THE CONTINUOUS DUAL OF THE SEQUENCE SPACE $l_{p}\left(\Delta^{n}\right)$, $(1 \leq p \leq \infty, n \in \mathbb{N})$

M. IMANINEZHAD and M. MIRI

Abstract

The space $l_{p}\left(\Delta^{m}\right)$ consisting of all sequences whose $m^{\text {th }}$ order differences are p-absolutely summable was recently studied by Altay [On the space of p-summable difference sequences of order m, $(1 \leq p<\infty)$, Stud. Sci. Math. Hungar. 43(4) (2006), 387-402]. Following Altay [2], we have found the continuous dual of the spaces $l_{1}\left(\Delta^{n}\right)$ and $l_{P}\left(\Delta^{n}\right)$. We have also determined the norm of the operator Δ^{n} acting from l_{1} to itself and from l_{∞} to itself, and proved that Δ^{n} is a bounded linear operator on the space $l_{p}\left(\Delta^{n}\right)$.

1. Preliminaries, Definitions and Notations

Let ω denote the space of all complex-valued sequences, i.e. $\omega=\mathbb{C}^{\mathbb{N}}$ where $\mathbb{N}=$ $\{0,1,2,3, \ldots\}$. Any vector subspace of ω which contains ϕ, the set of all finitely non-zero sequences, is called a sequence space. The continuous dual of a sequence space λ which is denoted by λ^{*} is the set of all bounded linear functionals on λ. Suppose Δ be the difference operator with matrix representation

$$
\Delta=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & -1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & -1 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & -1 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

and suppose $x=\left(x_{k}\right)_{k=0}^{\infty} \in \omega$, then $\Delta x=\left(x_{k}-x_{k-1}\right)_{k=0}^{\infty}$ and $\Delta^{n} x=\Delta\left(\Delta^{n-1} x\right)$ for all $n \geq 2$ where any x with negative index is zero. For every $n \in \mathbb{N} \backslash\{0\}$,

Received February 12, 2010.
2000 Mathematics Subject Classification. Primary 46B10; Secondary 46B45.
Key words and phrases. difference operator; continuous dual; Banach space; sequence space; Schauder basis, $l_{p}\left(\Delta^{n}\right)$.
Δ^{n} has a triangle matrix representation, so it is invertible and

$$
\begin{aligned}
& \Delta^{n}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-\binom{n}{1} & 1 \\
\binom{n}{2} & -\binom{n}{1} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-\binom{n}{3} & \binom{n}{2} & -\binom{n}{1} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & 0 & 0 & 0 & 0 & \cdots \\
(-1)^{n}\binom{n}{n} & (-1)^{n-1}\left(\begin{array}{c}
n \\
n-1)
\end{array}\right. & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots \\
0 & (-1)^{n}\binom{n}{n} & (-1)^{n-1}\binom{n}{n-1} & \vdots & \vdots & -\binom{n}{1} & 1 & 0 & \cdots \\
0 & 0 & (-1)^{n}\binom{n}{n} & (-1)^{n-1}\left(\begin{array}{c}
n \\
n-1)
\end{array}\right. & \vdots & \vdots & -\binom{n}{1} & 1 & \cdots \\
\vdots & \ddots
\end{array}\right]
\end{aligned}
$$

If a normed sequence space λ contains a sequence $\left(b_{n}\right)$ with the property that for every $x \in \lambda$, there is a unique sequence of scalars $\left(\alpha_{n}\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x-\left(\alpha_{0} b_{0}+\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}\right)\right\|=0 \tag{1}
\end{equation*}
$$

then $\left(b_{n}\right)$ is called a Schauder basis for λ. The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$ and written as $x=\sum \alpha_{k} b_{k}$.

$$
\text { 2. The Space } l_{p}\left(\Delta^{n}\right)
$$

Now we introduce an apparently new sequence space and denote it by $l_{p}\left(\Delta^{n}\right)$ like Kizmaz who defined and studied $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$.

$$
\begin{gather*}
l_{p}\left(\Delta^{n}\right)=\left\{x \in \omega: \Delta^{n} x \in l_{p}\right\} \tag{2}\\
\|x\|_{l_{p}\left(\Delta^{n}\right)}=\left\|\Delta^{n} x\right\|_{l_{p}} \tag{3}
\end{gather*}
$$

