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ON SOME PROPERTIES OF A FUNCTION CONNECTING
WITH AN INFINITE SERIES

D. K. GANGULY, A. DAFADAR and B. BISWAS

Abstract. An attempt has been made in this paper to investigate some set the-

oretic properties of a function suitably defined on the space of all sequences of
non-negative real numbers endowed with Fréchet metric.

0. Introduction

Inspiration for this paper arises from the papers [1], [2] where the authors proved
several interesting theorems in relation to Borel and Baire classifications of func-
tions defined by the exponent of convergence of the family of all non-decreasing
sequences of real numbers, the first term of which is at least γ where γ is a pos-
itive real number, endowed with Fréchet metric. Our approach in this paper is
somewhat different. Instead of taking the family of all non-decreasing sequences
x = {ξk}∞k=1 of real numbers with ξ1 > 0, we consider the set of all sequences
of non-negative real numbers with Fréchet metric and after defining a function
suitably different from [1], [2] we study the behaviour of the function from various
aspects.

Let X be the set of all real sequences {xn} with Fréchet metric d(x, y) given by

d(x, y) =
∞∑
k=1

1
2k

|x
k
− y

k
|

1 + |x
k
− y

k
|

where x = {x
k
}, y = {y

k
} ∈ X.

The metric space (X, d) is complete. Let S denote the set of all sequences {xn}
of non-negative real numbers with Fréchet metric. The convergence in this space
is considered to be the point-wise convergence.

Let x ∈ S and r > 0. We denote by B(x, r), the open sphere with x as the
center and r as the radius. It follows easily that if xn = yn for n = 1, 2, 3, . . . , N ,
then y ∈ B(x, 1

2N ). If x, y etc. are points of S, we shall represent them generally
by x = {xk}, y = {yk} etc. Also N denotes the set of positive integers and R
denotes the set of real numbers. On the space S we shall define a real function

Received July 16, 2009; revised October 11, 2009.
2000 Mathematics Subject Classification. Primary 40A05.
Key words and phrases. Borel classification of sets; first category; residual sets; first Baire

class of sets and Darboux property.



218 D. K. GANGULY, A. DAFADAR and B. BISWAS

φ : S → [1,∞) as follows

φ(x) = inf

{
p > 1 :

∞∑
n=1

p−xn <∞

}
, for x = {xn} ∈ S.

It may happen that φ(x) = +∞. We shall study some properties of φ : S → [1,∞).
The interval [1,∞) is considered with usual topology.

Proposition 0.1. Let {an} ∈ S, an > 0 be such that
∑∞
n 1/an < ∞ and

sup a1/xn
n > 0, where {xn} ∈ S, xn > 0. Then there exists a > 0 such that∑∞

n=1 a
−xn <∞.

Proof. Take a = sup a1/xn
n . Then a > 0. Since sup a1/xn

n = a, we have a1/xn
n ≤

a, for all n ∈ N. Therefore
∑∞
n=1 a

−xn ≤
∑∞
n=11/an <∞. Hence the result. �

In support of the proposition we present an example.

Example. Let xn = log n, n > 1 and an = n2. Then a
1/xn
n = (n2)1/ logn =

(e2 logn)1/ logn = e2, for each n > 1. Take a = e2.

Proposition 0.2. (S, d) is complete and has the power of continuum.

Proof. Let {x(r)
n }r ∈ S be any sequence converging to x = {xn}. Since the

convergence in S is the point-wise convergence in the sense of Fréchet metric, it
follows that x ∈ S and S becomes a closed set. Let x = {xn} ∈ S. Then we have
a sequence x(r) = {x(r)

n }n ∈ S such that limr→∞x
(r) = x where

x
(r)
k = xk, for k = 1, 2, . . . r

and x
(r)
k = xk + 1, for k > r; r ∈ N.

So, S becomes a perfect set and therefore S has the cardinal number c where c is
the power of continuum and hence (S,d) is complete. �

1. Some set theoretic properties of the function φ

Theorem 1.1. The function φ : S → (1,∞) is onto but not one-to-one.

