash\left\{1^{*}\right\}\right) \times\left(G^{*} \backslash\left\{1^{*}\right\}\right)$,
$\mathfrak{B}\left(x^{*}, y^{*}\right)$: The distances $\mathrm{d}\left(x^{*}, y^{*}\right), \mathrm{d}\left(x^{*}, x^{*} y^{*}\right), \mathrm{d}\left(y^{*}, x^{*} y^{*}\right), \mathrm{d}\left(x^{*},\left(x^{-1} y\right)^{*}\right)$, $\mathrm{d}\left(y^{*},\left(x^{-1} y\right)^{*}\right)$ are all greater than 3.
(2) We say that Δ is balanced if there exists $x^{*}, y^{*} \in G^{*} \backslash\left\{1^{*}\right\}$ such that $\mathfrak{B}\left(x^{*}, y^{*}\right)$.

The purpose of this section is to prove the following theorem.
(4.1) Theorem. Suppose that Δ is balanced. Then there exists a conjugacy class $C^{*} \subseteq G^{*} \backslash\left\{1^{*}\right\}$ such that
(1) G satisfies the U-Hypothesis with respect to $\mathbb{N}_{C^{*}}$.
(2) One of the following holds:
(2a) $\mathbb{O}_{x^{*}}=\emptyset$, for some $x^{*} \in G^{*} \backslash\left\{1^{*}\right\}$.
(2b) For all $m \in \mathbb{M}_{C^{*}}$, there exists $z^{*} \in C^{*}$, such that $m \in N\left(z_{1}\right)$, for all $z_{1} \in \mathbb{O}_{z^{*}}$.
(4.2) (1) \mathfrak{B} is symmetric.
(2) If $\mathfrak{B}\left(x^{*}, y^{*}\right)$, then $\mathfrak{B}\left(\left(x^{-1}\right)^{*}, y^{*}\right)$.

Proof. Suppose $\mathfrak{B}\left(x^{*}, y^{*}\right)$. We must show that $\mathfrak{B}\left(y^{*}, x^{*}\right)$. By definition, $\mathrm{d}\left(y^{*}, x^{*}\right)>3$. Next since $\mathrm{d}\left(y^{*}, x^{*} y^{*}\right)>3$, conjugating with y^{*} we get that $\mathrm{d}\left(y^{*}, y^{*} x^{*}\right)>3$. Since $\mathrm{d}\left(x^{*}, x^{*} y^{*}\right)>3$, conjugating with x^{*} we get $\mathrm{d}\left(x^{*}, y^{*} x^{*}\right)>3$. Since $\mathrm{d}\left(y^{*},\left(x^{-1} y\right)^{*}\right)$, inverting $\left(x^{-1} y\right)^{*}$, we see that $\mathrm{d}\left(y^{*},\left(y^{-1} x\right)^{*}\right)>3$, finally since $\mathrm{d}\left(x^{*},\left(x^{-1} y\right)^{*}\right)$, inverting $\left(x^{-1} y\right)^{*}$, we get that $\mathrm{d}\left(x^{*},\left(y^{-1} x\right)^{*}\right)>3$. Hence $\mathfrak{B}\left(y^{*}, x^{*}\right)$. The proof of (2) is similar.

Notation. From now until the end of Section 4 we fix $x, y \in G \backslash N$ such that $\mathfrak{B}\left(x^{*}, y^{*}\right)$. We set

$$
S:=\left(\left\{x, x^{-1}\right\} \times\left\{y, y^{-1}\right\}\right) \cup\left(\left\{y, y^{-1}\right\} \times\left\{x, x^{-1}\right\}\right)
$$

and

$$
\mathbb{O}_{S}=\mathbb{O}_{x^{*}} \cup \mathbb{O}_{\left(x^{-1}\right)^{*}} \cup \mathbb{O}_{y^{*}} \cup \mathbb{O}_{\left(y^{-1}\right)^{*}} .
$$

(4.3) Let $(g, h) \in S$, then
(1) $\mathfrak{B}\left(g^{*}, h^{*}\right)$.
(2) $\operatorname{In}\left(g^{*}, h^{*}\right)$.

Proof. (1) follows from 4.2 and (2) follows from (1) and 3.9.
(4.4) Suppose $\mathbb{O}_{x^{*}}=\emptyset$ or $\mathbb{O}_{y^{*}}=\emptyset$. Then G satisfies the U-Hypothesis.

Proof. First note that by $\mathfrak{B}\left(x^{*}, y^{*}\right), 4.3$ and $3.14, \mathrm{~T}\left(x^{*}, y^{*}\right)$. Then, by 4.3 , and 3.10 , we may assume without loss that $\operatorname{Inc}\left(y^{*}, x^{*}\right)$. Now the lemma follows from Theorem 3.17.

In view of 4.4, and symmetry, we assume from now on that
The sets $\mathbb{O}_{x^{*}}, \mathbb{O}_{\left(x^{-1}\right)^{*}}, \mathbb{O}_{y^{*}}$, and $\mathbb{O}_{\left(y^{-1}\right)^{*}}$ are not empty.
Notation. Given $z \in\left\{x, x^{-1}, y, y^{-1}\right\}, z_{1}$ will always denote an element in $\mathbb{O}_{z^{*}}$.
(4.5) Let $g \in\left\{x, x^{-1}, y, y^{-1}\right\}$; then $-1 \in \mathbb{N}_{g^{*}},-1 \in \mathbb{N}_{C_{g^{*}}}$ and $-1 \in U_{g^{*}}$.

Proof. Let $g \neq h \in\left\{x, x^{-1}, y, y^{-1}\right\}$, with $h \notin\left\{g, g^{-1}\right\}$. By 4.3.1, $\mathfrak{B}\left(g^{*}, h^{*}\right)$. It suffices to show that $-1 \in \mathbb{N}_{g^{*}}$, then by 3.1.4, $-1 \in \mathbb{N}_{C_{g^{*}}}$, and by 3.3.4, $-1 \in U_{g^{*}}$. Letting $a \in \mathbb{P}_{g^{*}}$, we must show that $-1 \in N(a)$. Suppose $-1 \notin N(a)$, then, $1 \notin N(-a)$, so by $3.13, N\left(g_{1}\right) \supseteq N(-a)$. But $-1 \in N(-a)$, a contradiction.
(4.6) Let $z \in \mathbb{O}_{S}$. Then
(1) $N(z)=N(h)$, for all $h \in \mathbb{O}_{S}$.
(2) $1 \notin N(z)$.
(3) If $a \in N z$ such that $1 \notin N(a)$, then $N(z) \supseteq N(a)$.
(4) If $\bar{n} \in \overline{\mathbb{N}}_{z^{*}}$, then $\bar{n}^{-1} \in N(z)$.
(5) $N(z)=\mathbb{M}_{z^{*}}$.
(6) $\mathbb{N}_{z^{*}}$ is independent of the choice of z.
(7) $U_{z^{*}}$ is independent of the choice of z.

Proof. We show that $\mathfrak{B}\left(x^{*}, y^{*}\right)$ implies $N\left(x_{1}\right) \supseteq N\left(y_{1}\right)$. Then, (1) follows from 4.3.1. A similar application of 4.3 .1 will be used throughout the proof. Now $1 \notin N\left(-y_{1}\right)$, so by $3.13, N\left(x_{1}\right) \supseteq N\left(-y_{1}\right)$. Then, by $3.11, N\left(x_{1}\right) \supseteq N\left(y_{1}\right)$.

Suppose $1 \in N\left(x_{1}\right)$. Then $-1 \in N\left(-x_{1}\right)$, so that $N\left(-x_{1}\right) \supsetneqq N\left(y_{1}\right)$. By 3.11, $N\left(x_{1}\right) \supsetneqq N\left(y_{1}\right)$, contradicting (1). Hence (2) holds.
(3) is immediate from 3.11, (1) and 4.3.2. To show (4), let $\bar{n} \in \overline{\mathbb{N}}_{z^{*}}$. By definition, there exists $a \in \mathbb{P}_{z^{*}}$, such that $\bar{n} \notin N(a)$. Then, $1 \notin N\left(\bar{n}^{-1} a\right)$, and so by (3), N(z) $\supseteq N\left(\bar{n}^{-1} a\right)$. But $\bar{n}^{-1} \in N\left(\bar{n}^{-1} a\right)$, so that $\bar{n}^{-1} \in N(z)$.

Next let $h \in \mathbb{O}_{S}$, with $h^{*} \neq z^{*},\left(z^{-1}\right)^{*}$. Note that $N(h) \subseteq N(b)$, for all $b \in \mathbb{P}_{z^{*}}$, by $\operatorname{In}\left(h^{*}, z^{*}\right)$, so $N(z)=N(h) \subseteq \mathbb{N}_{z^{*}}$. Let $u \in U_{z^{*}}$. If $u \in N(z)$; then, by 3.4, $U_{z^{*}} \subseteq N(z)$, a contradiction, as $-1 \in U_{z^{*}}$. Hence $N(z) \subseteq \mathbb{M}_{z^{*}}$. Let $m \in \mathbb{M}_{z^{*}}$; then, by definition, $m^{-1} \in \overline{\mathbb{N}}_{z^{*}}$, so by (4), $m=\left(m^{-1}\right)^{-1} \in N(z)$. Hence $N(z)=\mathbb{M}_{z^{*}}$, and (5) holds.