Trivially $l_{p}(\Delta)=b v_{p}$.
Theorem 2.1. $l_{p}\left(\Delta^{n}\right)$ is a Banach space.
Proof. Since it is a routine verification to show that $l_{p}\left(\Delta^{n}\right)$ is a normed space with the norm defined by (3) and coordinate-wise addition and scalar multiplication we omit the details. To prove the theorem, we show that every Chauchy sequence in $l_{p}\left(\Delta^{n}\right)$ has a limit. Suppose $\left(x^{(m)}\right)_{m=0}^{\infty}$ is a Chauchy sequence in $l_{p}\left(\Delta^{n}\right)$. So
(4)

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall r, s \geq N)\left(\left\|\Delta^{n} x^{(r)}-\Delta^{n} x^{(s)}\right\|_{l_{p}}=\left\|x^{(r)}-x^{(s)}\right\|_{l_{p}\left(\Delta^{n}\right)}<\varepsilon\right)
$$

So the sequence $\left(\Delta^{n} x^{(m)}\right)_{m=0}^{\infty}$ in l_{p} is Chauchy and since l_{p} is Banach, there exists $x \in l_{p}$ such that

$$
\begin{equation*}
\left\|\Delta^{n} x^{(m)}-x\right\|_{l_{p}} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

But $x=\left(\Delta^{n}\right)\left(\Delta^{n}\right)^{-1} x$, so $\left\|\Delta^{n} x^{(m)}-\Delta^{n}\left(\Delta^{n}\right)^{-1} x\right\|_{l_{p}}=\left\|x^{(m)}-\left(\Delta^{n}\right)^{-1} x\right\|_{l_{p}\left(\Delta^{n}\right)} \rightarrow 0$ as $m \rightarrow \infty$. Now, since $\left(\Delta^{n}\right)^{-1} x \in l_{p}\left(\Delta^{n}\right)$ we are done.

Theorem 2.2. $l_{p}\left(\Delta^{n}\right)$ is isometrically isomorphic to l_{p}.
Proof. Let

$$
\begin{equation*}
T: l_{p}\left(\Delta^{n}\right) \rightarrow l_{p} \tag{6}
\end{equation*}
$$

defined by $T(x)=\Delta^{n} x$. Since T is bijective and norm preserving, we are done.
Theorem 2.3. Except the case $p=2$, the space $l_{p}\left(\Delta^{n}\right)$ is not an inner product space and hence not a Hilbert space for $1 \leq p<\infty$.

Proof. First we show that $l_{2}\left(\Delta^{n}\right)$ is a Hilbert space. It suffices to show that $l_{2}\left(\Delta^{n}\right)$ has an inner product. Since

$$
\begin{equation*}
\|x\|_{l_{2}\left(\Delta^{n}\right)}=\left\|\Delta^{n} x\right\|_{l_{2}}=<\Delta^{n} x, \Delta^{n} x>^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

$l_{2}\left(\Delta^{n}\right)$ is a Hilbert space. Now, we show that if $p \neq 2$, then $l_{p}\left(\Delta^{n}\right)$ is not Hilbert. Let

$$
\begin{aligned}
& u=\left(\Delta^{n-1}\right)^{-1}(1,2,2,2, \cdots) \\
& e=\left(\Delta^{n-1}\right)^{-1}(1,0,0,0, \cdots)
\end{aligned}
$$

Then $\|u\|_{l_{p}\left(\Delta^{n}\right)}=\|e\|_{l_{p}\left(\Delta^{n}\right)}=2^{\frac{1}{p}}$ and $\|u+e\|_{l_{p}\left(\Delta^{n}\right)}=\|u-e\|_{l_{p}\left(\Delta^{n}\right)}=2$. So the parallelogram equality does not satisfy. Hence the space $l_{p}\left(\Delta^{n}\right)$ with $p \neq 2$ is not a Hilbert space.

