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THE CONTINUOUS DUAL OF THE SEQUENCE SPACE lp(∆n),
(1 ≤ p ≤ ∞, n ∈ N)

M. IMANINEZHAD and M. MIRI

Abstract. The space lp(∆m) consisting of all sequences whose mth order differ-
ences are p-absolutely summable was recently studied by Altay [On the space of
p-summable difference sequences of order m, (1 ≤ p < ∞), Stud. Sci. Math. Hun-
gar. 43(4) (2006), 387–402]. Following Altay [2], we have found the continuous
dual of the spaces l1(∆n) and lP (∆n). We have also determined the norm of the
operator ∆n acting from l1 to itself and from l∞ to itself, and proved that ∆n is a
bounded linear operator on the space lp(∆n).

1. Preliminaries, Definitions and Notations

Let ω denote the space of all complex-valued sequences, i.e. ω = CN where N =
{0, 1, 2, 3, . . .}. Any vector subspace of ω which contains φ, the set of all finitely
non-zero sequences, is called a sequence space. The continuous dual of a sequence
space λ which is denoted by λ∗ is the set of all bounded linear functionals on λ.
Suppose ∆ be the difference operator with matrix representation

∆ =




1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
0 −1 1 0 0 0 · · ·
0 0 −1 1 0 0 · · ·
0 0 0 −1 1 0 · · ·
...

...
...

...
...

...
. . .




and suppose x = (xk)∞k=0 ∈ ω, then ∆x = (xk − xk−1)∞k=0 and ∆nx = ∆(∆n−1x)
for all n ≥ 2 where any x with negative index is zero. For every n ∈ N \ {0},
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∆n has a triangle matrix representation, so it is invertible and
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∆−n =




1 0 0 0 0 0 · · ·
(n
1 ) 1 0 0 0 0 · · ·

(n+1
2 ) (n

1 ) 1 0 0 0 · · ·
(n+2

3 ) (n+1
2 ) (n

1 ) 1 0 0 · · ·
(n+3

4 ) (n+2
3 ) (n+1

2 ) (n
1 ) 1 0 · · ·

...
...

...
...

...
...

. . .




If a normed sequence space λ contains a sequence (bn) with the property that for
every x ∈ λ, there is a unique sequence of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + · · ·+ αnbn)‖ = 0,(1)

then (bn) is called a Schauder basis for λ. The series
∑

αkbk which has the sum x
is then called the expansion of x with respect to (bn) and written as x =

∑
αkbk.

2. The space lp(∆n)

Now we introduce an apparently new sequence space and denote it by lp(∆n) like
Kizmaz who defined and studied l∞(∆), c(∆) and c0(∆).

lp(∆n) = {x ∈ ω : ∆nx ∈ lp}(2)

‖x‖lp(∆n) = ‖∆nx‖lp(3)

Trivially lp(∆) = bvp.

Theorem 2.1. lp(∆n) is a Banach space.

Proof. Since it is a routine verification to show that lp(∆n) is a normed space
with the norm defined by (3) and coordinate-wise addition and scalar multipli-
cation we omit the details. To prove the theorem, we show that every Chauchy
sequence in lp(∆n) has a limit. Suppose (x(m))∞m=0 is a Chauchy sequence in
lp(∆n). So
(4)

(∀ε > 0)(∃N ∈ N)(∀r, s ≥ N)(‖∆nx(r) −∆nx(s)‖lp = ‖x(r) − x(s)‖lp(∆n) < ε)
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So the sequence (∆nx(m))∞m=0 in lp is Chauchy and since lp is Banach, there exists
x ∈ lp such that

‖∆nx(m) − x‖lp → 0 as m →∞(5)

But x = (∆n)(∆n)−1x, so ‖∆nx(m)−∆n(∆n)−1x‖lp =‖x(m)−(∆n)−1x‖lp(∆n) → 0
as m →∞. Now, since (∆n)−1x ∈ lp(∆n) we are done. ¤

Theorem 2.2. lp(∆n) is isometrically isomorphic to lp.

Proof. Let

T : lp(∆n) → lp(6)

defined by T (x) = ∆nx. Since T is bijective and norm preserving, we are done. ¤

Theorem 2.3. Except the case p = 2, the space lp(∆n) is not an inner product
space and hence not a Hilbert space for 1 ≤ p < ∞.