Proof. Let A = {an}∞n=1 be a monotonic increasing sequence with an → ∞
as n → ∞. It is well known ([4, p. 40]) that there exists a unique λ = λ(A),
0 ≤ λ(A) ≤ ∞ such that

∞∑
n=1

a−σn = +∞, for each σ ∈ R, σ > 0, σ < λ

and
∞∑
n=1

a−σn < +∞, for each σ ∈ R, σ > 0, σ > λ,

i.e.
λ(A) = inf{σ > 0 :

∑∞

n=1
a−σn < +∞}.

Now, we can choose such a sequence A = {an}∞n=1 with λ(A) = +∞.
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We know [5] that the function λ : (0, 1]→ [0,∞) is onto. Then for 1 < a <∞,
there exists a subsequence {ank

}∞k=1 of {an}∞n=1 such that

a = inf

{
σ > 0 :

∞∑
k=1

a−σnk
< +∞

}
.

Now, we show that there exists y ∈ S such that φ(y) = a.
Let t = a

log a and choose y = {yn}∞n=1 ∈ S such that yk = log atnk
. Now, for any

real number b > a,
∞∑
k=1

(b)− log at
nk =

∞∑
k=1

(e)(− log b) log at
nk =

∞∑
k=1

a−t log bnk
< +∞,

since t log b > a.
Again if c is a real number such that 1 < c < a, then

∞∑
k=1

(c)− log at
nk =

∞∑
k=1

(e)(− log c) log at
nk =

∞∑
k=1

a−t log cnk
= +∞,

since t log c < a.
Therefore

inf

{
p > 1 :

∞∑
k=1

p− log at
nk <∞

}
= a,

i.e. φ(y) = a.
We now show that φ is not one-to-one.
Let a ∈ (1,∞). Then there exists x = {xn}∞n=1 ∈ S such that φ(x) = a, i.e.

a = inf

{
p > 1 :

∞∑
n=1

p−xn <∞

}
.

Let yn = xn+1, for n = 1, 2, 3, . . .. Then y = {yn}∞n=1 ∈ S. Clearly

inf

{
p > 1 :

∞∑
n=1

p−yn <∞

}
= a,

i.e. φ(y) = a. So φ(x) = φ(y) when x 6= y. Therefore, φ is not one-to-one. �

Theorem 1.2. The sets Ht = {x ∈ S : φ(x) < t} and Ht = {x ∈ S : φ(x) > t}
belong to the third additive Borel class for every t ∈ (−∞,∞).

Proof. If t ≤ 1, then Ht = φ and the theorem is true.
Let t > 1. Then,

Ht = {x ∈ S : φ(x) < t}

= {x = {xi}∞i=1
∈ S :

∞∑
i=1

(a)−xi <∞}, for some a > 1 and 1 < a < t,

= {x ∈ S :
∞∑
i=1

(
t− 1

k

)−xi

<∞},
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for k ≥ k0 and k0 is the least positive integer such that a = t− 1/k > 1.
We consider F (k) = {x = {xi}∞i=1

∈ S :
∑∞
i=1 a

−xi < ∞}, for some a > 1 and
1 < a < t, k = k0, k0 + 1, k0 + 2, . . . . Then

F (k) =
∞⋂
p=1

∞⋃
q=1

∞⋂
m=1

∞⋂
n=1

{
x : a−xq+m + a−xq+m+1 + . . .+ a−xq+m+n ≤ 1

p

}
.

Set

F (k, p, q,m, n) =
{
x : a−xq+m + a−xq+m+1 + . . .+ a−xq+m+n ≤ 1

p

}
.

Let x(r) = {xrn}∞n=1 ∈ F (k, p, q,m, n) and lim
r→∞

x(r) = x. So lim
r→∞

a−xn
(r)

= a−xn

for each n = q+m, q+m+1, q+m+2, . . . , q+m+n, whence x ∈ F (k, p, q,m, n).
Consequently, each of the set F (k, p, q,m, n) is closed. This proves that Ht is an
Fσδσ set. Hence, the set {x ∈ S : φ(x) < t} belongs to the third additive Borel
class.