Theorem 2.4. If $1 \leq p<q<\infty$, then $l_{p}\left(\Delta^{n}\right) \subseteq l_{q}\left(\Delta^{n}\right) \subseteq l_{\infty}\left(\Delta^{n}\right)$.
Proof. We only point out that if $1 \leq p<q<\infty$, then $l_{p} \subseteq l_{q} \subseteq l_{\infty}$.
Theorem 2.5. $l_{p} \subseteq l_{p}(\Delta) \subseteq l_{p}\left(\Delta^{2}\right) \subseteq l_{p}\left(\Delta^{3}\right) \subseteq \cdots$
Proof. Since $l_{p} \subseteq b v_{p}$, it is trivial that $l_{p} \subseteq l_{p}(\Delta)$. Now, if $x \in l_{p}\left(\Delta^{n}\right)$, then $\Delta^{n} x \in l_{p} \subseteq l_{p}(\Delta)$. So

$$
\Delta^{n} x \in l_{p}(\Delta) \Rightarrow \Delta\left(\Delta^{n} x\right) \in l_{p} \Rightarrow \Delta^{n+1} x \in l_{p} \Rightarrow x \in l_{p}\left(\Delta^{n+1}\right)
$$

Theorem 2.6. $\|x\|_{l_{p}\left(\Delta^{n}\right)} \leq 2^{n}\|x\|_{l_{p}}$
Proof. Since $\|x\|_{l_{p}(\Delta)}=\|x\|_{b v_{p}} \leq 2\|x\|_{l_{p}},\|x\|_{l_{p}\left(\Delta^{2}\right)} \leq 2\|x\|_{l_{p}(\Delta)} \leq 2 \cdot 2 \cdot\|x\|_{l_{p}}=$ $2^{2}\|x\|_{l_{p}}$. Now by induction, we are done.

3. Schauder basis for space $l_{p}\left(\Delta^{n}\right)$

Suppose e^{k} is a sequence whose only nonzero term is 1 in the $(k+1)^{\text {th }}$ place. The sequence $\left(\Delta^{-n} e^{k}\right)_{k=0}^{\infty}$ is a sequence of elements of $l_{p}\left(\Delta^{n}\right)$ since for all $k \in \mathbb{N}$, $e^{k} \in l_{p}$. We assert that this sequence is a Schauder basis for $l_{p}\left(\Delta^{n}\right)$. Suppose $x \in l_{p}\left(\Delta^{n}\right), x^{[m]}=\sum_{k=0}^{m}\left(\Delta^{n} x\right)_{k}\left(\Delta^{-n} e^{k}\right)=\sum_{k=0}^{m} \Delta^{-n}\left(\left(\Delta^{n} x\right)_{k} e^{k}\right)$. Then since $x \in l_{p}\left(\Delta^{n}\right)$, we have $\Delta^{n} x \in l_{p}$ such that

$$
\begin{align*}
&\left(\sum_{i=0}^{\infty}\left|\left(\Delta^{n} x\right)_{i}\right|^{p}\right)^{\frac{1}{p}}=s<\infty \tag{8}\\
& \Rightarrow(\forall \varepsilon>0)\left(\exists m_{0} \in \mathbb{N}\right)\left(\sum_{i=m}^{\infty}\left|\left(\Delta^{n} x\right)_{i}\right|^{p}\right)^{\frac{1}{p}}<\frac{\varepsilon}{2} \quad \text { for all } m \geq m_{0} \\
& \Rightarrow\left\|x-x^{[m]}\right\|_{l_{p}\left(\Delta^{n}\right)}=\left\|\Delta^{n} x-\Delta^{n} x^{[m]}\right\|_{l_{p}} \\
&=\left\|\sum_{k=0}^{\infty}\left(\Delta^{n} x\right)_{k} e^{k}-\sum_{k=0}^{m}\left(\Delta^{n} x\right)_{k} e^{k}\right\|_{l_{p}} \\
&=\left\|\sum_{k=m+1}^{\infty}\left(\Delta^{n} x\right)_{k} e^{k}\right\|_{l_{p}}=\left(\sum_{k=m+1}^{\infty}\left|\Delta^{n} x\right|_{k}^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{k=m_{0}}^{\infty}\left|\Delta^{n} x\right|_{k}^{p}\right)^{\frac{1}{p}}<\frac{\varepsilon}{2}
\end{align*}
$$

So $x=\sum_{k=0}^{\infty}\left(\Delta^{n} x\right)_{k}\left(\Delta^{-n} e^{k}\right)=\sum_{k=0}^{\infty} \Delta^{-n}\left(\left(\Delta^{n} x\right)_{k} e^{k}\right)$. Now, we show the uniqueness of this representation. Suppose $x=\sum_{k=0}^{\infty} \mu_{k}\left(\Delta^{-n} e^{k}\right)=\sum_{k=0}^{\infty} \Delta^{-n}\left(\mu_{k} e^{k}\right)$, so $\Delta^{n} x=\sum_{k=0}^{\infty} \mu_{k} e^{k}$. On the other hand $\Delta^{n} x=\sum_{k=0}^{\infty}\left(\Delta^{n} x\right)_{k} e^{k}$. Hence $\mu_{k}=\left(\Delta^{n} x\right)_{k}$, for all $k \in \mathbb{N}$. So this representation is unique.
4. Continuous dual of $l_{p}\left(\Delta^{n}\right)$

