WEAKLY ω-CONTINUOS FUNCTIONS

K. AL-ZOUBI and H. AL-JARAH

Abstract

The purpose of this paper is to introduce a new class of functions called weakly ω-continuous which contains the class of ω-continuous functions and to investigate their basic properties.

0. Introduction

Throughout this work a space will always mean a topological space on which no separation axiom is assumed unless explicitly stated. Let (X, τ) be a space and A be a subset of X. A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is called ω-closed [7] if it contains all its condensation points. The complement of an ω-closed set is called ω-open. It is well known that a subset W of a space (X, τ) is ω-open if and only if for each $x \in W$ there exists $U \in \tau$ such that $x \in U$ and $U-W$ is countable. The family of all ω-open subsets of a space (X, τ), denoted by τ_{ω}, forms a topology on X finer than τ. Let (X, τ) be a space and A be a subset of X. The closure of A, the interior of A and the relative topology on A will be denoted by $\mathrm{cl}_{\tau}(A), \operatorname{int}_{\tau}(A)$ and τ_{A}, respectively. The ω-interior (ω-closure) of a subset A of a space (X, τ) is the interior (closure) of A in the space (X, τ_{ω}) and is denoted by $\operatorname{int}_{\tau_{\omega}}(A)\left(\mathrm{cl}_{\tau_{\omega}}(A)\right)$.

Weak continuity due to Levine $[8]$ is one of the most important weak forms of continuity in topological spaces. It is well-known that if $f:(X, \tau) \rightarrow(Y, \sigma)$ is a function from a space (X, τ) into a regular space (Y, σ), then f is continuous iff it is weakly continuous. In [6], Hdeib introduced the notion of ω-continuous functions and in [3, Theorem 3.12], Al-Zoubi showed that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ from an anti-locally countable space (X, τ) into a regular space (Y, σ) is continuous iff it is ω-continuous iff for each $x \in X$ and each open set V in (Y, σ) with $f(x) \in V$, there exists an ω-open set U in (X, τ) such that $x \in U$ and $f(U) \subseteq \mathrm{cl}_{\sigma}(V)$.

In Section 1 of the present work we use the family of ω-open subsets to define weakly ω-continuous functions. We obtain characterizations of this type of functions and also we study its relation to other known classes of generalized continuous functions, namely the classes of ω-continuous functions, and weakly continuous functions.

[^0]In Section 2, basic properties of weakly ω-continuous functions such as composition, product, restriction, ... etc are given.

For a nonempty set $X, \tau_{\text {ind }}$, respectively, $\tau_{\text {dis }}$ will denote, the indiscrete, respectively, the discrete topologies on $X, \mathbb{R}, \mathbb{Q}$ and \mathbb{N} denote the sets of all real numbers, rational numbers, and natural numbers, respectively. By τ_{u} we denote the usual topology on \mathbb{R}. Finally, if (X, τ) and (Y, ρ) are two spaces, then $\tau \times \rho$ will denote the product topology on $X \times Y$.

Now we recall some known notions, definitions and results which will be used in the work.

Definition 0.1. A space (X, τ) is called
(a) Locally countable [9] if each point $x \in X$ has a countable open neighborhood.
(b) Anti-locally countable [4] if each non-empty open set is uncountable.

Definition 0.2. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called
(a) ω-continuous [6] if $f^{-1}(V)$ is ω-open in (X, τ) for every open set V of (Y, σ).
(b) ω-irresolute [2] if $f^{-1}(V)$ is ω-open in (X, τ) for every ω-open set V of (Y, σ).
Lemma 0.3 ([4]). Let A be a subset of a space (X, τ). Then
(a) $\left(\tau_{\omega}\right)_{\omega}=\tau_{\omega}$.
(b) $\left(\tau_{A}\right)_{\omega}=\left(\tau_{\omega}\right)_{A}$.

Lemma 0.4 ([1]). Let A be a subset of an anti-locally countable space (X, τ).
(a) If $A \in \tau_{\omega}$, then $\mathrm{cl}_{\tau}(A)=\mathrm{cl}_{\tau_{\omega}}(A)$.
(b) If A is ω-closed in (X, τ), then $\operatorname{int}(A)=\operatorname{int}_{\tau_{\omega}}(A)$.