To show (6), by 4.3.1, it suffices to show that $\overline{\mathbb{N}}_{x^{*}} \subseteq \overline{\mathbb{N}}_{y^{*}}\left(\right.$ so $\left.\mathbb{N}_{x^{*}} \supseteq \mathbb{N}_{y^{*}}\right)$. Let $\bar{n} \in \overline{\mathbb{N}}_{x^{*}}$; then by (4) and (1), $\bar{n}^{-1} \in N\left(y_{1}\right)$. But by (5), $N\left(y_{1}\right)=\mathbb{M}_{y^{*}}$, so by definition, $\bar{n}=\left(\bar{n}^{-1}\right)^{-1} \in \overline{\mathbb{N}}_{y^{*}}$. Finally (7) is immediate from (6).
(4.7) Let $\bar{n} \in \overline{\mathbb{N}}_{x^{*}}$ and $m \in \mathbb{N}_{y^{*}}$. Then $\bar{n}+m \in N$.

Proof. Set $\mathbb{N}=\mathbb{N}_{x^{*}}, \mathbb{M}=\mathbb{M}_{x^{*}}$ and $U=U_{x^{*}}$. Note that by 4.6, $\mathbb{N}=\mathbb{N}_{z^{*}}$, $\mathbb{M}=\mathbb{M}_{z^{*}}=N(z)$, and $U=U_{z^{*}}$, for all $z \in \mathbb{O}_{S}$. First we claim that

$$
\begin{equation*}
z+\bar{n} \in N z, \text { for all } z \in \mathbb{O}_{S} . \tag{i}
\end{equation*}
$$

Indeed, by 4.6.4, $\bar{n}^{-1} \in \mathbb{M}$, so as $\mathbb{M}=N\left(z^{-1}\right), z^{-1}+\bar{n}^{-1} \in N$ and (i) holds.
Further, by $3.12, N\left(x_{1}-y_{1}\right)=N\left(x_{1}\right)=\mathbb{M}$, and by (i), $\mathrm{d}\left(\left(x_{1}+\bar{n}\right)^{*}\right.$, $\left.\left(y_{1}+\bar{n}\right)^{*}\right)>3$, hence, by 2.3.1, $\mathbb{M}=N\left(x_{1}-y_{1}\right)=N\left(\left(x_{1}+\bar{n}\right)-\left(y_{1}+\bar{n}\right)\right) \subseteq$ $N\left(x_{1}+\bar{n}\right)$. Similarly, $\mathbb{M} \subseteq N\left(y_{1}+\bar{n}\right)$, so that

$$
\begin{equation*}
N\left(x_{1}+\bar{n}\right) \supseteq \mathbb{M} \subseteq N\left(y_{1}+\bar{n}\right) \tag{ii}
\end{equation*}
$$

by $3.8, \bar{n}+\mathbb{M} \subseteq N$, for all $\bar{n} \in \overline{\mathbb{N}}$. We have shown

$$
\begin{equation*}
\bar{n}+m \in N \text {, for all } \bar{n} \in \overline{\mathbb{N}} \text { and } m \in \mathbb{M} \text {. } \tag{iii}
\end{equation*}
$$

Next we show that $\bar{n}+1 \in N$, for all $\bar{n} \in \overline{\mathbb{N}}$. We first claim that

$$
\begin{equation*}
N\left(x_{1}+1\right) \supseteq \mathbb{M} \tag{iv}
\end{equation*}
$$

Suppose not and let $m \in \mathbb{M} \backslash N\left(x_{1}+1\right)$; recall that by $3.12, N\left(x_{1}-y_{1}\right)=$ $N\left(x_{1}\right)=\mathbb{M}$. But $x_{1}-y_{1}=\left(x_{1}+1\right)-\left(y_{1}+1\right)$, so $m \in N\left(x_{1}-y_{1}\right) \backslash N\left(x_{1}+1\right)$. Hence, by 3.7.1,

$$
\begin{equation*}
\left(x_{1}+1\right)^{*}\left(x_{1}+1+m\right)^{*}\left(y_{1}+1\right)^{*} \text { is a path in } \Delta . \tag{v}
\end{equation*}
$$

Replacing y_{1}, by y_{1}^{-1}, the same argument shows that

$$
\begin{equation*}
\left(x_{1}+1\right)^{*}\left(x_{1}+1+m\right)^{*}\left(y_{1}^{-1}+1\right)^{*} \text { is a path in } \Delta . \tag{vi}
\end{equation*}
$$

It follows from (v) and (vi) that $\left(x_{1}+1+m\right)^{*}$ commutes with $\left(y_{1}^{-1}+1\right)$ and $\left(y_{1}+1\right)$. But $y_{1}+1=y_{1}\left(y_{1}^{-1}+1\right)$, so $\left(x_{1}+1+m\right)^{*}$ commutes with y_{1}^{*}. However, applying Remark 2.2 twice, we see that $\mathrm{d}\left(\left(x_{1}+1+m\right)^{*}, x_{1}^{*}\right) \leq 2$. Hence we get that $\mathrm{d}\left(x_{1}^{*}, y_{1}^{*}\right) \leq 3$, contradicting $\mathfrak{B}\left(x^{*}, y^{*}\right)$. This shows (iv). Similarly, $N\left(y_{1}+1\right) \supseteq \mathbb{M}$. Since $\bar{n}^{-1} \in \mathbb{M}$, 3.8 implies that $\bar{n}^{-1}+1 \in N$, so $\bar{n}+1=\bar{n}\left(\bar{n}^{-1}+1\right) \in N$. We have shown

$$
\begin{equation*}
\bar{n}+1 \in N \text {, for all } \bar{n} \in \overline{\mathbb{N}} . \tag{vii}
\end{equation*}
$$

Let $u \in U$. Then $u^{-1} \bar{n} \in \overline{\mathbb{N}}$, by 3.3 , so by (vii), $u^{-1} \bar{n}+1 \in N$, so $\bar{n}+u \in N$.
We have shown

$$
\begin{equation*}
\bar{n}+u \in N, \text { for all } u \in U . \tag{viii}
\end{equation*}
$$

Since \mathbb{N} is the union of \mathbb{M} and U, (iii) and (viii) complete the proof.
(4.8) G satisfies the U-Hypothesis with respect to $\mathbb{N}_{C_{x^{*}}}$.

Proof. This follows immediately from 4.5, 4.7 and Theorem 3.16.
(4.9) Let $\mathbb{N}=\mathbb{N}_{C_{x^{*}}}$ and $\mathbb{M}=\mathbb{M}_{C_{x^{*}}}$. Then $\mathbb{N}=\mathbb{N}_{C_{z^{*}}}$ and $\mathbb{M}=\mathbb{M}_{C_{z^{*}}}$, for all $z \in \mathbb{O}_{S}$.

Proof. Let $z \in \mathbb{O}_{S}$. By definition, $\mathbb{N}_{C_{x^{*}}}=\bigcap\left\{\mathbb{N}_{v^{*}}: v^{*} \in C_{x^{*}}\right\}$ and $\mathbb{N}_{C_{z^{*}}}=\bigcap\left\{\mathbb{N}_{v^{*}}: v^{*} \in C_{z^{*}}\right\}$. But, by 4.6.6 and 3.1.2, $\left\{\mathbb{N}_{v^{*}}: v^{*} \in C_{x^{*}}\right\}=\left\{\mathbb{N}_{v^{*}}\right.$: $\left.v^{*} \in C_{z^{*}}\right\}$, so $\mathbb{N}=\mathbb{N}_{C_{z^{*}}}$. Then, by definition, $\mathbb{M}=\mathbb{M}_{C_{z^{*}}}$.
(4.10) Set $\mathbb{M}=\mathbb{M}_{C_{x^{*}}}$, and let $m \in \mathbb{M}$. Then there exists $z^{*} \in C_{x^{*}}$, such that $m \in N\left(z_{1}\right)$, for all $z_{1} \in \mathbb{O}_{z^{*}}$.

Proof. Since $m \in \mathbb{M}, m \in \mathbb{N}_{C_{x^{*}}}$. Since $m \notin U_{C_{x^{*}}}$, there exists $z^{*} \in C_{x^{*}}$, such that $m \notin U_{z^{*}}$. Hence $m \in \mathbb{M}_{z^{*}}$. After conjugation, and using 3.1, we may assume that $z=x$. But then the lemma follows from 4.6.

Note now that by 4.4, 4.9 and 4.10, Theorem 4.1 holds.