Proof. First we show that l2(∆n) is a Hilbert space. It suffices to show that
l2(∆n) has an inner product. Since

‖x‖l2(∆n) = ‖∆nx‖l2 =< ∆nx, ∆nx >
1
2 ,(7)

l2(∆n) is a Hilbert space. Now, we show that if p 6= 2, then lp(∆n) is not Hilbert.
Let

u = (∆n−1)−1(1, 2, 2, 2, · · · )
e = (∆n−1)−1(1, 0, 0, 0, · · · ).

Then ‖u‖lp(∆n) = ‖e‖lp(∆n) = 2
1
p and ‖u + e‖lp(∆n) = ‖u − e‖lp(∆n) = 2. So the

parallelogram equality does not satisfy. Hence the space lp(∆n) with p 6= 2 is not
a Hilbert space. ¤

Theorem 2.4. If 1 ≤ p < q < ∞, then lp(∆n) ⊆ lq(∆n) ⊆ l∞(∆n).

Proof. We only point out that if 1 ≤ p < q < ∞, then lp ⊆ lq ⊆ l∞. ¤

Theorem 2.5. lp ⊆ lp(∆) ⊆ lp(∆2) ⊆ lp(∆3) ⊆ · · ·
Proof. Since lp ⊆ bvp, it is trivial that lp ⊆ lp(∆). Now, if x ∈ lp(∆n), then

∆nx ∈ lp ⊆ lp(∆). So

∆nx ∈ lp(∆) ⇒ ∆(∆nx) ∈ lp ⇒ ∆n+1x ∈ lp ⇒ x ∈ lp(∆n+1).

¤

Theorem 2.6. ‖x‖lp(∆n) ≤ 2n‖x‖lp

Proof. Since ‖x‖lp(∆) = ‖x‖bvp ≤ 2‖x‖lp , ‖x‖lp(∆2) ≤ 2‖x‖lp(∆) ≤ 2 · 2 · ‖x‖lp =
22‖x‖lp . Now by induction, we are done. ¤
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3. Schauder basis for space lp(∆n)

Suppose ek is a sequence whose only nonzero term is 1 in the (k + 1)th place.
The sequence (∆−nek)∞k=0 is a sequence of elements of lp(∆n) since for all k ∈ N,
ek ∈ lp. We assert that this sequence is a Schauder basis for lp(∆n). Suppose
x ∈ lp(∆n), x[m] =

∑m
k=0 (∆nx)k(∆−nek) =

∑m
k=0 ∆−n((∆nx)kek). Then since

x ∈ lp(∆n), we have ∆nx ∈ lp such that

( ∞∑

i=0

|(∆nx)i|p
) 1

p

= s < ∞(8)

⇒(∀ε > 0)(∃m0 ∈ N)

( ∞∑

i=m

|(∆nx)i|p
) 1

p

<
ε

2
for all m ≥ m0(9)

⇒‖x− x[m]‖lp(∆n) = ‖∆nx−∆nx[m]‖lp(10)

= ‖
∞∑

k=0

(∆nx)kek −
m∑

k=0

(∆nx)kek‖lp

= ‖
∞∑

k=m+1

(∆nx)kek‖lp =

( ∞∑

k=m+1

|∆nx|pk
) 1

p

(11)

≤
( ∞∑

k=m0

|∆nx|pk
) 1

p

<
ε

2

So x =
∑∞

k=0 (∆nx)k(∆−nek) =
∑∞

k=0 ∆−n((∆nx)kek). Now, we show the unique-
ness of this representation. Suppose x =

∑∞
k=0 µk(∆−nek) =

∑∞
k=0 ∆−n(µkek),

so ∆nx =
∑∞

k=0 µkek. On the other hand ∆nx =
∑∞

k=0 (∆nx)kek. Hence
µk = (∆nx)k, for all k ∈ N. So this representation is unique.

4. Continuous dual of lp(∆n)

Sequence space bvp is lp(∆) so lp(∆n) is an extension of this space. In [1] the
continuous dual of bvp was studied. The idea was wrong. We showed a counter
example and then corrected it in [4]. Now, we introduce the continuous dual of
lp(∆n).

Suppose 1 ≤ q < ∞ and let

dn
q =





a ∈ ω : ‖a‖dn
q

=
∥∥∥D(n)a

∥∥∥
lq

=




∞∑

k=0

∣∣∣∣∣∣

∞∑

j=k

D
(n)
kj aj

∣∣∣∣∣∣

q


1
q

< ∞





(12)

dn
∞ =



a ∈ ω : ‖a‖dn∞ =

∥∥∥D(n)a
∥∥∥

l∞
= sup

k∈N

∣∣∣∣∣∣

∞∑

j=k

D
(n)
kj aj

∣∣∣∣∣∣
< ∞



 ,(13)
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where

D(n) =




1 (n
1 ) (n+1

2 ) (n+2
3 ) (n+3

4 ) (n+4
5 ) · · ·

0 1 (n
1 ) (n+1

2 ) (n+2
3 ) (n+3

4 ) · · ·
0 0 1 (n

1 ) (n+1
2 ) (n+2

3 ) · · ·
0 0 0 1 (n

1 ) (n+1
2 ) · · ·

0 0 0 0 1 (n
1 ) · · ·

...
...