Lemma $0.5([\mathbf{3}])$. Let (X, τ) and (Y, σ) be two topological spaces.
(a) $(\tau \times \sigma)_{\omega} \subseteq \tau_{\omega} \times \sigma_{\omega}$.
(b) If $A \subseteq X$ and $B \subseteq Y$, then $\mathrm{cl}_{\tau_{\omega}}(A) \times \mathrm{cl}_{\sigma_{\omega}}(B) \subseteq \mathrm{cl}_{(\tau \times \sigma)_{\omega}}(A \times B)$.

1. Weakly ω-continuous functions

Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called weakly continuous [8] if for each $x \in X$ and each open set V in (Y, σ) containing $f(x)$, there exists an open set U in (X, τ) such that $x \in U$ and $f(U) \subseteq \operatorname{cl}_{\sigma}(V)$.

Definition 1.1. A function $f:(X, \tau) \longrightarrow(Y, \sigma)$ is said to be ω^{ω}-weakly continuous (respectively, ω-weakly continuous, weakly ω-continuous) if for each $x \in X$ and for each $V \in \sigma_{\omega}$ (respectively, $V \in \sigma$) containing $f(x)$, there exists an ω-open subset U of X containing x such that $f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)$ (respectively, $f(U) \subseteq \operatorname{cl}_{\sigma}(V)$, $\left.f(U) \subseteq \mathrm{cl}_{\sigma_{\omega}}(V)\right)$.

Observe that if (X, τ) is a locally countable space, then τ_{ω} is the discrete topology and so every function $f:(X, \tau) \rightarrow(Y, \sigma)$ is ω^{ω}-weakly continuous.

The following diagram follows immediately from the definitions in which none of these implications is reversible.

```
continuous \(\rightarrow \omega\)-continuous \(\quad \rightarrow\) weakly \(\omega\)-continuous \(\leftarrow \omega^{\omega}\)-weakly continuous
    \(\searrow \underset{\text { weakly continuous } \rightarrow \omega \text {-weakly continuous }}{\downarrow}\)
    weakly continuous \(\rightarrow \omega\)-weakly continuous
```

Example 1.2. (a) Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{u}, \sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$ and $\rho=\{\emptyset, \mathbb{R},\{1\}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \sigma)$ be the function defined by

$$
f(x)=\left\{\begin{array}{cl}
\sqrt{2} & \text { for } x \in \mathbb{R}-\mathbb{Q} \\
1 & \text { for } x \in \mathbb{Q}
\end{array}\right.
$$

Then f is ω-weakly continuous, but it is not weakly ω-continuous. Note that $\operatorname{cl}_{\sigma_{\omega}}(\mathbb{Q})=\mathbb{Q}$ and if W is an ω-open set in (\mathbb{R}, τ), then $W \cap(\mathbb{R}-\mathbb{Q}) \neq \emptyset$. On the other hand, the function $g:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \rho)$ given by

$$
g(x)= \begin{cases}0 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 1 & \text { for } x \in \mathbb{Q}\end{cases}
$$

is weakly continuous (ω-weakly continuous), but it is neither weakly ω-continuous nor ω^{ω}-weakly continuous.
(b) Let $X=\mathbb{R}$ with the topologies $\tau=\{U \subseteq \mathbb{R}: U \subseteq \mathbb{R}-\mathbb{Q}\} \cup\{\mathbb{R}\}$ and $\sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 1 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then f is ω-continuous, but it is not ω^{ω}-weakly continuous. Note that if we choose $x \in \mathbb{Q}$, then $f(x)=1 \in V=\{1\} \in \sigma_{\omega}$. Now if $U \in \tau_{\omega}$ such that $x \in U$ and $f(U) \subseteq \mathrm{cl}_{\sigma_{\omega}}(V)=\{1\}$, then $U \subseteq \mathbb{Q}$. But the only open set containing x is \mathbb{R}, therefore $\mathbb{R}-U$ is countable, a contradiction.
(c) Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{u}$ and $\sigma=\{\emptyset, \mathbb{R}, \mathbb{R}-\{0\}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 1 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then f is not ω-continuous since $V=\mathbb{R}-\{0\} \in \sigma$, but $f^{-1}(V)=\mathbb{Q} \notin \tau_{\omega}$. On the other hand, f is weakly ω-continuous since $\mathrm{cl}_{\sigma_{\omega}}(\mathbb{R}-\{0\})=\mathbb{R}$.