5. The U-Hypothesis

In this section $\emptyset \neq \mathbb{N} \varsubsetneqq N$ is a proper subset of N such that \mathbb{N} is a normal subset of G. We denote $\underset{\mathbb{N}}{ }=N \backslash \mathbb{N}$ and assume the U-Hypothesis.
(U1) $1,-1 \in \mathbb{N}$.
(U2) $\mathbb{N}^{2}=\mathbb{N}$.
(U3) For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}+1 \in \mathbb{N}$ and $\bar{n}-1 \in N$.
(5.1) Remark. Notice that if $\operatorname{diam}(\Delta)>4$ or Δ is balanced, then by Theorems 3.18 and $4.1, G$ satisfies the U-Hypothesis with respect to $\mathbb{N}=\mathbb{N}_{X^{*}}$, where $X^{*}=B^{*}$, if $\operatorname{diam}(\Delta)>4\left(B^{*}\right.$ as in Theorem 3.18) and $X^{*}=C^{*}$ if Δ is balanced (C^{*} as in Theorem 4.1).
(5.2) Let $U=\left\{n \in \mathbb{N}: n^{-1} \in \mathbb{N}\right\}$. Then
(1) $U=\{n \in N: n \mathbb{N}=\mathbb{N}\}=\{n \in N: n \overline{\mathbb{N}}=\overline{\mathbb{N}}\}$.
(2) $U=\{n \in N: \mathbb{N} n=\mathbb{N}\}=\{n \in N: \overline{\mathbb{N}} n=\overline{\mathbb{N}}\}$.
(3) U is a normal subgroup of G.
(4) $-1 \in U$.

Proof. This was already proved in 3.3 in a slightly different context; for completeness we include a proof. Clearly since N is a disjoint union of \mathbb{N} and $\overline{\mathbb{N}},\{n \in N: n \mathbb{N}=\mathbb{N}\}=\{n \in N: n \overline{\mathbb{N}}=\overline{\mathbb{N}}\}$. Let $u \in U$, then by $(U 2), u \mathbb{N} \subseteq \mathbb{N}$ and $u^{-1} \mathbb{N} \subseteq \mathbb{N}$. Hence $u \mathbb{N}=\mathbb{N}$. Conversely let $n \in N$ and suppose $n \mathbb{N}=\mathbb{N}$. As $1 \in \mathbb{N}, n \in \mathbb{N}$ and as $n^{-1} \mathbb{N}=\mathbb{N}, n^{-1} \in \mathbb{N}$, so that $n \in U$. This proves (1). The proof of (2) is identical to the proof of (1). (3) follows from (1) and the fact that \mathbb{N} is a normal subset of G. Note that (4) follows immediately from (U1).
(5.3) Notation. We denote $\mathbb{M}=\mathbb{N} \backslash U$. Hence $N=\mathbb{M} \dot{U} U \dot{U} \overline{\mathbb{N}}$ is a disjoint union.
(5.4) (1) For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}+U=U$.
(2) For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}^{-1} \in \mathbb{N}$.

Proof. We first show
For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}-1 \in \mathbb{N}$.
Let $\bar{n} \in \overline{\mathbb{N}}$ and suppose $\bar{n}-1 \notin \mathbb{N}$, then, $\bar{n}-1 \in \overline{\mathbb{N}}$ and by $(U 3),(\bar{n}-1)+1 \in \mathbb{N}$, a contradiction. This shows (i).

Let $\bar{m} \in \overline{\mathbb{N}}$. Suppose that $\bar{m}^{-1} \in \mathbb{N}$, then by $(U 2), \bar{m}^{-1} \mathbb{N} \subseteq \mathbb{N}$. We conclude that $\bar{m}^{-1}(\bar{m} \pm 1) \in \mathbb{N}$. Hence $\bar{m}^{-1} \pm 1 \in \mathbb{N}$. Suppose $\bar{m}^{-1} \in \overline{\mathbb{N}}$. Then by ($U 3$) and (i), $\bar{m}^{-1} \pm 1 \in \mathbb{N}$. Hence in either case we get that

$$
\begin{equation*}
\bar{m}^{-1} \pm 1 \in \mathbb{N}, \text { for all } \bar{m} \in \overline{\mathbb{N}} . \tag{ii}
\end{equation*}
$$

Next we show
(iii)

$$
\text { For all } \bar{n} \in \overline{\mathbb{N}}, \quad \bar{n} \pm 1 \in U .
$$

Let $\bar{n} \in \overline{\mathbb{N}}$ and let $\varepsilon \in\{1,-1\}$. By (i) and ($U 3$), $\bar{n}+\varepsilon \in \mathbb{N}$. Hence we must show that $(\bar{n}+\varepsilon)^{-1} \in \mathbb{N}$. Suppose $(\bar{n}+\varepsilon)^{-1} \notin \mathbb{N}$. Set $\bar{m}=(\bar{n}+\varepsilon)^{-1}$. Then $\bar{m} \in \overline{\mathbb{N}}$, so by (ii), $\bar{m}^{-1}-\varepsilon \in \mathbb{N}$. But $\bar{m}^{-1}-\varepsilon=\bar{n} \in \overline{\mathbb{N}}$, a contradiction.

We can now prove (1). Let $u \in U$ and $\bar{n} \in \overline{\mathbb{N}}$. Then by 5.2.1, $u^{-1} \bar{n} \in \overline{\mathbb{N}}$ and by (iii), $u^{-1} \bar{n}+1 \in U$. It follows that $\bar{n}+u=u\left(u^{-1} \bar{n}+1\right) \in U$. Hence

$$
\begin{equation*}
\bar{n}+U \subseteq U . \tag{iv}
\end{equation*}
$$

Next by 5.2.4, $-u \in U$, and by (iv), $\bar{n}-u \in U$. Again by 5.2.4, $u-\bar{n} \in U$ and hence $u=\bar{n}+(u-\bar{n}) \in \bar{n}+U$. Hence $U \subseteq \bar{n}+U$ and (1) is proved.

Finally we prove (2). Let $\bar{n} \in \overline{\mathbb{N}}$ and suppose $\bar{n}^{-1} \notin \mathbb{N}$. Then $\bar{n}^{-1} \in \overline{\mathbb{N}}$, so by (1), $\bar{n}^{-1}+1 \in U$. Then by $5.2 .2, \bar{n}+1=\bar{n}\left(\bar{n}^{-1}+1\right) \in \overline{\mathbb{N}}$, which contradicts (U3).
(5.5) (1) For all $s \in N \backslash U, s \in \mathbb{M}$ if and only if $s^{-1} \in \overline{\mathbb{N}}$.
(2) For all $\bar{n} \in \overline{\mathbb{N}}, \bar{n}+U=U$.
(3) For all $u \in U, u \overline{\mathbb{N}}=\overline{\mathbb{N}} u=\overline{\mathbb{N}}$ and $u \mathbb{M}=\mathbb{M} u=\mathbb{M}$.
(4) $\overline{\mathbb{N}}^{2} \subseteq \overline{\mathbb{N}}$ and $\mathbb{M}^{2} \subseteq \mathbb{M}$.

Proof. For (1) let $m \in \mathbb{M} \subseteq \mathbb{N}$. If $m^{-1} \in \mathbb{N}$, then, by definition, $m \in U$, a contradiction. Hence $m^{-1} \in \overline{\mathbb{N}}$. Let $n \in \overline{\mathbb{N}}$. By 5.4.2, $n^{-1} \in \mathbb{N}$, and since $n \notin U, n^{-1} \in \mathbb{M}$. This shows (1). (2) is from 5.4.1 and (3) is from 5.2.1 and 5.2.2.

Let $\bar{n}, \bar{m} \in \overline{\mathbb{N}}$ and suppose $\bar{n} \bar{m} \in \mathbb{N}$. By (1), $\bar{n}^{-1} \in \mathbb{N}$, and by (U2), $\bar{m}=\bar{n}^{-1}(\bar{n} \bar{m}) \in \mathbb{N}$, a contradiction. Hence $\overline{\mathbb{N}}^{2} \subseteq \overline{\mathbb{N}}$. Let $m, m^{\prime} \in \mathbb{M}$. Suppose $m m^{\prime} \in U \cup \overline{\mathbb{N}}$. Then $m^{-1} \in \overline{\mathbb{N}}$ (by (1)) and by (3) and the fact that $\overline{\mathbb{N}}^{2} \subseteq \overline{\mathbb{N}}$, $m^{\prime}=m^{-1}\left(m m^{\prime}\right) \in \overline{\mathbb{N}}$, a contradiction. Hence $\mathbb{M}^{2} \subseteq \mathbb{M}$.

6. Further consequences of the U-Hypothesis

In this section we continue the notation and hypotheses of Section 5, deriving further consequences. We denote $\Gamma=N / U$ (note that by 5.2.3, U is a normal subgroup of G and hence of N). Recall from 1.3 that we denote by $\nu: G \rightarrow F^{\#}$ the reduced norm function, in the case when $[D: F]<\infty$.
(6.1) Definition. We define an order relation \leq on Γ as follows. For $U a, U b \in \Gamma, U a<U b$ if and only if $U a \neq U b$ and $b a^{-1} \in \overline{\mathbb{N}}$.
(6.2) (1) The relation \leq is a well defined linear order relation on Γ.
(2) If $U a, U b, U c, U d \in \Gamma$, with $U a \leq U c$ and $U b \leq U d$, then $U a b \leq U c d$.

