ON SOME PROPERTIES OF A FUNCTION CONNECTING WITH AN INFINITE SERIES

D. K. GANGULY, A. DAFADAR and B. BISWAS

Abstract

An attempt has been made in this paper to investigate some set theoretic properties of a function suitably defined on the space of all sequences of non-negative real numbers endowed with Fréchet metric.

0. Introduction

Inspiration for this paper arises from the papers [1], [2] where the authors proved several interesting theorems in relation to Borel and Baire classifications of functions defined by the exponent of convergence of the family of all non-decreasing sequences of real numbers, the first term of which is at least γ where γ is a positive real number, endowed with Fréchet metric. Our approach in this paper is somewhat different. Instead of taking the family of all non-decreasing sequences $x=\left\{\xi_{k}\right\}_{k=1}^{\infty}$ of real numbers with $\xi_{1}>0$, we consider the set of all sequences of non-negative real numbers with Fréchet metric and after defining a function suitably different from $[\mathbf{1}],[\mathbf{2}]$ we study the behaviour of the function from various aspects.

Let X be the set of all real sequences $\left\{x_{n}\right\}$ with Fréchet metric $d(x, y)$ given by

$$
d(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|}
$$

where $x=\left\{x_{k}\right\}, y=\left\{y_{k}\right\} \in X$.
The metric space (X, d) is complete. Let S denote the set of all sequences $\left\{x_{n}\right\}$ of non-negative real numbers with Fréchet metric. The convergence in this space is considered to be the point-wise convergence.

Let $x \in S$ and $r>0$. We denote by $B(x, r)$, the open sphere with x as the center and r as the radius. It follows easily that if $x_{n}=y_{n}$ for $n=1,2,3, \ldots, N$, then $y \in B\left(x, \frac{1}{2^{N}}\right)$. If x, y etc. are points of S, we shall represent them generally by $x=\left\{x_{k}\right\}, y=\left\{y_{k}\right\}$ etc. Also \mathbb{N} denotes the set of positive integers and \mathbb{R} denotes the set of real numbers. On the space S we shall define a real function

Received July 16, 2009; revised October 11, 2009.
2000 Mathematics Subject Classification. Primary 40A05.
Key words and phrases. Borel classification of sets; first category; residual sets; first Baire class of sets and Darboux property.
$\phi: S \rightarrow[1, \infty)$ as follows

$$
\phi(x)=\inf \left\{p>1: \sum_{n=1}^{\infty} p^{-x_{n}}<\infty\right\}, \quad \text { for } x=\left\{x_{n}\right\} \in S .
$$

It may happen that $\phi(x)=+\infty$. We shall study some properties of $\phi: S \rightarrow[1, \infty)$. The interval $[1, \infty)$ is considered with usual topology.

Proposition 0.1. Let $\left\{a_{n}\right\} \in S, a_{n}>0$ be such that $\sum_{n}^{\infty} 1 / a_{n}<\infty$ and $\sup _{\sum^{\infty}} a_{n}^{1 / x_{n}}>0$, where $\left\{x_{n}\right\} \in S, x_{n}>0$. Then there exists $a>0$ such that $\sum_{n=1}^{\infty} a^{-x_{n}}<\infty$.

Proof. Take $a=\sup a_{n}^{1 / x_{n}}$. Then $a>0$. Since $\sup a_{n}^{1 / x_{n}}=a$, we have $a_{n}^{1 / x_{n}} \leq$ a, for all $n \in \mathbb{N}$. Therefore $\sum_{n=1}^{\infty} a^{-x_{n}} \leq \sum_{n=1}^{\infty} 1 / a_{n}<\infty$. Hence the result.

In support of the proposition we present an example.
Example. Let $x_{n}=\log n, n>1$ and $a_{n}=n^{2}$. Then $a_{n}^{1 / x_{n}}=\left(n^{2}\right)^{1 / \log n}=$ $\left(e^{2 \log n}\right)^{1 / \log n}=e^{2}$, for each $n>1$. Take $a=e^{2}$.