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then a function $f_{\omega}^{\omega}:\left(X, \tau_{\omega}\right) \rightarrow\left(Y, \sigma_{\omega}\right)$ (respectively, $\left.f_{\omega}:\left(X, \tau_{\omega}\right) \rightarrow(Y, \sigma), f^{\omega}:(X, \tau) \rightarrow\left(Y, \sigma_{\omega}\right)\right)$ associated with f is defined as follows: $f_{\omega}^{\omega}(x)=f(x)$ (respectively, $\left.f_{\omega}(x)=f(x), f^{\omega}(x)=f(x)\right)$ for each $x \in X$.

The proof of the following results follow immediately from the definitions and Lemma 0.3 part (a).

Remark 1.3. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function.
(a) f is ω^{ω}-weakly continuous iff f_{ω}^{ω} is weakly continuous.
(b) f is ω-weakly continuous iff f_{ω} is weakly continuous.
(c) f_{ω}^{ω} is weakly continuous iff it is ω^{ω}-weakly continuous iff it is weakly ω continuous iff it is ω-weakly continuous.
(d) If (Y, σ) is a locally countable space, then f is ω-continuous iff it is weakly ω-continuous.
(e) If (Y, σ) is an anti-locally countable space, then f is ω-weakly continuous iff it is weakly ω-continuous.
It follows from Remark 1.3 part (a) and part (b) that the basic properties of ω^{ω}-weakly continuous and ω-weakly continuous functions follow from the well known properties of weakly continuous functions.

Proposition 1.4. A function $f:(X, \tau) \longrightarrow(Y, \sigma)$ is weakly ω-continuous iff $f^{-1}(V) \subset \operatorname{int}_{\tau_{\omega}}\left(f^{-1}\left(\operatorname{cl}_{\sigma_{\omega}}(V)\right)\right)$ for every $V \in \sigma$.

The easy proof is left to the reader.

2. Fundamental Properties of Weakly ω-continuous functions

In this section we obtain several fundamental properties of weakly ω-continuous functions.

The composition $g \circ f:(X, \tau) \longrightarrow(Z, \rho)$ of a continuous function $f:(X, \tau) \longrightarrow$ (Y, σ) and a weakly ω-continuous function $g:(Y, \sigma) \longrightarrow(Z, \rho)$ is not necessarily weakly ω-continuous as the following example shows. Thus, the composition of weakly ω-continuous functions need not be weakly ω-continuous.

Example 2.1. Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{u}$, and $\sigma=\tau_{\text {ind }}$ and let $Y=\{0,1\}$ with the topology $\rho=\{\emptyset, Y,\{1\}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \sigma)$ be the function defined by

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\
\sqrt{2} & \text { for } x \in \mathbb{Q}
\end{array}\right.
$$

and let $g:(\mathbb{R}, \sigma) \longrightarrow(Y, \rho)$ be the function defined by

$$
g(x)= \begin{cases}1 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 0 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then f is continuous and g is weakly ω-continuous. However $g \circ f$ is not weakly ω-continuous. Note that if $x \in \mathbb{Q}$, then $(g \circ f)(x)=1 \in V=\{1\} \in \rho$. Suppose there exists ω-open set W in (\mathbb{R}, τ) such that $x \in W$ and $(g \circ f)(W) \subset \operatorname{cl}_{\sigma_{\omega}}(V)=$ $\{1\}$. Then $W \subseteq \mathbb{Q}$, i.e. W is countable, a contradiction. Therefore $g \circ f$ is not weakly ω-continuous.