Proof. It is clear from 5.5.3 that \leq is independent on coset representatives and hence it is a well defined relation on Γ. We show it is an order relation. If $U a<U b$, then $b a^{-1} \in \overline{\mathbb{N}}$; hence by 5.5.1, $a b^{-1} \in \mathbb{M}$ and it follows that $U b \nless U a$. Also if $U a<U b<U c$, then $b a^{-1} \in \overline{\mathbb{N}}$ and $c b^{-1} \in \overline{\mathbb{N}}$. Hence by 5.5.4, $c a^{-1}=\left(c b^{-1}\right)\left(b a^{-1}\right) \in \overline{\mathbb{N}}$ and hence $U a<U c$. Finally let $U a, U b \in \Gamma$, with $U a \neq U b$. Then by 5.5.1 either $a b^{-1} \in \overline{\mathbb{N}}$ or $b a^{-1} \in \overline{\mathbb{N}}$; hence either $U a<U b$, or $U b<U a$, so \leq is linear.

For (2), if $U a=U c$, or $U b=U d$, then (2) follows directly from the definition of \leq and the fact that $\overline{\mathbb{N}}$ is a normal subset of G. So suppose $U a<U c$ and $U b<U d$. Then $c a^{-1}, d b^{-1} \in \overline{\mathbb{N}}$. Now $(c d)(a b)^{-1}=c d b^{-1} a^{-1}=$ $c a^{-1} a d b^{-1} a^{-1}$. Since $\overline{\mathbb{N}}$ is a normal subset of $G, a d b^{-1} a^{-1} \in \overline{\mathbb{N}}$. By 5.5.4, $\overline{\mathbb{N}}^{2} \subseteq \overline{\mathbb{N}}$, so $c a^{-1} a d b^{-1} a^{-1} \in \overline{\mathbb{N}}$. Hence, $(c d)(a b)^{-1} \in \overline{\mathbb{N}}$ and $U a b<U c d$, as asserted.
(6.3) Let $U a, U b \in \Gamma$, with $U a \neq U b$. Then
(1) $U a+U b \subseteq N$, and
(2) $U a+U b=\min \{U a, U b\}$.

Proof. Without loss of generality we may assume that $U a<U b$. Let $x \in U a$ and $y \in U b$. Then $y x^{-1} \in \overline{\mathbb{N}}$. Hence by 5.5.2, $1+y x^{-1} \in U$ and multiplying by x on the right we see that $x+y \in U x=U a$. This shows (1) and the fact that $U a+U b \subseteq U a$. But $U a+U b$ contains the coset $U(a+b)$, and it follows that $U a+U b=U a$.
(6.4) Corollary. Let $U a \in \Gamma$ and let $x, y \in U a$. Suppose $x+y \in N$. Then $U(x+y) \geq U a$.

Proof. Suppose $U(x+y)<U a=U x$. Then by 6.3, $y=(x+y)-x \in$ $U(x+y)$. But $y \in U a$, a contradiction.
(6.5) Corollary. Let $a_{1}, a_{2}, \ldots, a_{k} \in N$ and assume there exists some $1 \leq i \leq k$, such that $U a_{i}<U a_{j}$, for all $j \neq i$. Then $U a_{1}+U a_{2}+\cdots+U a_{k}=$ $U a_{i}$.

Proof. This follows immediately from 6.3 by induction.
(6.6) Suppose $[D: F]<\infty$ and let $n \in N \backslash U F^{\#}$. Then there exists $r \leq \operatorname{deg}(D)$ such that $n^{r} \in U F^{\#}$.

Proof. Let

$$
\alpha_{0}+\alpha_{1} x^{k_{1}}+\cdots+\alpha_{t} x^{k_{t}}
$$

be the minimal polynomial of n over F with $\alpha_{i} \neq 0$, for all $0 \leq i \leq t$ and $0<k_{1}<k_{2}<\cdots<k_{t}$. Suppose there exists some $0 \leq i \leq t$, such that $U \alpha_{i} n^{k_{i}}<U \alpha_{j} n^{k_{j}}$, for all $j \neq i$. Then by $6.5, \alpha_{0}+\alpha_{1} n^{k_{1}}+\cdots+\alpha_{t} n^{k_{t}} \in U \alpha_{i} n^{k_{i}}$. In particular, $\alpha_{0}+\alpha_{1} n^{k_{1}}+\cdots+\alpha_{t} n^{k_{t}} \neq 0$, a contradiction. Hence the set of minimal elements in the set $\left\{U \alpha_{0}, U \alpha_{1} n^{k_{1}}, \ldots, U \alpha_{t} n^{k_{t}}\right\}$ is of size larger than 1 . It follows that there are indices $0 \leq i<j \leq t$, such that $U \alpha_{i} n^{k_{i}}=U \alpha_{j} n^{k_{j}}$. We conclude that $n^{k_{j}-k_{i}} \in U\left(\alpha_{i} \alpha_{j}^{-1}\right)$. Note now that $r=k_{j}-k_{i} \leq k_{t} \leq \operatorname{deg}(D)$ and that $n^{r} \in U F^{\#}$.
(6.7) Suppose $[D: F]<\infty$ and let $n \in N$, with $\nu(n) \in U$. Then $n \in U$.

Proof. Suppose first that $n \in U F^{\#}$. Note that as $U \triangleleft G$, for each $u \in U$, $\nu(u) \in U$. This is because $\nu(u)$ is a product of conjugates of u (see 1.4). Write $n=\alpha u$, with $u \in U$ and $\alpha \in F^{\#}$. Then

$$
\nu(n)=\alpha^{\operatorname{deg}(D)} \nu(u)
$$

and it follows that $\alpha^{\operatorname{deg}(D)}=\nu(n) \nu(u)^{-1} \in U$. By 5.5.4, $\alpha \in U$, and hence $n \in U$.

Next suppose $n \in N \backslash U F^{\#}$. Then by (6.6), $n^{r} \in U F^{\#}$, for some $1<r \leq$ $\operatorname{deg}(D)$. Note now that $\nu\left(n^{r}\right)=\nu(n)^{r} \in U$, so by the previous paragraph of the proof, $n^{r} \in U$, this contradicts 5.5.4.
(6.8) Corollary. If $[D: F]<\infty$, then $N / U \leq Z(G / U)$.

Proof. Here $Z(G / U)$ is the center of G / U. Let $g \in G$ and $n \in N$. Then $\nu([g, n])=1 \in U$. Hence by $6.7,[g, n] \in U$.
(6.9) Remark. Note that if $[D: F]<\infty$, then the canonical homomorphism $v: N \rightarrow \Gamma$ behaves like a valuation on N in the sense that v is a group homomorphism, and Γ is a linearly ordered abelian group. Further $v(a+b) \geq \min \{v(a), v(b)\}$, whenever $a+b \in N$. In particular the restriction $v: F^{\#} \rightarrow v\left(F^{\#}\right)$ is a valuation on F.
(6.10) If $[D: F]<\infty$, then $F^{\#} \nsubseteq U$.

Proof. Suppose $F^{\#} \subseteq U$ and let $\bar{n} \in \overline{\mathbb{N}}$. Let

$$
\alpha_{0}+\alpha_{1} x^{k_{1}}+\cdots+\alpha_{t} x^{k_{t}}
$$

be the minimal polynomial of \bar{n} over F with $\alpha_{i} \neq 0$, for all $0 \leq i \leq t$ and $0<k_{1}<k_{2}<\cdots<k_{t}$. Then

$$
\alpha_{0}+\alpha_{1} \bar{n}^{k_{1}}+\cdots+\alpha_{t} \bar{n}^{k_{t}}=0 .
$$

We show by induction on j that $\alpha_{0}+\alpha_{1} \bar{n}^{k_{1}}+\cdots+\alpha_{j} \bar{n}^{k_{j}} \in U$, for all $0 \leq$ $j \leq t$. By hypothesis $\alpha_{0} \in U$. Suppose $\alpha_{0}+\alpha_{1} \bar{n}^{k_{1}}+\cdots+\alpha_{j} \bar{n}^{k_{j}} \in U$. Note that as $\alpha_{j+1} \in U$, 5.5.3 and 5.5.4 imply that $\alpha_{j+1} \bar{n}^{k_{j+1}} \in \overline{\mathbb{N}}$; hence by 5.5.2, $\left(\alpha_{0}+\alpha_{1} \bar{n}^{k_{1}}+\cdots+\alpha_{j} \bar{n}^{k_{j}}\right)+\alpha_{j+1} \bar{n}^{k_{j+1}} \in U$. But we cannot have $\alpha_{0}+\alpha_{1} \bar{n}^{k_{1}}+\cdots+\alpha_{t} \bar{n}^{k_{t}} \in U$, a contradiction.

7. Towards the proof of Theorem A

In this and the following sections we finally prove Theorem A. We continue the notation of the previous sections. In particular, Δ is the commuting graph of G^{*}. We assume that either $\operatorname{diam}(\Delta)>4$, or Δ is balanced. If $\operatorname{diam}(\Delta)>4$ then we fix A^{*}, B^{*} to denote the conjugacy classes as in Theorem 3.18. Recall that $\hat{A}=\left\{a \in G: a^{*} \in A^{*}\right\}$ and $\hat{B}=\left\{b \in G: b^{*} \in B^{*}\right\}$. If Δ is balanced, then we fix C^{*} to denote the conjugacy class as in Theorem 4.1; again $\hat{C}=\{c \in G$: $\left.c^{*} \in C^{*}\right\}$.