Proposition 0.2. (S, d) is complete and has the power of continuum.
Proof. Let $\left\{x_{n}^{(r)}\right\}_{r} \in S$ be any sequence converging to $x=\left\{x_{n}\right\}$. Since the convergence in S is the point-wise convergence in the sense of Fréchet metric, it follows that $x \in S$ and S becomes a closed set. Let $x=\left\{x_{n}\right\} \in S$. Then we have a sequence $x^{(r)}=\left\{x_{n}^{(r)}\right\}_{n} \in S$ such that $\lim _{r \rightarrow \infty} x^{(r)}=x$ where

$$
\begin{aligned}
x_{k}^{(r)} & =x_{k}, & & \text { for } k=1,2, \ldots r \\
\text { and } x_{k}^{(r)} & =x_{k}+1, & & \text { for } k>r ; r \in \mathbb{N} .
\end{aligned}
$$

So, S becomes a perfect set and therefore S has the cardinal number c where c is the power of continuum and hence (S, d) is complete.

1. Some set theoretic properties of the function ϕ

Theorem 1.1. The function $\phi: S \rightarrow(1, \infty)$ is onto but not one-to-one.
Proof. Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ be a monotonic increasing sequence with $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. It is well known ([4, p. 40]) that there exists a unique $\lambda=\lambda(A)$, $0 \leq \lambda(A) \leq \infty$ such that

$$
\begin{array}{lll}
& \sum_{n=1}^{\infty} a_{n}^{-\sigma}=+\infty, & \text { for each } \sigma \in \mathbb{R}, \sigma>0, \sigma<\lambda \\
\text { and } \quad & \sum_{n=1}^{\infty} a_{n}^{-\sigma}<+\infty, \quad \text { for each } \sigma \in \mathbb{R}, \sigma>0, \sigma>\lambda,
\end{array}
$$

i.e.

$$
\lambda(A)=\inf \left\{\sigma>0: \sum_{n=1}^{\infty} a_{n}^{-\sigma}<+\infty\right\}
$$

Now, we can choose such a sequence $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ with $\lambda(A)=+\infty$.

We know [5] that the function $\lambda:(0,1] \rightarrow[0, \infty)$ is onto. Then for $1<a<\infty$, there exists a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that

$$
a=\inf \left\{\sigma>0: \sum_{k=1}^{\infty} a_{n_{k}}^{-\sigma}<+\infty\right\}
$$

Now, we show that there exists $y \in S$ such that $\phi(y)=a$.
Let $t=\frac{a}{\log a}$ and choose $y=\left\{y_{n}\right\}_{n=1}^{\infty} \in S$ such that $y_{k}=\log a_{n_{k}}^{t}$. Now, for any real number $b>a$,

$$
\sum_{k=1}^{\infty}(b)^{-\log a_{n_{k}}^{t}}=\sum_{k=1}^{\infty}(e)^{(-\log b) \log a_{n_{k}}^{t}}=\sum_{k=1}^{\infty} a_{n_{k}}^{-t \log b}<+\infty
$$

since $t \log b>a$.
Again if c is a real number such that $1<c<a$, then

$$
\sum_{k=1}^{\infty}(c)^{-\log a_{n_{k}}^{t}}=\sum_{k=1}^{\infty}(e)^{(-\log c) \log a_{n_{k}}^{t}}=\sum_{k=1}^{\infty} a_{n_{k}}^{-t \log c}=+\infty
$$

since $t \log c<a$.
Therefore

$$
\inf \left\{p>1: \sum_{k=1}^{\infty} p^{-\log a_{n_{k}}^{t}}<\infty\right\}=a
$$

i.e. $\phi(y)=a$.