We now investigate the set Ht.
If t < 1, then Ht = S and the theorem is true.
If t ≥ 1, then

Ht = {x ∈ S : φ(x) > t}

=
∞⋃
k=1

{
x = {xi}∞i=1

∈ S :
∞∑
i=1

(
t+

1
k

)−xi

=∞

}
.

Consider the set G(k) = {x = {xi}∞i=1
∈ S :

∑∞
i=1 (a)−xi =∞}, where a = t+1/k,

k = 1, 2, 3, . . . . Then,

G(k) =
∞⋂
p=1

∞⋃
q=1

∞⋂
m=1

{
x ∈ S :

q+m∑
i=1

(a)−xi ≥ p

}
, k = 1, 2, . . . .

It is clear that each of the sets G(k, p, q,m) = {x ∈ S :
∑q+m
i=1 (a)−xi ≥ p} is

closed. Therefore, the set

{x ∈ S : φ(x) > t} =
∞⋃
k=1

∞⋂
p=1

∞⋃
q=1

∞⋂
m=1

G(k, p, q,m)

is an Fσδσ set, i.e. Ht belongs to the third additive Borel class. �

Theorem 1.3. The set Ht = {x ∈ S : φ(x) < t} is of first category for every
t ∈ (−∞,∞).

Proof. It follows from the previous theorem that

Ht =
∞⋃

k=k0

∞⋂
p=1

∞⋃
q=1

∞⋂
m=1

∞⋂
n=1

F (k, p, q,m, n) =
∞⋃

k=k0

∞⋂
p=1

F (k, p),

where

F (k, p) =
{
x ∈ S :

∞
∃
q=1

∞
∀

m=1

∞
∀
n=1

{
a−xq+m + a−xq+m+1 + . . .+ a−xq+m+n ≤ 1

p

}}
.
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In order to show that each of the set F (k, p) is of first category in S, it is
sufficient to show that F (k, p) is an Fσ set and its complement is dense in S.

Let ε > 0. Let u = {un}n and B(u, ε) be an open sphere with u as the center and
ε as the radius. Let r be the smallest positive integer such that

∑∞
i=r+1 1/2i < ε.

Define a sequence x = {xn} in S as follows: xi = ui for i = 1, 2, . . . r.

If xr ≤ r + 1, take xh =
1
h

, for h = r + 1, r + 2, . . .

If xr > r + 1, set xj = ur, for j = r + 1, r + 2, . . . , l− 1, where l is the smallest

positive integer for which l ≥ xr and xh =
1
h

, h = l, l+1, l+2, . . ..

Therefore, we can find an integer q such that xi = 1/i for i = q, q+ 1, q+ 2, . . ..
Clearly x = {xn}n ∈ B(u, ε). For every integer q, there exist integers m and n
such that

a−1/(q+m+1) + a−1/(q+m+2) + . . . . . .+ a−1/(q+m+n) =
q+m+n∑
α=q+m+1

a−1/α >
1
p

since the series
∑∝
n=1 a

−1/n is divergent. Thus, the complement of F (k, p) is dense
in S. Also each of the set F (k, p, q,m, n) is closed and hence

F (k, p) =
∞⋃
q=1

∞⋂
m=1

∞⋂
n=1

F (k, p, q,m, n)

is an Fσ set. Then F (k, p) is of first category in S. But

F (k) = {x = {xi}∞i=1
∈ S :

∞∑
i=1

a−xi <∞} for some a > 1, 1 < a < t

= {x ∈ S : φ(x) < t} = Ht

Hence, Ht =
∞⋃

k=k0

∞⋂
p=1

F (k, p) is of first category in S. �

Theorem 1.4. The set {x ∈ S : φ(x) =∞} is residual in S.

Proof. By Theorem 1.3, the set

{x ∈ S : φ(x) <∞} =
∞⋃
n=1

{x ∈ S : φ(x) < n}

is of first category in S and also the space S is complete. Hence, the set {x ∈ S :
φ(x) =∞} is residual in S. �

Theorem 1.5. The function φ is discontinuous everywhere in S.