If $\operatorname{diam}(\Delta)>4$, let $X^{*}=B^{*}$, while if Δ is balanced let $X^{*}=C^{*}$. We let $\mathbb{P}=\mathbb{P}_{X^{*}}, \mathbb{N}=\mathbb{N}_{X^{*}}, \overline{\mathbb{N}}=\overline{\mathbb{N}}_{X^{*}}, \mathbb{M}=\mathbb{M}_{X^{*}}$ and $U=U_{X^{*}}$. Note that by Remark 5.1, all the results of Sections 5 and 6 apply here.

In this section we further assume that G^{*} is a nonabelian finite simple group and that $[D: F]<\infty$. We draw the attention of the reader to Remarks 2.2 and 2.4.

Definitions and Notation. (1) $\hat{K}=\{a \in \mathbb{O} U \backslash N: N(a) \supseteq \mathbb{M}\}$.
(2) $K^{*}=\left\{a^{*}: a \in \hat{K}\right\}$.
(3) An element $a \in G \backslash N$ is a standard element if it satisfies the following condition: If $n \in N(a)$, then $U n \subseteq N(a)$.
(4) We denote by Φ the set of all standard elements in $G \backslash N$.
(7.1) (1) $G=\mathbb{O} N$.
(2) $(\mathbb{O} U) \cap N=U$.
(3) $\mathbb{O} U / U \simeq G^{*}$.
(4) $[G, N] \leq U$.

Proof. (1) follows from our assumption that G^{*} is simple and from 1.5. Let $n \in(\mathbb{O} U) \cap N$; then $n=a u$, for some $a \in \mathbb{O}$, so $\nu(n)=\nu(u)$. Since U is normal in $G, \nu(u) \in U$, by 1.4. Then by $6.7, n \in U$. Next, since $G=(\mathbb{O} U) N, G^{*}=G / N \simeq \mathbb{O} U /(\mathbb{O} U) \cap N=\mathbb{O} U / U$, by (2). Finally, (4) is from 6.8.
(7.2) Let $a, b \in G \backslash N$. Then
(1) Let $n \in N(a)$, then $a+n \in U n$.
(2) Let $n \in N(a)$, then $U m \subseteq N(a)$, for all $U m<U n$. Further if $a \in \Phi$, then also $U n \subseteq N(a)$.
(3) Let $n \in N \backslash N(a)$, then $U m \leq U n$, for all $m \in N(a)$. Further if $a \in \Phi$, then $U m<U n$, for all $m \in N(a)$.
(4) If $a \in \Phi$ and $b \in G \backslash N$, then $N(a) \subseteq N(b)$ or $N(b) \subseteq N(a)$.
(5) Let $n \in N$. Then $\mathbb{N} \subseteq N(n)$ if and only if $n \in \overline{\mathbb{N}}$ and $\mathbb{M} \subseteq N(n)$ if and only if $n \in U \cup \mathbb{N}$.

Proof. For (1), suppose $a+n=m \notin U n$. Note that as $-1 \in U,-n \in U n$ and hence $a=m-n \in U m+U n \subseteq N$, by 6.3.1, a contradiction.

For (2), assume $U m<U n$. By (1), $a=n+n u$, for some $u \in U$. Then $a+m=n+n u+m \in U m$, by 6.5 . Hence $m \in N(a)$. This proves the first part of (2) and the second part of (2) is obvious. Now (3) is an immediate consequence of (2).

Let $a \in \Phi$ and $b \in G \backslash N$ and suppose $N(b) \nsubseteq N(a)$. Let $n \in N(b) \backslash N(a)$; then by $(2), U m \subseteq N(b)$, for all $U m<U n$. By (3), if $m \in N(a)$, then $U m<U n$. Hence, $N(a) \subseteq N(b)$. This proves (4).

We now prove (5). Let $n \in \mathbb{N}$. Then $-n \notin N(n)$, by definition, and $-n \in \mathbb{N}$, thus $\mathbb{N} \nsubseteq N(n)$. Let $\bar{n} \in \overline{\mathbb{N}}$; then by $6.3, \mathbb{N} \subseteq N(n)$. This proves the first part of (5). The proof of the second part of (5) is similar.
(7.3) Let $a \in G \backslash N$. Then
(1) If $a \in \Phi$, then $N a \subseteq \Phi$.
(2) $a \in \Phi$ if and only if

For each $b \in N a$ such that $1 \in N(b), U \subseteq N(b)$.
In particular, if $a \notin \Phi$, then there exists $b \in N a$, with $N(b) \cap U \neq \emptyset$, but $U \nsubseteq N(b)$.
(3) If $a \in \Phi$, then $N(a)$ is a normal subset of G.
(4) Φ is a normal subset of G.

Proof. Suppose $a \in \Phi$. Let $b \in N a$ and $m \in N(b)$. Write $b=s a$, $s \in N$. Then $s^{-1} m \in N(a)$. Let $u \in U$. Since $a \in \Phi, s^{-1} m u \in N(a)$, so that $m u \in N(s a)=N(b)$. Thus $U m \subseteq N(b)$ as asserted.

For (2), note that (1) implies that if $a \in \Phi$, then (*) holds. So assume (*) holds. Let $m \in N(a)$. Then $1 \in N\left(m^{-1} a\right)$, so by $(*), U \subseteq N\left(m^{-1} a\right)$. Hence $U m \subseteq N(a)$ and $a \in \Phi$.

Next let $a \in \Phi, n \in N(a)$ and $g \in G$. By 7.1.4, $n^{g} \in U n \subseteq N(a)$, so $N(a)$ is a normal subset of G. (4) follows from (3) since for $a \in \Phi$ and $g \in G$, $N\left(a^{g}\right)=g^{-1} N(a) g=N(a) ;$ so $a^{g} \in \Phi$.
(7.4) (1) If $\operatorname{diam}(\Delta)>4$, then $\hat{B} \subseteq \Phi$.
(2) If Δ is balanced, then $\hat{C} \subseteq \Phi$.

Proof. (1) and (2) follow from the definition of U and from 7.3.2.
(7.5) Let $a \in \Phi$. Then
(1) For all $u \in U, N(u a)=N(a)=N(a u)$.
(2) If $n \in N \backslash N(a)$, then $N(a+n) \supseteq N(a)$.
(3) Let $x, y \in(\mathbb{O} U) \cap N a$. Then $N(x)=N(y)$.

Proof. For (1) note that $N(u a)=u N(a) \subseteq N(a)$, as $a \in \Phi$. Similarly $u^{-1} N(a) \subseteq N(a)$, so $N(a) \subseteq u N(a)=N(u a)$. This proves the first part of (1) and the proof of the second part of (1) is the same. For (2), let $m \in N(a)$; then, by 7.2.3, $U m<U n$, and by 6.3.2, $a+n+m=a+u m$, for some $u \in U$. Then, since $a \in \Phi, a+u m \in N$, so that $m \in N(a+n)$.

Next we prove (3): notice that $x y^{-1} \in(\mathbb{O} U) \cap N$. Hence, by 7.1.2, $x y^{-1}$ $\in U$, so (3) follows from (1).
(7.6) Let $a \in G \backslash N$ and $m \in N$. Suppose $U m \subseteq N(x)$, for some $x \in$ $\hat{C}_{a^{*}} \cap(\mathbb{O} U)$; then $U m \subseteq N(z)$, for all $z \in \hat{C}_{a^{*}} \cap(\mathbb{O} U)$.

Proof. Recall that $C_{a^{*}}$ is the conjugacy class of a^{*} in G^{*} and $\hat{C}_{a^{*}}=\{c \in$ $\left.G: c^{*} \in C_{a^{*}}\right\}$. First we claim that

$$
\begin{equation*}
U m \subseteq N\left(x^{g}\right), \text { for all } g \in G . \tag{*}
\end{equation*}
$$

Let $g \in G$. Then, by 1.8.2, $N\left(x^{g}\right)=g^{-1} N(x) g$. Hence $N\left(x^{g}\right) \supseteq g^{-1}(U m) g=$ $U m^{g}=U m$, where the last equality follows from 7.1.4.

Let $z \in \hat{C}_{a^{*}} \cap(\mathbb{O} U)$. Then there exists $g \in G$, such that $z^{*}=\left(x^{g}\right)^{*}$. By $(*), U m \subseteq N\left(x^{g}\right)$. Hence, we may assume that $N x=N z$. But then $x z^{-1} \in N \cap(\mathbb{O} U)=U$ (see 7.1.2). Hence, there exists $u \in U$ such that $z=u x$. Then $N(z)=u N(x)$, so that $N(z) \supseteq u(U m)=U m$, as asserted.
(7.7) Let $a, b \in G \backslash N$. Then
(1) If $U \subseteq N(a) \cap N(b)$, then $U \subseteq N(a b)$.
(2) If $U \cap N(a) \neq \emptyset$ and $\mathbb{M} \subseteq N(b)$, then $\mathbb{M} \subseteq N(a b)$.
(3) If $U \subseteq N(a) \cap N(b)$, then $U \subseteq N(a+b)$.
(4) If $\mathbb{M} \subseteq N(a) \cap N(b)$, then $\mathbb{M} \subseteq N(a+b)$.
(5) Suppose $a \in \mathbb{O} U \backslash N$ and let $\ell>1$, such that $a^{\ell} \in N$. Then $a^{\ell} \in U$.
(6) Suppose $a \in \mathbb{O} U \backslash N$. Then $U \nsubseteq N(a)$. In particular, if $a \in \Phi$, then $N(a) \subseteq \mathbb{M}$.