We now show that ϕ is not one-to-one.
Let $a \in(1, \infty)$. Then there exists $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in S$ such that $\phi(x)=a$, i.e.

$$
a=\inf \left\{p>1: \sum_{n=1}^{\infty} p^{-x_{n}}<\infty\right\}
$$

Let $y_{n}=x_{n+1}$, for $n=1,2,3, \ldots$. Then $y=\left\{y_{n}\right\}_{n=1}^{\infty} \in S$. Clearly

$$
\inf \left\{p>1: \sum_{n=1}^{\infty} p^{-y_{n}}<\infty\right\}=a
$$

i.e. $\phi(y)=a$. So $\phi(x)=\phi(y)$ when $x \neq y$. Therefore, ϕ is not one-to-one.

Theorem 1.2. The sets $H^{t}=\{x \in S: \phi(x)<t\}$ and $H_{t}=\{x \in S: \phi(x)>t\}$ belong to the third additive Borel class for every $t \in(-\infty, \infty)$.

Proof. If $t \leq 1$, then $H^{t}=\phi$ and the theorem is true.
Let $t>1$. Then,

$$
\begin{aligned}
H^{t} & =\{x \in S: \phi(x)<t\} \\
& =\left\{x=\left\{x_{i}\right\}_{i=1}^{\infty} \in S: \sum_{i=1}^{\infty}(a)^{-x_{i}}<\infty\right\}, \text { for some } a>1 \text { and } 1<a<t \\
& =\left\{x \in S: \sum_{i=1}^{\infty}\left(t-\frac{1}{k}\right)^{-x_{i}}<\infty\right\}
\end{aligned}
$$

for $k \geq k_{0}$ and k_{0} is the least positive integer such that $a=t-1 / k>1$.
We consider $F(k)=\left\{x=\left\{x_{i}\right\}_{i=1}^{\infty} \in S: \sum_{i=1}^{\infty} a^{-x_{i}}<\infty\right\}$, for some $a>1$ and $1<a<t, \quad k=k_{0}, k_{0}+1, k_{0}+2, \ldots$. Then

$$
F(k)=\bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty}\left\{x: a^{-x_{q+m}}+a^{-x_{q+m+1}}+\ldots+a^{-x_{q+m+n}} \leq \frac{1}{p}\right\}
$$

Set

$$
F(k, p, q, m, n)=\left\{x: a^{-x_{q+m}}+a^{-x_{q+m+1}}+\ldots+a^{-x_{q+m+n}} \leq \frac{1}{p}\right\}
$$

Let $x^{(r)}=\left\{x_{n}^{r}\right\}_{n=1}^{\infty} \in F(k, p, q, m, n)$ and $\lim _{r \rightarrow \infty} x^{(r)}=x$. So $\lim _{r \rightarrow \infty} a^{-x_{n}{ }^{(r)}}=a^{-x_{n}}$ for each $n=q+m, q+m+1, q+m+2, \ldots, q+m+n$, whence $x \in F(k, p, q, m, n)$. Consequently, each of the set $F(k, p, q, m, n)$ is closed. This proves that H^{t} is an $F_{\sigma \delta \sigma}$ set. Hence, the set $\{x \in S: \phi(x)<t\}$ belongs to the third additive Borel class.

We now investigate the set H_{t}.
If $t<1$, then $H_{t}=S$ and the theorem is true.
If $t \geq 1$, then

$$
\begin{aligned}
H_{t} & =\{x \in S: \phi(x)>t\} \\
& =\bigcup_{k=1}^{\infty}\left\{x=\left\{x_{i}\right\}_{i=1}^{\infty} \in S: \sum_{i=1}^{\infty}\left(t+\frac{1}{k}\right)^{-x_{i}}=\infty\right\}
\end{aligned}
$$

Consider the set $G(k)=\left\{x=\left\{x_{i}\right\}_{i=1}^{\infty} \in S: \sum_{i=1}^{\infty}(a)^{-x_{i}}=\infty\right\}$, where $a=t+1 / k$, $k=1,2,3, \ldots$. Then,

$$
G(k)=\bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{m=1}^{\infty}\left\{x \in S: \sum_{i=1}^{q+m}(a)^{-x_{i}} \geq p\right\}, \quad k=1,2, \ldots
$$

It is clear that each of the sets $G(k, p, q, m)=\left\{x \in S: \sum_{i=1}^{q+m}(a)^{-x_{i}} \geq p\right\}$ is closed. Therefore, the set

$$
\{x \in S: \phi(x)>t\}=\bigcup_{k=1}^{\infty} \bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{m=1}^{\infty} G(k, p, q, m)
$$

is an $F_{\sigma \delta \sigma}$ set, i.e. H_{t} belongs to the third additive Borel class.
Theorem 1.3. The set $H^{t}=\{x \in S: \phi(x)<t\}$ is of first category for every $t \in(-\infty, \infty)$.