Sequence space $b v_{p}$ is $l_{p}(\Delta)$ so $l_{p}\left(\Delta^{n}\right)$ is an extension of this space. In [1] the continuous dual of $b v_{p}$ was studied. The idea was wrong. We showed a counter example and then corrected it in [4]. Now, we introduce the continuous dual of $l_{p}\left(\Delta^{n}\right)$.

Suppose $1 \leq q<\infty$ and let

$$
\begin{align*}
& d_{q}^{n}=\left\{a \in \omega:\|a\|_{d_{q}^{n}}=\left\|D^{(n)} a\right\|_{l_{q}}=\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} a_{j}\right|^{q}\right)^{\frac{1}{q}}<\infty\right\} \tag{12}\\
& d_{\infty}^{n}=\left\{a \in \omega:\|a\|_{d_{\infty}^{n}}=\left\|D^{(n)} a\right\|_{l_{\infty}}=\sup _{k \in \mathbb{N}}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} a_{j}\right|<\infty\right\}, \tag{13}
\end{align*}
$$

where

$$
D^{(n)}=\left[\begin{array}{ccccccc}
1 & \binom{n}{1} & \binom{n+1}{2} & \binom{n+2}{3} & \binom{n+3}{4} & \binom{n+4}{5} & \cdots \tag{14}\\
0 & 1 & \binom{n}{1} & \binom{2}{2} & \binom{n+2}{3} & \binom{4}{4} & \cdots \\
0 & 0 & 1 & \binom{n}{1} & \binom{n+1}{2} & \binom{n+2}{3} & \cdots \\
0 & 0 & 0 & 1 & \binom{n}{1} & \left(\begin{array}{c}
2 \\
2 \\
2
\end{array}\right) & \cdots \\
0 & 0 & 0 & 0 & 1 & \binom{n}{1} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

since $D^{(n)}$ is triangle, then $D^{(n)^{-1}}$ exists. Trivially d_{q}^{n} and d_{∞}^{n} are normed spaces with respect to coordinate-wise addition and scalar multiplication. d_{q}^{n} and d_{∞}^{n} are Banach spaces since if $\left(x^{(m)}\right)_{m=0}^{\infty}$ is a Chauchy sequence in d_{q}^{n}, then

$$
\text { (15) }(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall r, s>N)\left\|D^{(n)}\left(x^{(r)}-x^{(s)}\right)\right\|_{l_{q}}=\left\|x^{(r)}-x^{(s)}\right\|_{d_{q}^{n}}<\varepsilon
$$

so the sequence $\left(D^{(n)}\left(x^{(m)}\right)\right)_{m=0}^{\infty}$ is Chauchy in l_{q} and since l_{q} is Banach, there exists y in l_{q} such that $\left\|D^{(n)} x^{(m)}-y\right\|_{l_{q}} \rightarrow 0$ as $m \rightarrow \infty$. But $y=D^{(n)} D^{(n)^{-1}} y$, so $\left\|D^{(n)} x^{(m)}-D^{(n)} D^{(n)^{-1}} y\right\|_{l_{q}}=\left\|x^{(m)}-D^{(n)^{-1}} y\right\|_{d_{q}^{n}} \rightarrow 0$ as $m \rightarrow \infty$. On the other hand $D^{(n)^{-1}} y \in d_{q}^{n}$. So d_{q}^{n} is Banach. In a similar way d_{∞}^{n} is Banach.

