ON THE RICCATTI DIFFERENTIAL POLYNOMIALS

A. AYAD

Abstract

In this paper we present some properties of the Riccatti differential polynomial associated with a homogeneous linear ordinary differential equation. We give a complete description of the differential Newton polygons of their derivatives and its evaluations.

1. Introduction

Many problems from quantum physics, optimal filtering and control can be modelized by Riccatti differential equations. Grigoriev [2] (see also [3]) has used a differential version of Newton polygons to compute formal power series solutions of Riccatti differential equations and consequently to factorize linear ordinary differential equations.

This paper will describe some properties of the Riccatti differential polynomials associated with homogeneous linear ordinary differential equations. First, we introduce them in Section 1. Second, we compute their derivatives in Section 2. Section 3 describes the Newton polygons of the Riccatti differential polynomials and their derivatives. Newton polygons of different evaluations of the Riccatti differential polynomials are given in Section 4.

Let K be a field and \bar{K} be an algebraic closure of K. Let $S(y)=0$ be a homogeneous linear ordinary differential equation of order n with coefficients in $K[x]$. This equation can be written in the form

$$
S(y)=s_{n} y^{(n)}+\cdots+s_{1} y^{\prime}+s_{0} y
$$

where $s_{i} \in K[x]$ for all $0 \leq i \leq n$ and $s_{n} \neq 0$. Let y_{0}, \ldots, y_{n} be new variables algebraically independent over $K(x)$. Let $\left(r_{i}\right)_{i>0}$ be the following sequence of differential polynomials

$$
\begin{array}{ll}
r_{0}=1, \quad r_{1}=y_{0}, & r_{2}=y_{0}^{2}+y_{1} \\
r_{3}=y_{0}^{3}+3 y_{0} y_{1}+y_{2}, & r_{i+1}=y_{0} r_{i}+D r_{i}, \quad \text { for all } i \geq 1
\end{array}
$$

Received December 3, 2009; revised June 10, 2010.
2000 Mathematics Subject Classification. Primary 12H05; Secondary 34A26.
Key words and phrases. Symbolic computations; homogeneous linear ordinary differential equations; Riccatti differential polynomials and Newton polygons.

We gratefully thank Professor Dimitri Grigoriev for his help in the redaction of this paper, and more generally for his suggestions about the approach presented here.
where $D y_{i}=y_{i+1}$ for any $0 \leq i \leq n-1$. For all $i \geq 1, r_{i} \in \mathbb{Z}\left[y_{0}, \ldots, y_{i-1}\right]$ has total degree equal to i w.r.t. y_{0}, \ldots, y_{i-1} and the only term of r_{i} of degree i is y_{0}^{i}.

Definition 1.1. The non-linear differential polynomial

$$
R=s_{n} r_{n}+\cdots+s_{1} r_{1}+s_{0} r_{0} \in K[x]\left[y_{0}, \ldots, y_{n}\right]
$$

is called the Riccatti differential polynomial associated with $S(y)=0$. The equation $R(y):=R\left(y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x}\right)=0$ is called the Riccatti differential equation associated with $S(y)=0$.

Remark 1. The Riccatti differential equations defined in Definition 1.1 are a generalization of the well-known first order Riccatti differential equations. Namely, for $n=2$, i.e., $S(y)=s_{2} y^{\prime \prime}+s_{1} y^{\prime}+s_{0} y$, the Riccatti differential equation associated with $S(y)=0$ is the following first order Riccatti differential equation

$$
R(y)=s_{2} y^{\prime}+s_{2} y^{2}+s_{1} y+s_{0}=0
$$

Lemma 1.2. Let R be the Riccatti differential polynomial associated with $S(y)=0 . y$ is a solution of $S(y)=0$ if and only if $\frac{y^{\prime}}{y}$ is a solution of $R(y)=0$.

Proof. See page 12 of [2] (See also [4]).
Another way to compute the Riccatti differential polynomial associated with $S(y)=0$ is by considering the change of variable $z=\frac{y^{\prime}}{y}$, i.e., $y^{\prime}=z y$, one computes the successive derivatives of y and we put them in the equation $S(y)=0$ to get a non-linear differential equation $R(z)=0$ which satisfies the property of Lemma 1.2.