Proof. It follows from the previous theorem that

$$
H^{t}=\bigcup_{k=k_{0}}^{\infty} \bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} F(k, p, q, m, n)=\bigcup_{k=k_{0}}^{\infty} \bigcap_{p=1}^{\infty} F(k, p)
$$

where

$$
F(k, p)=\left\{x \in S: \underset{q=1}{\exists} \underset{m=1}{\forall} \underset{n=1}{\forall}\left\{a^{-x_{q+m}}+a^{-x_{q+m+1}}+\ldots+a^{-x_{q+m+n}} \leq \frac{1}{p}\right\}\right\} .
$$

In order to show that each of the set $F(k, p)$ is of first category in S, it is sufficient to show that $F(k, p)$ is an F_{σ} set and its complement is dense in S.

Let $\varepsilon>0$. Let $u=\left\{u_{n}\right\}_{n}$ and $B(u, \varepsilon)$ be an open sphere with u as the center and ε as the radius. Let r be the smallest positive integer such that $\sum_{i=r+1}^{\infty} 1 / 2^{i}<\varepsilon$. Define a sequence $x=\left\{x_{n}\right\}$ in S as follows: $x_{i}=u_{i}$ for $i=1,2, \ldots r$.

If $x_{r} \leq r+1$, take $x_{h}=\frac{1}{h}$, for $h=r+1, r+2, \ldots$
If $x_{r}>r+1$, set $x_{j}=u_{r}$, for $j=r+1, r+2, \ldots, l-1$, where l is the smallest positive integer for which $l \geq x_{r}$ and $x_{h}=\frac{1}{h}, h=l, l+1, l+2, \ldots$.
Therefore, we can find an integer q such that $x_{i}=1 / i$ for $i=q, q+1, q+2, \ldots$. Clearly $x=\left\{x_{n}\right\}_{n} \in B(u, \varepsilon)$. For every integer q, there exist integers m and n such that

$$
a^{-1 /(q+m+1)}+a^{-1 /(q+m+2)}+\ldots \ldots+a^{-1 /(q+m+n)}=\sum_{\alpha=q+m+1}^{q+m+n} a^{-1 / \alpha}>\frac{1}{p}
$$

since the series $\sum_{n=1}^{\infty} a^{-1 / n}$ is divergent. Thus, the complement of $F(k, p)$ is dense in S. Also each of the set $F(k, p, q, m, n)$ is closed and hence

$$
F(k, p)=\bigcup_{q=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} F(k, p, q, m, n)
$$

is an F_{σ} set. Then $F(k, p)$ is of first category in S. But

$$
\begin{aligned}
F(k) & =\left\{x=\left\{x_{i}\right\}_{i=1}^{\infty} \in S: \sum_{i=1}^{\infty} a^{-x_{i}}<\infty\right\} \text { for some } a>1, \quad 1<a<t \\
& =\{x \in S: \phi(x)<t\}=H^{t}
\end{aligned}
$$

Hence, $H^{t}=\bigcup_{k=k_{0}}^{\infty} \bigcap_{p=1}^{\infty} F(k, p)$ is of first category in S.
Theorem 1.4. The set $\{x \in S: \phi(x)=\infty\}$ is residual in S.
Proof. By Theorem 1.3, the set

$$
\{x \in S: \phi(x)<\infty\}=\bigcup_{n=1}^{\infty}\{x \in S: \phi(x)<n\}
$$

is of first category in S and also the space S is complete. Hence, the set $\{x \in S$: $\phi(x)=\infty\}$ is residual in S.