...
...

...
...

. . .




(14)

since D(n) is triangle, then D(n)−1
exists. Trivially dn

q and dn
∞ are normed spaces

with respect to coordinate-wise addition and scalar multiplication. dn
q and dn

∞ are
Banach spaces since if (x(m))∞m=0 is a Chauchy sequence in dn

q , then

(∀ε > 0)(∃N ∈ N)(∀r, s > N)‖D(n)(x(r) − x(s))‖lq = ‖x(r) − x(s)‖dn
q

< ε(15)

so the sequence (D(n)(x(m)))∞m=0 is Chauchy in lq and since lq is Banach, there
exists y in lq such that ‖D(n)x(m) − y‖lq → 0 as m → ∞. But y = D(n)D(n)−1

y,
so ‖D(n)x(m) − D(n)D(n)−1

y‖lq = ‖x(m) − D(n)−1
y‖dn

q
→ 0 as m → ∞. On the

other hand D(n)−1
y ∈ dn

q . So dn
q is Banach. In a similar way dn

∞ is Banach.

Theorem 4.1. l1(∆n)∗ is isometrically isomorphic to dn
∞.

Proof. Let

T : l1(∆n)∗ → dn
∞(16)

defined by Tf = (f(e0), f(e1), f(e2), f(e3), · · · ). Trivially T is linear and since
x =

∑∞
k=0 (∆nx)k(∆−nek) we have f(x) =

∑∞
k=0 (∆nx)kf(∆−nek). But

∆−nek = (0, 0, · · · , 0︸ ︷︷ ︸
k term

, 1, (n
1 ), (n+1

2 ), (n+2
3 ), (n+3

4 ), · · · )

= ek + (n
1 )ek+1 + (n+1

2 )ek+2 + (n+2
3 )ek+3 + · · ·

(17)

so

f(x) =
∞∑

k=0

[
(∆nx)k · (f(ek) + (n

1 )f(ek+1) + (n+1
2 )f(ek+2) + · · · )](18)

If fj = f(ej), then with respect to (14), we have

f(x) =
∞∑

k=0

[
(∆nx)k · (D(n)

kk fk + D
(n)
k(k+1)fk+1 + D

(n)
k(k+2)fk+2 + · · · )

]

=
∞∑

k=0


(∆nx)k ·

∞∑

j=k

D
(n)
kj fj




So |f(x)| ≤ ∑∞
k=0 |∆nx|k · supk∈N |

∑∞
j=k D

(n)
kj fj | = ‖(f0, f1, f2, · · · )‖dn∞ ·‖x‖l1(∆n).

So ‖f‖ ≤ ‖(f0, f1, f2, · · · )‖dn∞ . So T is surjective. T is injective since T (f) = 0
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implies f = 0. Finally T is norm preserving since

|f(x)| ≤
∞∑

k=0

|∆nx|k · sup
k∈N

∣∣
∞∑

j=k

D
(n)
kj fj

∣∣ = ‖x‖l1(∆n) · ‖Tf‖dn∞(19)

So

‖f‖ ≤ ‖Tf‖dn∞(20)

On the other hand,

∣∣
∞∑

j=k

D
(n)
kj fj

∣∣ = |f(∆−nek)| ≤ ‖f‖ · ‖∆−nek‖l1(∆n) = ‖f‖ for all k ∈ N(21)

So

‖Tf‖dn∞ = sup
k∈N

∣∣
∞∑

j=k

D
(n)
kj fj

∣∣ ≤ ‖f‖(22)

From (20) and (22), we have

‖Tf‖dn∞ = ‖f‖.
So T is norm preserving and it completes the proof. ¤

Theorem 4.2. If 1 < p < ∞,
1
p

+
1
q

= 1, then lp(∆n)∗ is isometrically

isomorphic to dn
q .