2. Partial derivatives of the Riccatti differential polynomial

For each $i \geq 0$ and $k \geq 0$, the k-th derivative of r_{i} is the differential polynomial defined by

$$
\begin{aligned}
& r_{i}^{(0)}:=r_{i}, \quad r_{i}^{(1)}:=r_{i}^{\prime}:=\frac{\partial r_{i}}{\partial y_{0}} \\
& r_{i}^{(k+1)}:=\left(r_{i}^{(k)}\right)^{\prime}=\frac{\partial^{k+1} r_{i}}{\partial y_{0}^{k+1}}
\end{aligned}
$$

Lemma 2.1. For all $i \geq 1$, we have $r_{i}^{\prime}=i r_{i-1}$. Thus for all $k \geq 0, r_{i}^{(k)}=$ $(i)_{k} r_{i-k}$, where $(i)_{0}:=1$ and $(i)_{k}:=i(i-1) \cdots(i-k+1)$.

Proof. We prove the first item by induction on i. For $i=1$, we have $r_{1}^{\prime}=$ $1=1 \cdot r_{0}$. Suppose that this property holds for a certain i and prove it for $i+1$. Namely,

$$
\begin{aligned}
r_{i+1}^{\prime} & =\left(y_{0} r_{i}+D r_{i}\right)^{\prime}=y_{0} r_{i}^{\prime}+r_{i}+D r_{i}^{\prime} \\
& =i y_{0} r_{i-1}+r_{i}+D\left(i r_{i-1}\right)=i\left(y_{0} r_{i-1}+D r_{i-1}\right)+r_{i} \\
& =i r_{i}+r_{i}=(i+1) r_{i} .
\end{aligned}
$$

The second item can be easily deduced from the the first item by induction on k.

Definition 2.2. Let R be the Riccatti differential polynomial associated with $S(y)=0$. For any $k \geq 0$, the k-th derivative of R is defined by

$$
R^{(k)}:=\frac{\partial^{k} R}{\partial y_{0}^{k}}=\sum_{0 \leq i \leq n} s_{i} r_{i}^{(k)}
$$

Lemma 2.3. For all $k \geq 0$, we have

$$
R^{(k)}=\sum_{0 \leq i \leq n-k}(i+k)_{k} s_{i+k} r_{i} .
$$

Proof. For all $i<k$, we have $r_{i}^{(k)}=0$, because $\operatorname{deg}_{y_{0}}\left(r_{i}\right)=i$. Then by Lemma 2.1, we get

$$
\begin{aligned}
R^{(k)} & =\sum_{k \leq i \leq n} s_{i} r_{i}^{(k)} \\
& =\sum_{k \leq i \leq n} s_{i}(i)_{k} r_{i-k} \\
& =\sum_{0 \leq j \leq n-k}(j+k)_{k} s_{j+k} r_{j},
\end{aligned}
$$

where the last equality is done by the change $j=i-k$.
Corollary 2.4. For all $k \geq 0$, the k-th derivative of R is the Riccatti differential polynomial of the following linear ordinary differential equation of order $n-k$

$$
S^{(k)}(y):=\sum_{0 \leq i \leq n-k}(i+k)_{k} s_{i+k} y^{(i)} .
$$

Proof. By Definition 1.1 and Lemma 2.3.
Remark 2. If $s_{i} \in K$ for all $0 \leq i \leq n$, then $S^{(k)}$ is the k-th derivative of S w.r.t. x.

3. Newton polygon of the Riccatti differential polynomial AND ITS DERIVATIVES

Definition 3.1. Let $F\left(y_{0}, \ldots, y_{n}\right)=\sum_{i \in \mathbb{Q}, \alpha \in A} c_{i, \alpha} x^{i} y_{0}^{\alpha_{0}} \cdots y_{n}^{\alpha_{n}}$ be a multivariate polynomial in y_{0}, \ldots, y_{n} with coefficients $c_{i, \alpha} \in K$, where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ belongs to a finite subset A of \mathbb{N}^{n+1}. For every couple $(i, \alpha) \in \mathbb{Q} \times A$ such that $c_{i, \alpha} \neq 0$, we mark the point