Theorem 1.5. The function ϕ is discontinuous everywhere in S.
Proof. Let $x=\left\{x_{k}\right\} \in S$. We choose a sequence $y=\left\{y_{k}\right\} \in S$ such that $\phi(x) \neq \phi(y)$. Let $\delta>0$. It is sufficient to show that there exists a sequence $z=\left\{z_{k}\right\}$ in the neighborhood $B(x, \delta)$ such that $\phi(z)=\phi(y)$. For $\delta>0$, let l
be the smallest positive integer such that $\sum_{i=l+1}^{\infty} 1 / 2^{i}<\delta$. Now, we consider the sequence $\left\{z_{k}\right\}_{k=1}^{\infty}$ as follows:

$$
z_{k}= \begin{cases}x_{k}, & \text { for } k \leq l \\ y_{k}, & \text { for } k>l\end{cases}
$$

It is clear that $z \in B(x, \delta)$ and

$$
\begin{aligned}
\phi(z) & =\inf \left\{p>1: \sum_{k=1}^{\infty} p^{-z_{k}}<\infty\right\} \\
& =\inf \left\{p>1:\left(\sum_{k=1}^{l} p^{-x_{k}}+\sum_{k=l+1}^{\infty} p^{-y_{k}}\right)<\infty\right\} \\
& =\inf \left\{p>1: \sum_{k=1}^{\infty} p^{-y_{k}}+\left(\sum_{k=1}^{l} p^{-x_{k}}-\sum_{k=1}^{l} p^{-y_{k}}\right)<\infty\right\} \\
& =\inf \left\{p>1: \sum_{k=1}^{\infty} p^{-y_{k}}<\infty\right\} \\
& =\phi(y)
\end{aligned}
$$

Hence ϕ is discontinuous everywhere in S.
Corollary 1.6. ϕ does not belong to the first Baire class.
We now investigate the connected property of $\phi: S \rightarrow(1, \infty)$. Here we show that for any arbitrary subset of $(1, \infty)$, there exists a connected pre-image in S under ϕ. For this purpose we introduce the following lemma.

Lemma 1.7. For $a \in(1, \infty)$, we consider the set

$$
\begin{aligned}
D_{a}^{i}=\left\{y(t)=\left\{y_{k}\right\} \in S: y_{k}\right. & =t \cdot x_{k}, \quad \text { for } k \leq i, \quad \text { and } \\
y_{k} & \left.=x_{k}, \quad \text { for } k>i, \quad 0<t \leq 1\right\}
\end{aligned}
$$

where $i \in \mathbb{N}$ and $\phi(x)=a$, for some $x=\left\{x_{k}\right\}_{k=1}^{\infty} \in S$. Then $D_{a}=\bigcup_{i \in \mathbb{N}} D_{a}^{i}$ is connected and $\phi\left(D_{a}\right)=a$.

Proof. Since $\left\{x_{n}\right\} \in D_{a}, D_{a}$ is nonempty. It is clear that $\phi\left(D_{a}\right)=a$. Now our goal is to show that D_{a} is connected. For this purpose we define a function $f:(0,1] \rightarrow S$ by

$$
f(t)=y(t), \text { for } t \in(0,1] \text { and } y(t) \in D_{a}^{i} .
$$

It is clear that f is continuous in t on $(0,1]$. So, $f(0,1]=D_{a}^{i}$ is a connected set in S. Again $f(1)=\left\{x_{n}\right\} \in D_{a}^{i}$ for each $i \in \mathbb{N}$ and hence $\bigcap_{i \in \mathbb{N}} D_{a}^{i} \neq \phi$. Thus $\bigcup_{i \in \mathbb{N}} D_{a}^{i}=D_{a}$ is connected.

Theorem 1.8. Let B be an arbitrary nontrivial subset of $(1, \infty)$. Then there exists a connected set $D \subseteq S$ such that $\phi(D)=B$.