Proof. For (1), let $u \in U$. Then $a b+u=a b-b+b+u=(a-1) b+(b+u)$. As $-1 \in U, a-1 \in U$, by 7.2.1. Further by $7.2 .1, b+u \in U$, write $v=a-1$ and $w=b+u$. Then $a b+u=v b+w=v\left(b+v^{-1} w\right) \in N$. Hence $u \in N(a b)$.

For (2), let $u \in U \cap N(a)$ and let $m \in \mathbb{M}$. Then $a b+m=a b+u b+(m-u b)=$ $(a+u) b+(m-u b)$. Note now that by 7.2.1, $a+u=v$ and $m-u b=w m$, for some $v, w \in U$. Hence $a b+m=v b+w m=v\left(b+v^{-1} w m\right) \in N$, where the last equality is because $\mathbb{M} \subseteq N(b)$ and because $\left(v^{-1} w\right) \mathbb{M}=\mathbb{M}$.

For (3), let $u \in U$; then $(a+b)+u=a+(b+u)$. But since $u \in N(b)$, $b+u=v \in U$, by 7.2.1. Hence $(a+b)+u=a+v \in N$. Thus $U \subseteq N(a+b)$. The proof of (4) is similar.

Assume the hypotheses of (5). Since $a \in \mathbb{O} U, \nu(a) \in U$, so $\nu\left(a^{\ell}\right) \in U$. Hence by 6.7, $a^{\ell} \in U$. Let $a \in \mathbb{O} U \backslash N$. Since G^{*} is finite there exists $r \geq 2$, with $a^{r} \in N$. By (5), $a^{r} \in U$. Hence $a^{-1}=u a^{r-1}$, for some $u \in U$. Suppose $U \subseteq N(a)$. Then by $(1), U \subseteq N\left(a^{r-1}\right)$, so $U \subseteq N\left(a^{-1}\right)$. In particular $1 \in N(a) \cap N\left(a^{-1}\right)$ contradicting 1.8.4. The second part of (6) follows from the first part of (6) and by 7.2.2.
(7.8) Let $s \in \mathbb{M}$ and suppose that

$$
\begin{equation*}
s^{2} \in N(z), \text { for all } z \in \mathbb{O} U \backslash N \tag{*}
\end{equation*}
$$

Then $s \in N(z)$, for all $z \in \mathbb{O} U \backslash N$.

Proof. Assume that there exists $x \in \mathbb{O} U \backslash N$, such that $s \notin N(x)$. Set $y:=-s^{-1} x$. Then $-1 \notin N(y)$. First we claim that
$-1 \in N\left(y y^{g}\right)$, for all $g \in G$.
This is because $y y^{g}=\left(s^{-1} x\right)\left(s^{-1}\right)^{g} x^{g}=s^{-2} x x^{g} u$, for some $u \in U$, where the last equality follows from 7.1.4. Since $x \in \mathbb{O} U,-x x^{g} u \in \mathbb{O} U$, so, if $-x x^{g} u \notin N$, then, by hypothesis $(*), s^{2} \in N\left(-x x^{g} u\right)$. If $-x x^{g} u \in N$, then $-x x^{g} u \in(\mathbb{O} U) \cap N=U$ (see 7.1.2). Since $s \in \mathbb{M}, s^{2} \in \mathbb{M}$, by 5.5.4, so, by 7.2.5, $s^{2} \in N\left(-x x^{g} u\right)$ in this case too. Now in any case $s^{2} \in N\left(-x x^{g} u\right)$, and it follows that $-1 \in N\left(y y^{g}\right)$.

Now, taking $a=y=b$ in 2.10, we get from 2.10 and $(* *)$, that G^{*} is not simple, a contradiction.

8. Some properties of \hat{K} and the proof that $\hat{K} \neq \emptyset$

In this section we continue the notation and hypotheses of Section 7 recalling from there that we defined

$$
\hat{K}=\{a \in \mathbb{O} U \backslash N: N(a) \supseteq \mathbb{M}\} .
$$

(8.1) (1) \hat{K} is a normal subset of G.
(2) If $a \in \hat{K}$, then $U a \subseteq \hat{K}$.

Proof. (1) follows immediately from the fact that \mathbb{M} and $\mathbb{O} U$ are normal subsets of G and from 1.8.2. (2) follows from the fact that $u \mathbb{M}=\mathbb{M}$, from 1.8.1 and the definition of \hat{K}.
(8.2) Suppose there exists $a \in \mathbb{O} U \backslash N$ such that $N(a) \cap U \neq \emptyset$. Then
(1) For all $b \in \hat{K}$ such that $a b \in G \backslash N, a b \in \hat{K}$.
(2) $\hat{K}=\mathbb{O} U \backslash N$.

Proof. First note that by 7.2.2, $\mathbb{M} \subseteq N(a)$, so that $a \in \hat{K}$. Next, for (1), let $b \in \hat{K}$. Then $N(b) \supseteq \mathbb{M}$. By 7.7.2, $\mathbb{M} \subseteq N(a b)$, and clearly $a b \in \mathbb{O} U$, hence $a b \in \hat{K}$.

Next, since \hat{K} is a normal subset of $G, K^{*} \cup\left\{1^{*}\right\}$ is a normal subset of G^{*}. Further note that by (1), $a^{*}\left(K^{*} \cup\left\{1^{*}\right\}\right) \subseteq K^{*} \cup\left\{1^{*}\right\}$. Hence, by 1.9, $K^{*} \cup\left\{1^{*}\right\}=G^{*}$. Let $b \in \mathbb{O} U \backslash N$. Then $b^{*}=k^{*}$, for some $k \in \hat{K}$, and then $b k^{-1} \in(\mathbb{O} U) \cap N \leq U$. Hence $b=u k$, for some $u \in U$, so $b \in \hat{K}$. It follows that $\hat{K}=\mathbb{O} U \backslash N$.
(8.3) Assume that $\operatorname{diam}(\Delta)>4$ and that for all $m \in \mathbb{M}$, there exists $z \in(\hat{A} \cup \hat{B}) \cap(\mathbb{O} U)$ such that $U m \subseteq N(z)$. Then $\hat{K} \neq \emptyset$.

Proof. Let $\mathbb{V}=\bigcap_{x \in \hat{A} \cap \cap U} N(x)$ and $\mathbb{W}=\bigcap_{y \in \hat{B} \cap \mathbb{}} N(y)$. Let $m \in \mathbb{V}$, $u \in U$ and $x \in \hat{A} \cap(\mathbb{O} U)$. Then $u^{-1} x \in \hat{A} \cap(\mathbb{O} U)$, so $m \in N\left(u^{-1} x\right)$. Thus $u m \in N(x)$ and $U m \subseteq N(x)$. As this holds for all $x \in \hat{A} \cap(\mathbb{O} U), U m \subseteq \mathbb{V}$. Similarly, $U m \subseteq \mathbb{W}$, for all $m \in \mathbb{W}$. Next, if $U m \subseteq \mathbb{V}$ and $U s \leq U m$, for some $s \in N$, then, by $7.2 .2, U s \subseteq \mathbb{V}$. Similarly if $U m \subseteq \mathbb{W}$ and $U s \leq U m$, for some $s \in N$, then $U s \subseteq \mathbb{W}$.

Next we claim that either $\mathbb{V} \subseteq \mathbb{W}$, or $\mathbb{W} \subseteq \mathbb{V}$. Suppose $\mathbb{V} \nsubseteq \mathbb{W}$. Let $U m \subseteq \mathbb{V}$, such that $U m \cap \mathbb{W}=\emptyset$. Then, by the previous paragraph of the proof, $U s<U m$, for all $U s \subseteq \mathbb{W}$. Hence, by the previous paragraph of the proof, $U s \subseteq \mathbb{V}$ and hence $\mathbb{W} \subseteq \mathbb{V}$.

Finally, by 7.6 , and by the hypothesis of the lemma, $\mathbb{M} \subseteq \mathbb{V} \cup \mathbb{W}$, so, by the second paragraph of the proof $\mathbb{M} \subseteq \mathbb{V}$, or $\mathbb{M} \subseteq \mathbb{W}$. Hence either $\hat{A} \cap(\mathbb{O} U) \subseteq \hat{K}$, or $\hat{B} \cap(\mathbb{O} U) \subseteq \hat{K}$ and $\hat{K} \neq \emptyset$.
(8.4) Theorem. $\hat{K} \neq \emptyset$.