$$
P_{i, \alpha}:=\left(i-\alpha_{1}-2 \alpha_{2}-\cdots-n \alpha_{n}, \alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}\right) \in \mathbb{Q} \times \mathbb{N},
$$

and we denote by $P(F)$ the set of all the points $P_{i, \alpha}$. The convex hull of these points and the point $(+\infty, 0)$ in the plane \mathbb{R}^{2} is denoted by $\mathcal{N}(F)$ and is called the Newton polygon of the differential equation $F(y)=0$ in the neighborhood of $x=0$. If $\operatorname{deg}_{y_{0}, \ldots, y_{n}}(F)=m$, then $\mathcal{N}(F)$ is located between the two horizontal lines $y=0$ and $y=m$.

- For any $(a, b) \in \mathbb{Q}^{2} \backslash\{(0,0)\}$, we define the set

$$
N(F, a, b):=\left\{(u, v) \in P(F), \forall\left(u^{\prime}, v^{\prime}\right) \in P(F), \quad a u^{\prime}+b v^{\prime} \geq a u+b v\right\} .
$$

- A point $P_{i, \alpha} \in P(F)$ is a vertex of the Newton polygon $\mathcal{N}(F)$ if there exists $(a, b) \in \mathbb{Q}^{2} \backslash\{(0,0)\}$ such that $N(F, a, b)=\left\{P_{i, \alpha}\right\}$. We remark that $\mathcal{N}(F)$ has a finite number of vertices. We denote by $V(F)$ the set of all vertices p of $\mathcal{N}(F)$ for which $a>0$ and $b \geq 0$. By the inclination of a line we mean the negative inverse of its geometric slope. If $p \in V(F)$ and $N(F, a, b)=\{p\}$ for a certain $(a, b) \in \mathbb{Q}^{2} \backslash\{(0,0)\}$, then the fraction $\mu=\frac{b}{a} \in \mathbb{Q}$ is the inclination of a straight line which intersects $\mathcal{N}(F)$ exactly in the vertex p.
- A pair of different vertices $e=\left(P_{i, \alpha}, P_{i^{\prime}, \alpha^{\prime}}\right)$ forms an edge of $\mathcal{N}(F)$ if there exists $(a, b) \in \mathbb{Q}^{2} \backslash\{(0,0)\}$ such that $e \subset N(F, a, b)$. We denote by $E(F)$ the set of all the edges e of $\mathcal{N}(F)$ for which $a>0$ and $b \geq 0$. It is easy to prove that if $e \in E(F)$, then there exists a unique pair $(a(e), b(e)) \in \mathbb{Z}^{2}$ such that $a(e)>0, b(e) \geq 0$ are relatively prime and $e \subset N(F, a(e), b(e))$. If $e \in E(F)$, we can prove that the fraction $\mu_{e}=\frac{b(e)}{a(e)} \in \mathbb{Q}$ is the inclination of the straight line passing through the edge e.
- For each edge $e \in E(F)$, we define the univariate polynomial (in a new variable Z)
$H_{(F, e)}(Z)=\sum_{P_{i, \alpha} \in N(F, a(e), b(e))} c_{i, \alpha} Z^{\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}}\left(\mu_{e}\right)_{1}^{\alpha_{1}} \cdots\left(\mu_{e}\right)_{n}^{\alpha_{n}} \in K[Z]$,
where $\left(\mu_{e}\right)_{k}:=\mu_{e}\left(\mu_{e}-1\right) \cdots\left(\mu_{e}-k+1\right)$ for any positive integer k. We call $H_{(F, e)}(Z)$ the characteristic polynomial of F associated with the edge $e \in E(F)$. Its degree is at most $m=\operatorname{deg}_{y_{0}, \ldots, y_{n}}(F)$.
- For each vertex $p=(u, v) \in V(F)$, let $\mu_{1}<\mu_{2}$ be the inclinations of the adjacent edges at p in $\mathcal{N}(F)$. It is easy to prove that for all rational numbers $\mu=\frac{b}{a}, a \in \mathbb{N}^{*}, b \in \mathbb{N}$ such that $N(F, a, b)=\{p\}$, we have $\mu_{1}<\mu<\mu_{2}$. We associate with p the polynomial

$$
h_{(F, p)}(\mu)=\sum_{P_{i, \alpha}=p} c_{i, \alpha}(\mu)_{1}^{\alpha_{1}} \cdots(\mu)_{n}^{\alpha_{n}} \in K[\mu],
$$

which is called the indicial polynomial of F associated with the vertex p (here μ is considered as an indeterminate). Let $H_{(F, p)}(Z)=Z^{v} h_{(F, p)}(\mu)$ defined as above for edges $e \in E(F)$.