Recall that a function $f:(X, \tau) \longrightarrow(Y, \sigma)$ is called θ-continuous [5] if for each $x \in X$ and each open set V in (Y, σ) containing $f(x)$, there exists an open set U in (X, τ) such that $x \in U$ and $f\left(\operatorname{cl}_{\tau}(U)\right) \subset \operatorname{cl}_{\sigma}(V)$.

Theorem 2.2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(Z, \rho)$ be two functions. Then the following statement hold
(a) $g \circ f$ is weakly ω-continuous if g is weakly ω-continuous and f is ω-irresolute.
(b) $g \circ f$ is weakly ω-continuous if f is weakly ω-continuous and g is ω-irresolute and continuous.
(c) $g \circ f$ is weakly ω-continuous if g^{ω} is θ-continuous and f is weakly ω-continuous.
(d) $g \circ f$ is weakly ω-continuous if g^{ω} is weakly continuous and f is ω-continuous.
(e) Let (Z, ρ) be an anti-locally countable space. Then $g \circ f$ is weakly ω-continuous if g is θ-continuous and f is weakly ω-continuous.

The easy proof is left to the reader.
The following examples show that the conditions in Theorem 2.2 are essential.
Example 2.3. Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{u}$ and $\eta=\{\emptyset, \mathbb{R}, \mathbb{R}-\mathbb{Q}\}$ and let $Y=\{1, \sqrt{2}\}$ with the topologies $\sigma=\{\emptyset, Y,\{\sqrt{2}\}\}$ and $\rho=\{\emptyset, Y,\{1\}\}$.
(a) Let $f:(\mathbb{R}, \tau) \longrightarrow(Y, \rho)$ be the function defined by

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\
\sqrt{2} & \text { for } x \in \mathbb{Q}
\end{array}\right.
$$

and $g:(Y, \rho) \longrightarrow(Y, \sigma)$ be the identiy function. Clearly, (Y, ρ) is not anti-locally countable, f is weakly ω-continuous, g is θ-continuous and ω-irresolute, but not continuous. However $g \circ f$ is not weakly ω-continuous.
(b) Define $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \eta)$ and $g:(\mathbb{R}, \eta) \longrightarrow(Y, \rho)$ as follows

$$
f(x)=g(x)= \begin{cases}1 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ \sqrt{2} & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then f is weakly ω-continuous since $\mathrm{cl}_{\sigma_{\omega}}(\mathbb{R}-\mathbb{Q})=\mathbb{R}$ and g is continuous, but it is not ω-irresolute. However $g \circ f$ is not weakly ω-continuous.

Note that Example 2.3 shows that continuity and ω-irresoluteness are independent notions.

Lemma $2.4([\mathbf{3}])$. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be an open surjective function.

1) If $A \subseteq X$, then $f\left(\operatorname{int}_{\tau_{\omega}}(A)\right) \subseteq \operatorname{int}_{\sigma_{\omega}} f(A)$.
2) If $U \in \tau_{\omega}$, then $f(U) \in \sigma_{\omega}$.

Theorem 2.5. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be an open surjection and let $g:(Y, \sigma) \longrightarrow(Z, \rho)$ such that $g \circ f:(X, \tau) \longrightarrow(Z, \rho)$ is weakly ω-continuous. Then g is weakly ω-continuous.

Proof. Let $y \in Y$ and let $V \in \rho$ with $g(y) \in V$. Choose $x \in X$ such that $f(x)=y$. Since $g \circ f$ is weakly ω-continuous, there exists $U \in \tau_{\omega}$ with $x \in U$ and $g(f(U)) \subset \operatorname{cl}_{\sigma_{\omega}}(V)$. But f is open, therefore by Lemma 2.4, $f(U) \in \sigma_{\omega}$ with $f(x) \in f(U)$ and the result follows.

Theorem 2.6. Let (X, τ) and (Y, σ) be topological spaces where (Y, σ) is locally countable. Then the projection $p_{X}:(X \times Y, \tau \times \sigma) \rightarrow(X, \tau)$ is ω-irresolute.