Proof. Suppose $\hat{K}=\emptyset$. By 8.2, we may assume

$$
\begin{equation*}
U \cap N(x)=\emptyset, \text { for all } x \in \mathbb{O} U \backslash N \tag{*}
\end{equation*}
$$

Case 1. $\operatorname{diam}(\Delta)>4$. We shall show that for all $m \in \mathbb{M}$, there exists $z \in(\hat{A} \cup \hat{B}) \cap(\mathbb{O} U)$ such that $U m \subseteq N(z)$. Then, by $8.3, \hat{K} \neq \emptyset$, a contradiction. Let $m \in \mathbb{M}$. Since $m^{-1} \in \overline{\mathbb{N}}$, there exists $b \in \mathbb{P}$, such that $m^{-1} \notin N(b)$. By 3.18.2, there exists $a \in \mathbb{P}_{A^{*}}$ such that $\mathrm{N}(a) \subseteq N(b)$ and $\mathrm{d}\left(a^{*}, b^{*}\right)>4$. Note that by $3.9, \operatorname{In}\left(a^{*}, b^{*}\right)$. Further, since $b \in \Phi$, $-m^{-1} \notin N(b)$ (see 7.2.2), and hence $-m^{-1} \notin N(a)$. Let $x \in N a \cap(\mathbb{O} U)$ and $y \in N b \cap(\mathbb{O} U)$ and suppose that $U m \nsubseteq N(x)$ and $U m \nsubseteq N(y)$. Since $y \in \Phi$, $m \notin N(y)$ and, after replacing x by $u x$, for some $u \in U$, we may assume that $m \notin N(x)$.

Suppose first that $N(y) \supseteq N(x)$. Let $a^{\prime}=m a$. Notice that $m \in N\left(a^{\prime}\right)$ and $-1 \notin N\left(a^{\prime}\right)$. Write $a^{\prime}=x n, n \in N$. Notice that $m n^{-1} \in N(x)$, so $m n^{-1} \in N(y)$. Thus $m \in N(y n)$. But $y \in \Phi$, so $n^{-1} N(y) n=N(y)$ (see 7.3.3); thus $m \in N(n y)$. Note now that by $(*)$, all the hypotheses of 2.11 are met, for x, y, m and n, so by $2.11, \mathrm{~d}\left(x^{*}, y^{*}\right) \leq 4$, contradicting $\mathrm{d}\left(a^{*}, b^{*}\right)>4$.

Suppose next that $N(x) \supseteq N(y)$. Let $b^{\prime}=m b$. Notice that $m \in N\left(b^{\prime}\right)$ and $-1 \notin N\left(b^{\prime}\right)$. Write $b^{\prime}=n y, n \in N$. Notice that $n^{-1} m \in N(y)$ and since $y \in \Phi$, $m n^{-1} \in N(y)$. Thus $m n^{-1} \in N(x)$ and hence, $m \in N(x n)$. Again we see that by $(*)$, all the hypotheses of 2.11 are met, for x, y, m and n; so by 2.11 , $\mathrm{d}\left(x^{*}, y^{*}\right) \leq 4$, a contradiction. Hence, either $U m \subseteq N(x)$, or $U m \subseteq N(y)$. This completes the proof of the theorem, in the case when $\operatorname{diam}(\Delta)>4$.

Case 2. Δ is balanced. We use Theorem 4.1. First note that by ($*$) and 3.6.2, we are in case $(2 \mathrm{~b})$ of Theorem 4.1. Let $m \in \mathbb{M}$. By Theorem 4.1, there exists $z \in \hat{C}$ such that $m \in N\left(z_{1}\right)$, for all $z_{1} \in \mathbb{O}_{z^{*}}$. By $(*), N z \cap(\mathbb{O} U) \subseteq \mathbb{O}_{z^{*}}$; thus $m \in N\left(z_{1}\right)$, for some $z_{1} \in N z \cap(\mathbb{O} U)$. Since $z_{1} \in \Phi, U m \subseteq N\left(z_{1}\right)$ and hence, by $7.6, U m \subseteq N(x)$, for all $x \in \hat{C} \cap(\mathbb{O} U)$. As this holds for all $m \in \mathbb{M}$, $\hat{C} \cap(\mathbb{O} U) \subseteq \hat{K}$ and $\hat{K} \neq \emptyset$.

9. The proof that $\hat{K}=\mathbb{O} U \backslash N$

In this section we continue the notation and hypotheses of Section 7. Note that by Theorem 8.4, $\hat{K} \neq \emptyset$. The purpose of this section is to prove
(9.1) Theorem. $\hat{K}=\mathbb{O} U \backslash N$.

In view of 8.2, we may (and do) assume that $N(a) \cap U=\emptyset$, for all $a \in \mathbb{O} U \backslash N$.
(9.2) Suppose that for all $m \in \mathbb{M}$ there exists $s \in \mathbb{M}$, with $U m<U s$. Then (1) Let $a_{1}, b_{1} \in \hat{K}$ such that $a_{1} b_{1} \in G \backslash N$. Then $a_{1} b_{1} \in \hat{K}$.
(2) $\hat{K}=\mathbb{O} U \backslash N$.

Proof. For (1), let $m \in \mathbb{M}$ and let $s \in \mathbb{M}$, with $U m<U s$. Then

$$
a_{1} b_{1}+m=a_{1} b_{1}-a_{1} s+\left(a_{1} s+m\right)=a_{1}\left(b_{1}-s\right)+\left(a_{1} s+m\right) .
$$

By 7.2.1, $b_{1}-s=u s$, for some $u \in U$. Next $a_{1} s+m=\left(a_{1}+m s^{-1}\right) s$. Note that as $U m<U s, m s^{-1} \in \mathbb{M}$, and hence $a_{1}+m s^{-1} \in N$. Hence $a_{1} s+m \in N$, so by 7.2.1, $a_{1} s+m=v m$, for some $v \in U$. Hence we get that $a_{1} b_{1}+m=a_{1}(u s)+v m$ and as above $a_{1}(u s)+v m \in N$, so $m \in N\left(a_{1} b_{1}\right)$. Hence $N\left(a_{1} b_{1}\right)=\mathbb{M}$. Since $a_{1} b_{1} \in \mathbb{O} U \backslash N, a_{1} b_{1} \in \hat{K}$.

The proof of (2) is exactly like the proof of 8.2.2; all we need is the property established in (1).

Notation. We fix the letter m to denote an element $m \in \mathbb{M}$ such that $U s \leq U m$, for all $s \in \mathbb{M}$ (see 9.2).
(9.3) (1) Let $k, \ell \in \mathbb{Z}$ such that $0<k \leq \ell$. Suppose $x, y \in \mathbb{O} U \backslash N$ such that $N(x) \supseteq U m^{k}$ and $N(y) \supseteq U m^{\ell}$. Then $N(x y) \supseteq U m^{k+\ell}$.
(2) There exists $t>0$, such that for all $z \in \mathbb{O} U \backslash N, N(z) \supseteq U m^{t}$.

Proof. For (1), we have

$$
\begin{aligned}
x y+m^{k+\ell} & =x y+x m^{\ell}-x m^{\ell}+m^{k+\ell}=u x m^{\ell}-x m^{\ell}+m^{k+\ell} \\
& =\left(u x-x+m^{k}\right) m^{\ell}=\left(u x+v m^{k}\right) m^{\ell} \in N .
\end{aligned}
$$

Here, $u, v \in U$ and we used 7.2.1 for the equalities.
For (2), let $x \in \hat{K}$. Let X^{*} be the conjugacy class of x^{*} in G^{*}. Let $\hat{X}=\left\{x \in G \backslash N: x^{*} \in X^{*}\right\}$. Note that by $7.6, \hat{X} \cap \mathbb{O} U \subseteq \hat{K}$. Now $G^{*}=\left\langle X^{*}\right\rangle$, and every element $g^{*} \in G^{*}$ can be written as a product of elements in X^{*}. For $g^{*} \in G^{*}$, let $\ell\left(g^{*}\right)$ be the minimal length of a word in the alphabet X^{*} which equals g^{*}. Let $t=\max \left\{\ell\left(g^{*}\right): g^{*} \in G^{*}\right\}$. Note that every element in $\mathbb{O} U \backslash N$
can be written as a word of length at most t in the alphabet $\hat{X} \cap(\mathbb{O} U)$. Hence, by (1), as $U m \subseteq N(y)$, for $y \in \hat{X} \cap \mathbb{O} U, U m^{t} \subseteq N(z)$, for all $z \in \mathbb{O} U \backslash N$.

We now complete the proof of Theorem 9.1. Suppose $\hat{K} \neq \mathbb{O} U \backslash N$. Let $1 \leq t \in \mathbb{Z}$, minimal subject to $U m^{t} \subseteq N(z)$, for all $z \in \mathbb{O} U \backslash N$. Since $\hat{K} \neq \mathbb{O} U \backslash N, t \geq 2$. Since there exists $y \in \mathbb{O} U \backslash N$ such that $U m^{t-1} \nsubseteq N(y)$, we may assume without loss of generality that $m^{t-1} \notin N(y)$. Set $s=m^{t-1}$. Notice that $s^{2}=m^{2(t-1)}$, and as $2(t-1) \geq t$, we conclude that $s^{2} \in N(z)$, for all $z \in \mathbb{O} U \backslash N$. But now, by 7.8, $s \in N(z)$, for all $z \in \mathbb{O} U \backslash N$. This implies that $U s \subseteq N(z)$, for all $z \in \mathbb{O} U \backslash N$, a contradiction.