- Let $p=(u, v) \in V(F)$ and e be the edge of $\mathcal{N}(F)$ descending from p, then $h_{(F, p)}\left(\mu_{e}\right)$ is the coefficient of the monomial Z^{v} in the expansion of the characteristic polynomial of F associated with e.
Let R be the Riccatti differential polynomial associated with $S(y)=0$. We will describe the Newton polygons of R and polynomial derivatives. For every $0 \leq i \leq n$, we mark the points $\left(\operatorname{deg}\left(s_{i}\right), i\right)$ and $\left(\operatorname{ord}\left(s_{i}\right), i\right)$ in the plane \mathbb{R}^{2}, where $\operatorname{ord}\left(s_{i}\right)$ is the order of multiplicity of 0 as a root of the polynomial s_{i}. Let \mathcal{N} be the convex hull of these points and the two points $\left(\min _{0 \leq i \leq n}\left\{\operatorname{ord}\left(s_{i}\right)-i+1\right\}, 1\right)$ and $(+\infty, 0)$.

Lemma 3.2. \mathcal{N} is the Newton polygon of R, i.e., $\mathcal{N}(R)=\mathcal{N}$.
Proof. For all $0 \leq i \leq n, \operatorname{deg}_{y_{0}, \ldots, y_{i-1}}\left(r_{i}\right)=i$ and the only term of r_{i} of degree i is y_{0}^{i}, then $l c\left(s_{i}\right) x^{\operatorname{deg}\left(s_{i}\right)} y_{0}^{i}$ is a term of R and $\mathcal{N} \subset \mathcal{N}(R)$. For any other term of
$s_{i} r_{i}$ in the form $b x^{j} y_{0}^{\alpha_{0}} \cdots y_{i-1}^{\alpha_{i-1}}$, where $b \in K, j<\operatorname{deg}\left(s_{i}\right)$ and $\alpha_{0}+\cdots+\alpha_{i-1}<i$, the corresponding point $\left(j-\alpha_{1}-\cdots-(i-1) \alpha_{i-1}, \alpha_{0}+\cdots+\alpha_{i-1}\right)$ is in the interior of \mathcal{N}. Thus $\mathcal{N}(R) \subset \mathcal{N}$.

Lemma 3.3. For any edge e of $\mathcal{N}(R)$, the characteristic polynomial of R associated with e is a non-zero polynomial. For any vertex p of $\mathcal{N}(R)$, the indicial polynomial of R associated with p is a non-zero constant. Moreover, if the ordinate of p is i_{0}, then $h_{(R, p)}(\mu)=l c\left(s_{i_{0}}\right) \neq 0$, where $l c\left(s_{i_{0}}\right) \in K$ is the leading coefficient of $s_{i_{0}}$.

Proof. By Lemma 3.2, each edge $e \in E(R)$ joints two vertices $\left(\operatorname{deg}\left(s_{i_{1}}\right), i_{1}\right)$ and $\left(\operatorname{deg}\left(s_{i_{2}}\right), i_{2}\right)$ of $\mathcal{N}(R)$. Moreover, the set $N(R, a(e), b(e))$ contains these two points. Then

$$
0 \neq H_{(R, e)}(Z)=l c\left(s_{i_{1}}\right) Z^{i_{1}}+l c\left(s_{i_{2}}\right) Z^{i_{2}}+t
$$

where t is a sum of terms of degree different from i_{1} and i_{2}. For any vertex $p \in V(R)$ of ordinate $i_{0}, l c\left(s_{i_{0}}\right) x^{\operatorname{deg}\left(s_{i_{0}}\right)} y_{0}^{i_{0}}$ is the only term of R with the corresponding point p. Then