Proof. Let $(x, y) \in X \times Y$ and let V be an ω-open subset of (X, τ) such that $p_{X}(x, y)=x \in V$. Choose $U \in \tau$ and a countable open subset W of (Y, σ) such that $y \in W, x \in U$ and $U-V$ is countable. Since $U \times W-V \times Y=(U-V) \times W$ is countable, $V \times Y \in(\tau \times \sigma)_{\omega}$ and so $B=p_{X}^{-1}(U) \cap(V \times Y)=(U \cap V) \times Y \in(\tau \times \sigma)_{\omega}$. Now $(x, y) \in B$ and $p_{X}(B)=U \cap V \subseteq V$. Therefore p_{X} is ω-irresolute.

To show that the condition (Y, σ) is locally countable in Theorem 2.6 is essential we consider the following example.

Example 2.7. Consider the projection $p:\left(\mathbb{R} \times \mathbb{R}, \tau_{u} \times \tau_{u}\right) \rightarrow\left(\mathbb{R}, \tau_{u}\right)$ and let $A=\mathbb{R}-\mathbb{Q}$. Then A is ω-open in $\left(\mathbb{R}, \tau_{u}\right)$ while $p^{-1}(A)=(\mathbb{R}-\mathbb{Q}) \times \mathbb{R}$ is not ω-open in $\left(\mathbb{R} \times \mathbb{R}, \tau_{u} \times \tau_{u}\right)$. Thus p is not ω-irresolute.

Corollary 2.8. Let Δ be a countable set and let $f_{\alpha}:\left(X_{\alpha}, \tau_{\alpha}\right) \longrightarrow\left(Y_{\alpha}, \sigma_{\alpha}\right)$ be a function for each $\alpha \in \Delta$. If the product function $f=\prod_{\alpha \in \Delta} f_{\alpha}: \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow$ $\prod_{\alpha \in \Delta} Y_{\alpha}$ is weakly ω-continuous and $\left(Y_{\alpha}, \sigma_{\alpha}\right)$ is locally countable for each $\alpha \in \Delta$, then f_{α} is weakly ω-continuous for each $\alpha \in \Delta$.

Proof. For each $\beta \in \Delta$, we consider the projections $p_{\beta}: \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow X_{\beta}$ and $q_{\beta}: \prod_{\alpha \in \Delta} Y_{\alpha} \longrightarrow Y_{\beta}$. Then we have $q_{\beta} \circ f=f_{\beta} \circ p_{\beta}$ for each $\beta \in \Delta$. Since f is weakly ω-continuous and q_{β} is ω-irresolute (Theorem 2.6) for each $\beta \in \Delta, q_{\beta} \circ f$ is weakly ω-continuous and hence $f_{\beta} \circ p_{\beta}$ is weakly ω-continuous. Thus f_{β} is weakly ω-continuous by Theorem 2.5.

The following example shows that the converse of Corollary 2.8 is not true in general.

Example 2.9. Let $X=\mathbb{R}$ with the topology $\tau=\{U: U \subseteq \mathbb{Q}\} \cup\{\mathbb{R}\}$ and let $Y=\{0,1,2\}$ with the topology $\sigma=\{\emptyset, Y,\{0\},\{1,2\}\}$. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 0 & \text { for } x \in \mathbb{Q}\end{cases}
$$

One can easily show that f is weakly ω-continuous. However, the product function $h=f \times f: \mathbb{R} \times \mathbb{R} \longrightarrow Y \times Y$ defined by $h(x, t)=(f(x), f(t))$ for all $x, t \in \mathbb{R}$ is not weakly ω-continuous. Let $(x, t) \in(\mathbb{R}-\mathbb{Q}) \times(\mathbb{R}-\mathbb{Q})$. Then $h(x, t)=$ $(f(x), f(t))=(1,1)$. Take $V=\{1,2\} \times\{1,2\}$. Then $V \in \sigma \times \sigma$ with $h(x, t) \in V$. Suppose there exists $U \in(\tau \times \tau)_{\omega}$ such that $(x, t) \in U$ and $h(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)=V$. Therefore $U \subseteq(\mathbb{R}-\mathbb{Q}) \times(\mathbb{R}-\mathbb{Q})$. Note that the only open set containing (x, t) is $\mathbb{R} \times \mathbb{R}$ and so $(\mathbb{R} \times \mathbb{R})-U$ is countable. Thus