10. The construction of the local ring R and the proof of Theorem A

In this section we continue the hypotheses of Section 7. In addition, in view of Theorem 9.1, we know that $\hat{K}=\mathbb{O} U \backslash N$. We will construct a local ring R and finally prove Theorem A.
(10.1) Let $a \in G$. Then
(1) If $a \notin N$, then $\mathbb{M} \subseteq N(a)$ if and only if $a=n a_{1}$, for some $n \in U \cup \overline{\mathbb{N}}$ and some $a_{1} \in \hat{K}$.
(2) If $a \notin N$, then $U \subseteq N(a)$ if and only if $a=\bar{n} a_{1}$, for some $\bar{n} \in \overline{\mathbb{N}}$ and some $a_{1} \in \hat{K}$.
(3) If $a \in N$, then $\mathbb{M} \subseteq N(a)$, if and only if $a \in U \cup \overline{\mathbb{N}}$.
(4) If $a \in N$, then $\mathbb{N} \subseteq N(a)$ if and only if $a \in \overline{\mathbb{N}}$.

Proof. Note first that if $a \notin N$, then by Theorem 9.1, and by 7.1.1, $a=n a_{1}$, for some $n \in N$ and some $a_{1} \in \hat{K}$.

Suppose $a \notin N$. Write $a=n a_{1}$, with $n \in N$ and $a_{1} \in \hat{K}$. Now suppose that $\mathbb{M} \subseteq N(a)$ and let $u \in U$ such that $u \notin N\left(a_{1}\right)$ (see 7.7.6). Then $a+n u=$ $n\left(a_{1}+u\right) \notin N$. Hence $n u \notin \mathbb{M}$, so $n u \in U \cup \overline{\mathbb{N}}$. It follows that $n \in U \cup \overline{\mathbb{N}}$. Suppose that $U \subseteq N(a)$; then $U n^{-1} \subseteq N\left(a_{1}\right)$. But by 7.7.6, $U \nsubseteq N\left(a_{1}\right)$ and hence, by $7.2 .2, n^{-1} \in \mathbb{M}$, so that $n \in \overline{\mathbb{N}}$.

Conversely, let $a_{1} \in \hat{K}$ and $n \in U \cup \overline{\mathbb{N}}$. If $n \in U$, then $n a_{1} \in \hat{K}$, so that $\mathbb{M} \subseteq N\left(n a_{1}\right)$. If $n \in \overline{\mathbb{N}}$, then for all $u \in U, n a_{1}+u=n\left(a_{1}+n^{-1} u\right)$, and as $n^{-1} u \in \mathbb{M}, n a_{1}+u \in N$. Hence $U \subseteq N\left(n a_{1}\right)$. This completes the proof of (1) and (2). (3) and (4) are as in 7.2.5.

Definition. We define

$$
\begin{aligned}
R & =\{x \in D: x=0, \text { or } \mathbb{M} \subseteq N(x)\}, \\
I & =\{r \in R: r=0 \text { or } U \subseteq N(r)\} .
\end{aligned}
$$

(10.2) (1) $R \cap N=U \cup \overline{\mathbb{N}}$.
(2) $R \cap(G \backslash N)=\{n k: n \in U \cup \overline{\mathbb{N}}$ and $k \in \hat{K}\}$.
(3) R is a subring of D.
(4) I is the unique maximal ideal of R.
(5) $R \backslash I=\mathbb{O} U$ is the group of unites of R.

Proof. (1) and (2) are as in 10.1.3 and 10.1.1 respectively. Let $x, y \in R^{\#}$. To show $x+y \in R$, suppose $x \neq-y$. Assume first that $x, y \in N$. If $x+y \in N$, then by $6.3,6.4$ and (1), $x+y \in U \cup \overline{\mathbb{N}}$, so $x+y \in R$. Suppose $x+y \notin N$. Then since $-x \in N(x+y)$, and $-x \in U \cup \overline{\mathbb{N}}$, we get from 7.2 .2 that $\mathbb{M} \subseteq N(x+y)$, so $x+y \in R$.

Now assume $x \notin N$. If $y \in N(x)$, then $x+y \in U y$, by 7.2.1, and as $y \in U \cup \overline{\mathbb{N}}, U y \subseteq U \cup \overline{\mathbb{N}}$, so $x+y \in R$. If $y \in N \backslash N(x)$, then since $y \in U \cup \overline{\mathbb{N}}$, $y+m \in \mathbb{M}$, for all $m \in \mathbb{M}$ and hence $x+y+m \in N$, for all $m \in \mathbb{M}$. Hence $\mathbb{M} \subseteq N(x+y)$, so $x+y \in R$.

Suppose $\mathrm{x}, y \notin N$; then by $7.7 .4, x+y \in R$. Let $x, y \in R^{\#}$. It is easy to see that $x y \in R$ by (1) and (2).

The proof of (4) is similar to the proof of (3) from (1), (2), 10.1 and 7.7.3, and we omit the details. Let $r \in R \backslash I$. Then $\mathbb{M} \subseteq N(r) \nsupseteq U$, so by 10.1.1 and 10.1.2, if $r \notin N$, then $r=u k$, for some $k \in \hat{K}$ and $u \in U$; so $r \in \mathbb{O} U$, while if $r \in N$, then by 10.1.3 and 10.1.4, $r \in U$ which shows that $R \backslash I \subseteq \mathbb{O} U$. The inclusion $\mathbb{O} U \subseteq R \backslash I$ follows from the fact that $\mathbb{O} U \subseteq R$ and from 7.7.6. This proves (5).

Let

$$
\phi: R \rightarrow R / I
$$

be the canonical homomorphism. Let

$$
\psi: \mathbb{O} U \rightarrow(R / I)^{\#}
$$

be the multiplicative group homomorphism induced by ϕ.
(10.3) (1) R / I is a division algebra.
(2) ψ is surjective and $\operatorname{ker} \psi \leq U$.
(3) R / I is infinite.

Proof. (1) and the first part of (2) are obvious. Let $r \in \operatorname{ker} \psi$. Then $r-1 \in I$. Hence $r-1=a \in I$. But then $r=a+1$, and as $a \in I, a+1 \in N$; thus $r \in N$. It follows that $r \in(\mathbb{O} U) \cap N=U$, by 7.1.2. Next we prove (3). Since $\operatorname{ker} \psi \leq U$ and since, by $7.1 .3, \mathbb{O} U / U \simeq G^{*}$, we see that G^{*} is a homomorphic image of $\mathbb{O} U / \operatorname{ker} \psi(\mathbb{O} U / U \simeq(\mathbb{O} U / \operatorname{ker} \psi) /(U / \operatorname{ker} \psi))$. Hence G^{*} is a homomorphic image of $(R / I)^{\#}$. But if R / I is finite, then R / I is a field, which is impossible. Hence R / I is infinite.
(10.4)

$$
\mathbb{O} U \subseteq U+U
$$

Proof. We apply Theorem 1.6 to the division ring R / I. Since $\psi(U)$ is a subgroup of finite index in $(R / I)^{\text {\# }}$, Theorem 1.6 implies that for all $r \in R \backslash I$, there are $u_{1}, u_{2} \in U$ such that $r+I=u_{1}-u_{2}+I$. Hence $r=u_{1}-u_{2}+a$, with $a \in I$. Note now that by 6.3.2, 7.2.1, 10.1.4 and the definition of I, $-u_{2}+a \in U$. Hence for all $r \in R \backslash I, r=u+v$, with $u, v \in U$. But by 10.2.5, $R \backslash I=\mathbb{O} U$; so the proof is complete.

We can now reach the final contradiction and complete the proof of Theorem A. Note that by 7.3 .1 and $7.4, \hat{K} \cap \Phi \neq \emptyset$ and by 7.7 .6 , if $k \in \hat{K} \cap \Phi$, then $N(k)=\mathbb{M}$. Let $k \in \hat{K} \cap \Phi$. By 10.4, there are $u, v \in U$, with $k=u+v$. Thus, $-u \in N(k)$. But $N(k)=\mathbb{M}$, a contradiction.

Ben-Gurion University Beer-Sheva 84105, ISRAEL
E-mail address: yoavs@math.bgu.ac.il

References

[1] S. Amitsur, Highlights in the history of finite-dimensional central division algebras, in Ring Theory 1989, Israel Math. Conf. Proc., Vol. 1, The Weizmann Science Press of Israel, Jerusalem (1989), 404-430.
[2] V. Bergelson and D. B. Shapiro, Multiplicative subgroups of finite index in a ring, Proc. AMS 116 (4) (1992), 885-896.
[3] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Nauka Publishers, Moscow, 1991 (English translation: Pure and Applied Mathematics series, N139, Academic Press, 1993).
[4] A. Potapchik and A. Rapinchuk, Normal subgroups of $\mathrm{SL}_{1, D}$ and the classification of finite simple groups, Proc. Indian Acad. Sci. (Math. Sci.) 106 No. 4, (1996), 329-368.
[5] L. H. Rowen, Ring Theory, Volume II, Academic Press (1988).
[6] Y. Segev and G. M. Seitz, Anisotropic groups of type A_{n} and the commuting graph of finite simple groups, preprint.
[7] G. Turnwald, Multiplicative subgroups of finite index in a division ring, Proc. AMS 120 (2) (1994), 377-381.

[^0]: *This work was partially supported by BSF 92-003200 and by grant no. 6782-1-95 from the Israeli Ministry of Science and Art.