$$
h_{(R, p)}(\mu)=l c\left(s_{i_{0}}\right) \neq 0
$$

Let $0 \leq k \leq n$ and $R^{(k)}$ be the k-th derivative of R which is the k-th partial derivative of \bar{R} w.r.t. y_{0} (Definition 2.2). Then by [1, Section 2], the Newton polygon of $R^{(k)}$ is the translation of that of R defined by the point $(0,-k)$, i.e., $\mathcal{N}\left(R^{(k)}\right)=\mathcal{N}(R)+\{(0,-k)\}$. The vertices of $\mathcal{N}\left(R^{(k)}\right)$ are among the points $\left(\operatorname{deg}\left(s_{i+k}\right), i\right)$ for $0 \leq i \leq n-k$ by Lemma 2.3. Then for each edge e_{k} of $\mathcal{N}\left(R^{(k)}\right)$, there are two possibilities:

- e_{k} is parallel to a certain edge e of $\mathcal{N}(R)$, i.e., e_{k} is the translation of e by the point $\{(0,-k)\}$.
- The upper vertex of e_{k} is the translation of the upper vertex of a certain edge e of $\mathcal{N}(R)$ and the lower vertex of e_{k} is the translation of a certain point $\left(\operatorname{deg}\left(s_{i_{0}}\right), i_{0}\right)$ of $\mathcal{N}(R)$ which does not belong to e.
In both possibilities we say that the edge $e \in E(R)$ is associated with the edge $e_{k} \in E\left(R^{(k)}\right)$.

Lemma 3.4. Let $e_{k} \in E\left(R^{(k)}\right)$ be parallel to an edge $e \in E(R)$. Then the characteristic polynomial of $R^{(k)}$ associated with e_{k} is the k-th derivative of that of R associated with e, i.e.,

$$
H_{\left(R^{(k)}, e_{k}\right)}(Z)=H_{(R, e)}^{(k)}(Z)
$$

Proof. The edges e_{k} and e have the same inclination $\mu_{e}=\mu_{e_{k}}$ and $N\left(R^{(k)}, a\left(e_{k}\right), b\left(e_{k}\right)\right)=N(R, a(e), b(e))+\{(0,-k)\}$. Then

$$
\begin{aligned}
H_{\left(R^{(k)}, e_{k}\right)}(Z) & =\sum_{\left(\operatorname{deg}\left(s_{i+k}\right), i\right) \in N\left(R^{(k)}, a\left(e_{k}\right), b\left(e_{k}\right)\right)}(i+k)_{k} l c\left(s_{i+k}\right) Z^{i} \\
& =\sum_{\left(\operatorname{deg}\left(s_{j}\right), j\right) \in N(R, a(e), b(e))}(j)_{k} l c\left(s_{j}\right) Z^{j-k}=H_{(R, e)}^{(k)}(Z)
\end{aligned}
$$

4. Newton polygons of evaluations of the Riccatti differential polynomial

Let $0 \leq c \in \bar{K}, \mu \in \mathbb{Q}$ and $R_{1}(y)=R\left(y+c x^{\mu}\right)$ be the differential polynomial obtained from R by replacing y_{k} by $c(\mu)_{k} x^{\mu-k}+y_{k}$ for all $0 \leq k \leq n$. We will describe the Newton polygon of R_{1} for different values of c and μ.

Lemma 4.1. R_{1} is the Riccatti differential polynomial of the following linear ordinary differential equation of order less than or equal to n :

$$
S_{1}(y):=\sum_{0 \leq i \leq n} \frac{1}{i!} R^{(i)}\left(c x^{\mu}\right) y^{(i)}
$$

Proof. It is equivalent to prove the following analogy of Taylor formula

$$
R_{1}=\sum_{0 \leq i \leq n} \frac{1}{i!} R^{(i)}\left(c x^{\mu}\right) r_{i}
$$

which is done in [2, Lemma 2.1].
Then the vertices of $\mathcal{N}\left(R_{1}\right)$ are among the points $\left(\operatorname{deg}\left(R^{(i)}\left(c x^{\mu}\right), i\right)\right.$ for $0 \leq i \leq n$. Thus the Newton polygon of R_{1} is given by [2, Lemma 2.2]

Lemma 4.2. If μ is the inclination of an edge e of $\mathcal{N}(R)$, then the edges of $\mathcal{N}\left(R_{1}\right)$ situated above e are the same as in $\mathcal{N}(R)$. Moreover, if c is a root of $H_{(R, e)}$ of multiplicity $\eta>1$ then, $\mathcal{N}\left(R_{1}\right)$ contains an edge e_{1} parallel to e originating from the same upper vertex as e where the ordinate of the lower vertex of e_{1} equals to η. If $\eta=\operatorname{deg} H_{(R, e)}$, then $\mathcal{N}\left(R_{1}\right)$ contains an edge with inclination less than μ originating from the same upper vertex as e.