$$
(\mathbb{R} \times \mathbb{Q}) \cup(\mathbb{Q} \times \mathbb{R})=(\mathbb{R} \times \mathbb{R})-((\mathbb{R}-\mathbb{Q}) \times(\mathbb{R}-\mathbb{Q})) \subseteq(\mathbb{R} \times \mathbb{R})-U
$$

a contradiction.
To see that the conditions in Corollary 2.8 are essential we consider the following examples.

Example 2.10. (a) Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{u}, \rho=\{\emptyset, \mathbb{R}, \mathbb{R}-\mathbb{Q}\}$ and $\mu=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \rho)$ be the function given by $f(x)=1$ for all $x \in \mathbb{R}$ and let $g:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \mu)$ be the function defined by

$$
g(x)=\left\{\begin{array}{cl}
\sqrt{2} & \text { for } x \in \mathbb{R}-\mathbb{Q} \\
0 & \text { for } x \in \mathbb{Q}
\end{array}\right.
$$

One can easily show that f is weakly ω-continuous while g is not. To show that $f \times g$ is weakly ω-continuous, let $(x, y) \in \mathbb{R} \times \mathbb{R}$ and let $W \in \sigma \times \mu$ such that
$(f \times g)(x, y) \in W$. There exists a basic open set V in $(\mathbb{R} \times \mathbb{R}, \rho \times \mu)$ such that $(f \times g)(x, y) \in\{(1,0),(1, \sqrt{2})\} \subseteq V \subseteq W$. Therefore $V \in\{\mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{Q}\}$. To complete the proof it is enough to show that $\mathrm{cl}_{(\rho \times \mu)_{\omega}}(\mathbb{R} \times \mathbb{Q})=\mathbb{R} \times \mathbb{R}$. Suppose there exists $(s, t) \in \mathbb{R} \times \mathbb{R}-\operatorname{cl}_{(\rho \times \mu)_{\omega}}(\mathbb{R} \times \mathbb{Q})$. Then there exist $W \in(\sigma \times \mu)_{\omega}$ and a basic open set U in $(\mathbb{R} \times \mathbb{R}, \rho \times \mu)$ such that $(s, t) \in W \cap U, W \cap(\mathbb{R} \times \mathbb{Q})=\emptyset$ and $U-W$ is countable. Therefore $W \subseteq \mathbb{R} \times(\mathbb{R}-\mathbb{Q})$ and $U \in\{\mathbb{R} \times \mathbb{R},(\mathbb{R}-\mathbb{Q}) \times \mathbb{R}\}$. Thus $U-(\mathbb{R} \times(\mathbb{R}-\mathbb{Q}))$ is countable, a contradiction.
(b) Let $X=\mathbb{R}$ with the topology $\tau=\tau_{u}$ and $Y=\{1, \sqrt{2}\}$ with the topology $\sigma=\{\emptyset, Y,\{1\}\}$. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}\sqrt{2} & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 0 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then f is not weakly ω-continuous. Let Δ be an uncountable set and let $X_{\alpha}=X$ and $Y_{\alpha}=Y$ for all $\alpha \in \Delta$. Then the product function

$$
h=\prod_{\alpha \in \Delta} f_{\alpha}: \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow \prod_{\alpha \in \Delta} Y_{\alpha}
$$