Proof. Let

T : lp(∆n)∗ → dn
q(23)

defined by Tf = (f(e0), f(e1), f(e2), f(e3), · · · ). Trivially T is linear and (18)
implies that

|f(x)| =
∣∣∣∣∣∣

∞∑

k=0

[(∆nx)k ·
∞∑

j=k

D
(n)
kj fj ]

∣∣∣∣∣∣
≤

[ ∞∑

k=0

|∆nx|pk
] 1

p



∞∑

k=0

∣∣∣∣∣∣

∞∑

j=k

D
(n)
kj fj

∣∣∣∣∣∣

q


1
q

= ‖x‖lp(∆n) · ‖(f0, f1, f2, · · · )‖dn
q
.

The above computations show that T is surjective. Moreover T is injective
since Tf = 0 implies f = 0. T is norm preserving since |f(x)| ≤ ‖x‖lp(∆n) ·
‖(f0, f1, f2, · · · )‖dn

q
= ‖x‖lp(∆n) · ‖Tf‖dn

q
. So

‖f‖ ≤ ‖Tf‖dn
q
.(24)

On the other hand, let x(m) = (x(m)
k ) where

(∆nx(m))k =





∣∣
∞∑

j=k

D
(n)
kj fj

∣∣q−1sgn
( ∞∑

j=k

D
(n)
kj fj

)
0 ≤ k ≤ m

0 k > m

(25)
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Then x(m) ∈ lp(∆n) since ∆nx(m) ∈ lp. So

f(x(m)) = f

( ∞∑

k=0

(∆nx(m))k · (∆−nek)
)

= f

( m∑

k=0

(∆nx(m))k · (∆−nek)
)

=
m∑

k=0

(∆nx(m))kf(∆−nek) =
m∑

k=0

(∆nx(m))k

∞∑

j=k

D
(n)
kj fj

=
m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q−1

sgn
( ∞∑

j=k

D
(n)
kj fj

)( ∞∑

j=k

D
(n)
kj fj

)

=
m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q

≤ ‖f‖ · ‖x(m)‖lp(∆n).

So

‖x(m)‖lp(∆n) = ‖∆nx(m)‖lp =
( ∞∑

k=0

|∆nx(m)|pk
) 1

p

=
( m∑

k=0

|∆nx(m)|pk
) 1

p

=
( m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
p(q−1)∣∣∣∣sgn

( ∞∑

j=k

D
(n)
kj fj

)∣∣∣∣
p) 1

p

=
( m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q) 1

p

So ( m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q)1

≤ ‖f‖ ·
( m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q) 1

p

.

So

‖f‖ ≥
( m∑

k=0

∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣
q) 1

q

= ‖Tf‖dn
q .(26)

From (24) and (26), we have
‖Tf‖dn

q
= ‖f‖.

So T is norm preserving and this completes the proof. ¤

5. Continuity of ∆n on some sequence spaces

Lemma 5.1. The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(l1) if and only if the supremum of l1 norms of the columns of A is bounded.
In fact, ‖A‖(l1,l1) = supn

∑∞
k=0 |ank|.

Corollary 5.2. ‖∆n‖(l1,l1) = 2n.

Lemma 5.3. The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(l∞) if and only if the supremum of l1 norms of the rows of A is bounded.
In fact, ‖A‖(l∞,l∞) = supk

∑∞
n=0 |ank|.
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Corollary 5.4. ‖∆n‖(l∞,l∞) = 2n.

Lemma 5.5. Let 1 < p < ∞ and let A ∈ (l∞, l∞)
⋂

(l1, l1). Then A ∈ (lp, lp).

Corollary 5.6. For every integer n and 1 < p < ∞ holds ∆n ∈ B(lp).

Proof. With respect to the matrix representation of ∆n and Lemma 5.1 and
5.3 ∆n ∈ (l∞, l∞)

⋂
(l1, l1) and so by Lemma 5.5, ∆n ∈ (lp, lp). ¤

Theorem 5.7. ∆n ∈ B(lp(∆n)).

Proof. Suppose ∆n : lp → lp and x ∈ lp. Then by Corollary 5.6, there exists
Mp

n ∈ N such that ‖∆nx‖lp ≤ Mp
n‖x‖lp . So if ∆n : lp(∆n) → lp(∆n) and x ∈

lp(∆n), then ‖∆nx‖lp(∆n) = ‖∆n(∆nx)‖lp ≤ Mp
n · ‖∆nx‖lp = Mp

n · ‖x‖lp(∆n). So
‖∆n‖(lp(∆n),lp(∆n)) ≤ Mp

n and it completes the proof. ¤

In [1, Theorem 3.2] claims that the norm of operator Delta is 2 i.e. ∆ is a
bounded operator on lp(∆) which confirms Theorem 5.7 in case n = 1.
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