Remark 3. If we evaluate R on $c x^{\mu}$ we get

$$
R\left(c x^{\mu}\right)=\sum_{0 \leq i \leq n} s_{i} \times\left(c^{i} x^{i \mu}+t\right)
$$

where t is a sum of terms of degree strictly less than $i \mu$. Then

$$
l c\left(R\left(c x^{\mu}\right)\right)=\sum_{i \in B} l c\left(s_{i}\right) c^{i}=\sum_{\left(\operatorname{deg}\left(s_{i}\right), i\right) \in e} l c\left(s_{i}\right) c^{i}=H_{(R, e)}(c)
$$

where

$$
\begin{aligned}
B & :=\left\{0 \leq i \leq n ; \operatorname{deg}\left(s_{i}\right)+i \mu=\max _{0 \leq j \leq n}\left(\operatorname{deg}\left(s_{j}\right)+j \mu ; s_{j} \neq 0\right)\right\} \\
& =\left\{0 \leq i \leq n ; \quad\left(\operatorname{deg}\left(s_{i}\right), i\right) \in e \text { and } s_{i} \neq 0\right\}
\end{aligned}
$$

Lemma 4.3. Let μ be the inclination of an edge e of $\mathcal{N}(R)$ and c be a root of $H_{(R, e)}$ of multiplicity $\eta>1$. Then

$$
H_{\left(R_{1}, e_{1}\right)}(Z)=H_{(R, e)}(Z+c)
$$

where e_{1} is the edge of $\mathcal{N}\left(R_{1}\right)$ given by Lemma 4.2. In addition, if e^{\prime} is an edge of $\mathcal{N}\left(R_{1}\right)$ situated above e (which is also an edge of $\mathcal{N}(R)$ by Lemma 4.2) then $H_{\left(R_{1}, e\right)}(Z)=H_{(R, e)}(Z)$.

Proof. We have

$$
\begin{aligned}
H_{(R, e)}(Z+c) & =\sum_{\eta \leq k \leq n} \frac{1}{k!} H_{(R, e)}^{(k)}(c) Z^{k} \\
& =\sum_{\eta \leq k \leq n} \frac{1}{k!} H_{\left(R^{(k)}, e\right)}(c) Z^{k} \\
& =\sum_{\eta \leq k \leq n} \frac{1}{k!} l c\left(R^{(k)}\left(c x^{\mu}\right)\right) Z^{k} \\
& =H_{\left(R_{1}, e_{1}\right)}(Z)
\end{aligned}
$$

where the first equality is just the Taylor formula taking into account that c is a root of $H_{(R, e)}$ of multiplicity $\eta>1$. The second equality holds by Lemma 3.4, the third one by Remark 3, the fourth one by Lemma 4.1 and by the definition of the characteristic polynomial.

References

1. Ayad A., Puiseux series solutions of ordinary polynomial differential equations: Complexity study. Acta Universitatis Apulensis, 22 (2010), 79-92.
2. Grigoriev D., Complexity of factoring and GCD calculating of ordinary linear differential operators, J. Symp. Comput., 10(1) (1990), 7-37.
3. Grigoriev D. and Singer M. F., Solving ordinary differential equations in terms of series with real exponents, Trans. AMS, 327(1) (1991), 329-351.
4. Singer M. F., Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations, Am. J. Math., 103(4) (1981), 661-682.
A. Ayad, Lebanese university, Faculty of sciences, Section 1, Hadath, Beirut, Lebanon and Section 5, Nabatieh, South Lebanon, e-mail: ayadali99100@hotmail.com,
http://ali.ayad.free.fr