Proof. Let x = {xk} ∈ S. We choose a sequence y = {yk} ∈ S such that
φ(x) 6= φ(y). Let δ > 0. It is sufficient to show that there exists a sequence
z = {zk} in the neighborhood B(x, δ) such that φ(z) = φ(y). For δ > 0, let l
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be the smallest positive integer such that
∑∞
i=l+1 1/2i < δ. Now, we consider the

sequence {zk}∞k=1 as follows:

zk =
{
xk, for k ≤ l
yk, for k > l

It is clear that z ∈ B(x, δ) and

φ(z) = inf

{
p > 1 :

∞∑
k=1

p−zk <∞

}

= inf

{
p > 1 :

(
l∑

k=1

p−xk +
∞∑

k=l+1

p−yk

)
<∞

}

= inf

{
p > 1 :

∞∑
k=1

p−yk +

(
l∑

k=1

p−xk −
l∑

k=1

p−yk

)
<∞

}

= inf

{
p > 1 :

∞∑
k=1

p−yk <∞

}
,

= φ(y)

Hence φ is discontinuous everywhere in S. �

Corollary 1.6. φ does not belong to the first Baire class.

We now investigate the connected property of φ : S → (1,∞). Here we show
that for any arbitrary subset of (1,∞), there exists a connected pre-image in S
under φ. For this purpose we introduce the following lemma.

Lemma 1.7. For a ∈ (1,∞), we consider the set

Di
a = {y(t) = {yk} ∈ S : yk = t · xk, for k ≤ i, and

yk = xk, for k > i, 0 < t ≤ 1}

where i ∈ N and φ(x) = a, for some x = {xk}∞k=1 ∈ S. Then Da =
⋃
i∈N D

i
a is

connected and φ(Da) = a.

Proof. Since {xn} ∈ Da, Da is nonempty. It is clear that φ(Da) = a. Now
our goal is to show that Da is connected. For this purpose we define a function
f : (0, 1]→ S by

f(t) = y(t), for t ∈ (0, 1] and y(t) ∈ Di
a.

It is clear that f is continuous in t on (0, 1]. So, f(0, 1] = Di
a is a connected set

in S. Again f(1) = {xn} ∈ Di
a for each i ∈ N and hence

⋂
i∈N D

i
a 6= φ. Thus⋃

i∈N D
i
a = Da is connected. �

Theorem 1.8. Let B be an arbitrary nontrivial subset of (1,∞). Then there
exists a connected set D ⊆ S such that φ(D) = B.
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Proof. Let a ∈ B. Since φ is onto, there exists x = {xn} ∈ S such that φ(x) = a.
Define the set Da =

⋃
i∈N D

i
a, where

Di
a = {y(t) = {yk} ∈ S : yk = t · xk, for k ≤ i, and

yk = xk, for k > i, 0 < t ≤ 1}
where i ∈ N. Let D =

⋃
a∈B Da. Then by the previous lemma, φ(Da) = a.

Therefore φ(D) = B. We are to show that D is connected. Let a1, a2 ∈ B be
such that a1 6= a2. Then there exist x(1) = {x(1)

n }∞n=1 and x(2) = {x(2)
n }∞n=1 ∈ S

such that φ(x(1)) = a1 and φ(x(2)) = a2. Let y = {yn} ∈ Da1 and ε > 0. Since
{yn} ∈ Da1 , there exists i ∈ N such that

yn =

 t · x(1)
n , for n ≤ i,

x
(1)
n , for k > i, 0 < t ≤ 1 and i ∈ N.

We choose j ∈ N such that
∑∞
k=j+1 1/2k < ε. We construct a sequence z={z

k
}∈S

as follows

z
k

=

{
y

k
, for k ≤ j,

x
(2)
k , for k > j; k ∈ N.

Then z ∈ Da2 and d(y, z) < ε. This shows that every ε-ball of y contains a
member of Da2 . So y ∈ Da2 , where the symbol ’bar’ indicates the closure of the
set. Hence Da1 ⊆ Da2 . Similarly Da2 ⊆ Da1 . Therefore, Da1 and Da2 are not
separated. This implies that no two of the sets {Dai , ai ∈ B} are separated. Thus
D is connected. This completes the proof. �

Corollary 1.9. The function φ : S → (1,∞) is not Darboux.
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