Theorem 4.1. $l_{1}\left(\Delta^{n}\right)^{*}$ is isometrically isomorphic to d_{∞}^{n}.
Proof. Let

$$
\begin{equation*}
T: l_{1}\left(\Delta^{n}\right)^{*} \rightarrow d_{\infty}^{n} \tag{16}
\end{equation*}
$$

defined by $T f=\left(f\left(e^{0}\right), f\left(e^{1}\right), f\left(e^{2}\right), f\left(e^{3}\right), \cdots\right)$. Trivially T is linear and since $x=\sum_{k=0}^{\infty}\left(\Delta^{n} x\right)_{k}\left(\Delta^{-n} e^{k}\right)$ we have $f(x)=\sum_{k=0}^{\infty}\left(\Delta^{n} x\right)_{k} f\left(\Delta^{-n} e^{k}\right)$. But

$$
\begin{align*}
\Delta^{-n} e^{k} & =(\underbrace{0,0, \cdots, 0}_{k \text { term }}, 1,\binom{n}{1},\binom{n+1}{2},\binom{n+2}{3},\binom{n+3}{4}, \cdots) \tag{17}\\
& =e^{k}+\binom{n}{1} e^{k+1}+\binom{n+1}{2} e^{k+2}+\binom{n+2}{3} e^{k+3}+\cdots
\end{align*}
$$

so
(18) $f(x)=\sum_{k=0}^{\infty}\left[\left(\Delta^{n} x\right)_{k} \cdot\left(f\left(e^{k}\right)+\binom{n}{1} f\left(e^{k+1}\right)+\binom{n+1}{2} f\left(e^{k+2}\right)+\cdots\right)\right]$

If $f_{j}=f\left(e^{j}\right)$, then with respect to (14), we have

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty}\left[\left(\Delta^{n} x\right)_{k} \cdot\left(D_{k k}^{(n)} f_{k}+D_{k(k+1)}^{(n)} f_{k+1}+D_{k(k+2)}^{(n)} f_{k+2}+\cdots\right)\right] \\
& =\sum_{k=0}^{\infty}\left[\left(\Delta^{n} x\right)_{k} \cdot \sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right]
\end{aligned}
$$

So $|f(x)| \leq \sum_{k=0}^{\infty}\left|\Delta^{n} x\right|_{k} \cdot \sup _{k \in \mathbb{N}}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|=\left\|\left(f_{0}, f_{1}, f_{2}, \cdots\right)\right\|_{d_{\infty}^{n}} \cdot\|x\|_{l_{1}\left(\Delta^{n}\right)}$. So $\|f\| \leq\left\|\left(f_{0}, f_{1}, f_{2}, \cdots\right)\right\|_{d_{\infty}^{n}}$. So T is surjective. T is injective since $T(f)=0$
implies $f=0$. Finally T is norm preserving since

$$
\begin{equation*}
|f(x)| \leq \sum_{k=0}^{\infty}\left|\Delta^{n} x\right|_{k} \cdot \sup _{k \in \mathbb{N}}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|=\|x\|_{l_{1}\left(\Delta^{n}\right)} \cdot\|T f\|_{d_{\infty}^{n}} \tag{19}
\end{equation*}
$$

So

$$
\begin{equation*}
\|f\| \leq\|T f\|_{d_{\infty}^{n}} \tag{20}
\end{equation*}
$$

On the other hand,
(21) $\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|=\left|f\left(\Delta^{-n} e^{k}\right)\right| \leq\|f\| \cdot\left\|\Delta^{-n} e^{k}\right\|_{l_{1}\left(\Delta^{n}\right)}=\|f\|$ for all $k \in \mathbb{N}$

So

$$
\begin{equation*}
\|T f\|_{d_{\infty}^{n}}=\sup _{k \in \mathbb{N}}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right| \leq\|f\| \tag{22}
\end{equation*}
$$

From (20) and (22), we have

$$
\|T f\|_{d_{\infty}^{n}}=\|f\| .
$$

So T is norm preserving and it completes the proof.
Theorem 4.2. If $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$, then $l_{p}\left(\Delta^{n}\right)^{*}$ is isometrically isomorphic to d_{q}^{n}.

Proof. Let

$$
\begin{equation*}
T: l_{p}\left(\Delta^{n}\right)^{*} \rightarrow d_{q}^{n} \tag{23}
\end{equation*}
$$

defined by $T f=\left(f\left(e^{0}\right), f\left(e^{1}\right), f\left(e^{2}\right), f\left(e^{3}\right), \cdots\right)$. Trivially T is linear and (18) implies that

$$
\begin{aligned}
|f(x)| & =\left|\sum_{k=0}^{\infty}\left[\left(\Delta^{n} x\right)_{k} \cdot \sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right]\right| \leq\left[\sum_{k=0}^{\infty}\left|\Delta^{n} x\right|_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q}\right]^{\frac{1}{q}} \\
& =\|x\|_{l_{p}\left(\Delta^{n}\right)} \cdot\left\|\left(f_{0}, f_{1}, f_{2}, \cdots\right)\right\|_{d_{q}^{n}}
\end{aligned}
$$