Proof. Let $a \in B$. Since ϕ is onto, there exists $x=\left\{x_{n}\right\} \in S$ such that $\phi(x)=a$. Define the set $D_{a}=\bigcup_{i \in \mathbb{N}} D_{a}^{i}$, where

$$
\begin{aligned}
D_{a}^{i}=\left\{y(t)=\left\{y_{k}\right\} \in S: y_{k}\right. & =t \cdot x_{k}, \text { for } k \leq i, \quad \text { and } \\
y_{k} & \left.=x_{k}, \text { for } k>i, \quad 0<t \leq 1\right\}
\end{aligned}
$$

where $i \in \mathbb{N}$. Let $D=\bigcup_{a \in B} D_{a}$. Then by the previous lemma, $\phi\left(D_{a}\right)=a$. Therefore $\phi(D)=B$. We are to show that D is connected. Let $a_{1}, a_{2} \in B$ be such that $a_{1} \neq a_{2}$. Then there exist $x^{(1)}=\left\{x_{n}^{(1)}\right\}_{n=1}^{\infty}$ and $x^{(2)}=\left\{x_{n}^{(2)}\right\}_{n=1}^{\infty} \in S$ such that $\phi\left(x^{(1)}\right)=a_{1}$ and $\phi\left(x^{(2)}\right)=a_{2}$. Let $y=\left\{y_{n}\right\} \in D_{a_{1}}$ and $\varepsilon>0$. Since $\left\{y_{n}\right\} \in D_{a_{1}}$, there exists $i \in \mathbb{N}$ such that

$$
y_{n}= \begin{cases}t \cdot x_{n}^{(1)}, & \text { for } n \leq i, \\ x_{n}^{(1)}, & \text { for } k>i, \quad 0<t \leq 1 \text { and } i \in \mathbb{N}\end{cases}
$$

We choose $j \in \mathbb{N}$ such that $\sum_{k=j+1}^{\infty} 1 / 2^{k}<\varepsilon$. We construct a sequence $z=\left\{z_{k}\right\} \in S$ as follows

$$
z_{k}= \begin{cases}y_{k}, & \text { for } k \leq j \\ x_{k}^{(2)}, & \text { for } k>j ; k \in \mathbb{N}\end{cases}
$$

Then $z \in D_{a_{2}}$ and $d(y, z)<\varepsilon$. This shows that every ε-ball of y contains a member of $D_{a_{2}}$. So $y \in \overline{D_{a_{2}}}$, where the symbol 'bar' indicates the closure of the set. Hence $D_{a_{1}} \subseteq \overline{D_{a_{2}}}$. Similarly $D_{a_{2}} \subseteq \overline{D_{a_{1}}}$. Therefore, $D_{a_{1}}$ and $D_{a_{2}}$ are not separated. This implies that no two of the sets $\left\{D_{a_{i}}, a_{i} \in B\right\}$ are separated. Thus D is connected. This completes the proof.

Corollary 1.9. The function $\phi: S \rightarrow(1, \infty)$ is not Darboux.

References

1. Kostyrko P., Note on the exponent of convergence, Acta. Fac. Rer. Nat. Univ. Com 34 (1979), 29-58.
2. Kostyrko P. and Šalát T., On the exponent of convergence, Rend. Circ. Mat. Palermo Ser. II XXXI (1982), 187-194.
3. Goffman, C. and Pedric G., First course in Functional Analysis, Prentice Hall of India Private Limited, New Delhi 1974.
4. Pólya G. and Szegö G., Aufgaben und Lehrsätze aus der Analysis I (Russian Translation), Nauka, Moskva 1978.
5. Šalát T., On exponent of convergence of subsequences, Czechoslovak Mathematical Journal 34 (109), 1984.
D. K. Ganguly, Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular road, Calcutta-700019, India, e-mail: gangulydk@yahoo.co.in
A. Dafadar, Department of Pure Mathematics,University of Calcutta, 35 Ballygunge Circular road, Calcutta-700019, India, e-mail: alauddindafadar@yahoo.com
B. Biswas, Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular road, Calcutta-700019, India, e-mail: bablubiswas100@yahoo.com