The above computations show that T is surjective. Moreover T is injective since $T f=0$ implies $f=0 . T$ is norm preserving since $|f(x)| \leq\|x\|_{l_{p}\left(\Delta^{n}\right)}$. $\left\|\left(f_{0}, f_{1}, f_{2}, \cdots\right)\right\|_{d_{q}^{n}}=\|x\|_{l_{p}\left(\Delta^{n}\right)} \cdot\|T f\|_{d_{q}^{n}}$. So

$$
\begin{equation*}
\|f\| \leq\|T f\|_{d_{q}^{n}} . \tag{24}
\end{equation*}
$$

On the other hand, let $x^{(m)}=\left(x_{k}^{(m)}\right)$ where
(25)

$$
\left(\Delta^{n} x^{(m)}\right)_{k}= \begin{cases}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q-1} \operatorname{sgn}\left(\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right) & 0 \leq k \leq m \\ 0 & k>m\end{cases}
$$

Then $x^{(m)} \in l_{p}\left(\Delta^{n}\right)$ since $\Delta^{n} x^{(m)} \in l_{p}$. So

$$
\begin{aligned}
f\left(x^{(m)}\right) & =f\left(\sum_{k=0}^{\infty}\left(\Delta^{n} x^{(m)}\right)_{k} \cdot\left(\Delta^{-n} e^{k}\right)\right)=f\left(\sum_{k=0}^{m}\left(\Delta^{n} x^{(m)}\right)_{k} \cdot\left(\Delta^{-n} e^{k}\right)\right) \\
& =\sum_{k=0}^{m}\left(\Delta^{n} x^{(m)}\right)_{k} f\left(\Delta^{-n} e^{k}\right)=\sum_{k=0}^{m}\left(\Delta^{n} x^{(m)}\right)_{k} \sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j} \\
& =\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q-1} \operatorname{sgn}\left(\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right)\left(\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right) \\
& =\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q} \leq\|f\| \cdot\left\|x^{(m)}\right\|_{l_{p}\left(\Delta^{n}\right)} .
\end{aligned}
$$

So

$$
\begin{aligned}
\left\|x^{(m)}\right\|_{l_{p}\left(\Delta^{n}\right)} & =\left\|\Delta^{n} x^{(m)}\right\|_{l_{p}}=\left(\sum_{k=0}^{\infty}\left|\Delta^{n} x^{(m)}\right|_{k}^{p}\right)^{\frac{1}{p}}=\left(\sum_{k=0}^{m}\left|\Delta^{n} x^{(m)}\right|_{k}^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{p(q-1)}\left|\operatorname{sgn}\left(\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q}\right)^{\frac{1}{p}}
\end{aligned}
$$

So

$$
\left(\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q}\right)^{1} \leq\|f\| \cdot\left(\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q}\right)^{\frac{1}{p}}
$$

So

$$
\begin{equation*}
\|f\| \geq\left(\sum_{k=0}^{m}\left|\sum_{j=k}^{\infty} D_{k j}^{(n)} f_{j}\right|^{q}\right)^{\frac{1}{q}}=\|T f\| d_{q}^{n} \tag{26}
\end{equation*}
$$

From (24) and (26), we have

$$
\|T f\|_{d_{q}^{n}}=\|f\|
$$

So T is norm preserving and this completes the proof.

5. Continuity of Δ^{n} on some sequence spaces

Lemma 5.1. The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(l_{1}\right)$ if and only if the supremum of l_{1} norms of the columns of A is bounded. In fact, $\|A\|_{\left(l_{1}, l_{1}\right)}=\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|$.

Corollary 5.2. $\left\|\Delta^{n}\right\|_{\left(l_{1}, l_{1}\right)}=2^{n}$.
Lemma 5.3. The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(l_{\infty}\right)$ if and only if the supremum of l_{1} norms of the rows of A is bounded. In fact, $\|A\|_{\left(l_{\infty}, l_{\infty}\right)}=\sup _{k} \sum_{n=0}^{\infty}\left|a_{n k}\right|$.

Corollary 5.4. $\left\|\Delta^{n}\right\|_{\left(l_{\infty}, l_{\infty}\right)}=2^{n}$.
Lemma 5.5. Let $1<p<\infty$ and let $A \in\left(l_{\infty}, l_{\infty}\right) \bigcap\left(l_{1}, l_{1}\right)$. Then $A \in\left(l_{p}, l_{p}\right)$.
Corollary 5.6. For every integer n and $1<p<\infty$ holds $\Delta^{n} \in B\left(l_{p}\right)$.
Proof. With respect to the matrix representation of Δ^{n} and Lemma 5.1 and $5.3 \Delta^{n} \in\left(l_{\infty}, l_{\infty}\right) \bigcap\left(l_{1}, l_{1}\right)$ and so by Lemma $5.5, \Delta^{n} \in\left(l_{p}, l_{p}\right)$.

Theorem 5.7. $\Delta^{n} \in B\left(l_{p}\left(\Delta^{n}\right)\right)$.
Proof. Suppose $\Delta^{n}: l_{p} \rightarrow l_{p}$ and $x \in l_{p}$. Then by Corollary 5.6, there exists $M_{n}^{p} \in \mathbb{N}$ such that $\left\|\Delta^{n} x\right\|_{l_{p}} \leq M_{n}^{p}\|x\|_{l_{p}}$. So if $\Delta^{n}: l_{p}\left(\Delta^{n}\right) \rightarrow l_{p}\left(\Delta^{n}\right)$ and $x \in$ $l_{p}\left(\Delta^{n}\right)$, then $\left\|\Delta^{n} x\right\|_{l_{p}\left(\Delta^{n}\right)}=\left\|\Delta^{n}\left(\Delta^{n} x\right)\right\|_{l_{p}} \leq M_{n}^{p} \cdot\left\|\Delta^{n} x\right\|_{l_{p}}=M_{n}^{p} \cdot\|x\|_{l_{p}\left(\Delta^{n}\right)}$. So $\left\|\Delta^{n}\right\|_{\left(l_{p}\left(\Delta^{n}\right), l_{p}\left(\Delta^{n}\right)\right)} \leq M_{n}^{p}$ and it completes the proof.

In [1, Theorem 3.2] claims that the norm of operator Delta is 2 i.e. Δ is a bounded operator on $l_{p}(\Delta)$ which confirms Theorem 5.7 in case $n=1$.

Acknowledgment. We are grateful to the referee for his/her careful reviewing and suggestions. The first author is obliged to Dr. Bolbolian, Dr. Mohammadian and Mrs. Ramezani. Also he likes to express his thanks to Mr. Davoodnezhad and Mrs. Sadeghi ${ }^{1}$ for supplying some references.

References

1. Akhmedov A. M. and Basar F., The Fine Spectra of the Difference Operator Δ over the Sequense Space $b v_{p}(1 \leq p<\infty)$, Acta Math. Sin. Eng. Ser. 23(10) (2007), 1757-1768.
2. Altay B., On the space of p-summable difference sequences of order m, $(1 \leq p<\infty)$, Stud. Sci. Math. Hungar. 43(4) (2006), 387-402.
3. Basar F. and Altay B., On the Space of Sequences of p-Bounded Variation and Related Matrix Mappings, Ukrainian Math. J. 55(1) (2003), 136-147.
4. Imaninezhad M. and Miri M., The Dual Space of the Sequence Space bvp $(1 \leq p<\infty)$, Acta Math. Univ. Comenianae 79(1)(2010), 143-149.
5. Goldberg S., Unbounded Linear Operators, Dover Publication Inc. New York, 1985.
6. Kizmaz H., On Certain Sequence Spaces, Canad. Math. Bull. 24(2)(1981), 169-176.
7. Kreyszig E., Introductory Functional Analysis with Applications, John Wiley \& Sons Inc. New York-Chichester-Brisbane-Toronto, 1978.
8. Maddox I. J., Elements of Functional Analysis, University Press, Cambridge, 1988.
9. Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies, Amsterdam-New York-Oxford, 1984.
M. Imaninezhad, Islamic Azad University-Ferdows Branch, Iran, e-mail: imani507@gmail.com
M. Miri, Dep. of Math., University of Birjand, Iran, e-mail: mmiri@birjand.ac.ir
[^0]
[^0]: ${ }^{1}$ Librarians of Faculty of Mathematical Sciences of Mashhad University