is weakly ω-continuous where $f_{\alpha}=f$ for all $\alpha \in \Delta$. We show that if B is a basic open set in $\prod_{\alpha \in \Delta} Y_{\alpha}$, then $\operatorname{cl}_{\left(\sigma_{p}\right)_{\omega}}(B)=\prod_{\alpha \in \Delta} Y_{\alpha}$, where σ_{p} is the product topology on $\prod_{\alpha \in \Delta} Y_{\alpha}$. Suppose by contrary that there exists $y \in \prod_{\alpha \in \Delta} Y_{\alpha}-$ $\mathrm{cl}_{\left(\sigma_{p}\right)_{\omega}}(B)$. Note that $B=\prod_{\alpha \in \Delta} B_{\alpha}$ where $B_{\alpha}=Y_{\alpha}$ for all but finitely many $\alpha \in \Delta$, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Therefore

$$
B_{\alpha_{1}}=B_{\alpha_{2}}=\ldots=B_{\alpha n}=\{1\}
$$

Now choose $W \in\left(\sigma_{p}\right)_{\omega}$ and a basic open set $V=\prod \alpha \in \Delta V_{\alpha}$ in $\prod_{\alpha \in \Delta} Y_{\alpha}$ such that $x \in W \cap V, W \cap B=\emptyset$, and $V-W$ is countable. Thus

$$
\emptyset \neq B \cap V=\prod_{\alpha \in \Delta}\left(B_{\alpha} \cap V_{\alpha}\right) \subseteq V-W
$$

a contradiction.
Theorem 2.11. Let $f:(X, \tau) \longrightarrow\left(Y_{1} \times Y_{2}, \sigma_{1} \times \sigma_{2}\right)$ be a weakly ω-continuous function, where $(X, \tau),\left(Y_{1}, \sigma_{1}\right)$ and $\left(Y_{2}, \sigma_{2}\right)$ are topological spaces. Let $f_{i}:(X, \tau)$ $\longrightarrow\left(Y_{i}, \sigma_{i}\right)$ be defined as $f_{i}=P_{i} \circ f$ for $i=1,2$.
(a) If f_{i} is weakly ω-continuous for $i=1,2$, then f is weakly ω-continuous.
(b) If $\left(Y_{1}, \sigma_{1}\right)$ and $\left(Y_{2}, \sigma_{2}\right)$ are locally countable spaces and f is weakly ω-continuous, then f_{i} is weakly ω-continuous for $i=1,2$.
Proof. (a) Let $x \in X$ and let V be an open in $\left(Y_{1} \times Y_{2}, \sigma_{1} \times \sigma_{2}\right)$ such that $f(x) \in V$. There exist $V_{1} \in \sigma_{1}$ and $V_{2} \in \sigma_{2}$ such that

$$
f(x)=\left(f_{1}(x), f_{2}(x)\right) \in V_{1} \times V_{2} \subseteq V
$$

Now

$$
\left(P_{i} \circ f\right)(x)=P_{i}\left(f_{1}(x), f_{2}(x)\right)=f_{i}(x) \in V_{i} \quad \text { for } i=1,2
$$

and so there exist $U_{1}, U_{2} \in \tau_{\omega}$ such that

$$
f_{i}\left(U_{i}\right)=\left(P_{i} \circ f\right)\left(U_{i}\right) \subseteq \operatorname{cl}_{\sigma_{\omega}}\left(V_{i}\right)
$$

Put $U=U_{1} \cap U_{2}$. Then $U \in \tau_{\omega}$ such that $x \in U$ and

$$
f(U)=\left(f_{1}(U), f_{2}(U)\right) \subseteq \operatorname{cl}_{\left(\sigma_{1}\right)_{\omega}}\left(V_{1}\right) \times \operatorname{cl}_{\left(\sigma_{2}\right)_{\omega}}\left(V_{2}\right) \subseteq \operatorname{cl}_{\left(\sigma_{1} \times \sigma_{2}\right)_{\omega}}(V)
$$

by Lemma 0.5 . Thus f is weakly ω-continuous.
(b) This follows from Theorem 2.6 and Theorem 2.2.

To see that the condition put on $\left(Y_{1}, \sigma_{1}\right)$ and $\left(Y_{2}, \sigma_{2}\right)$ to be locally countable in Theorem 2.11 part (b) is essential we consider the functions f and g as given in Example 2.10 part (a). Then the function $h:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R} \times \mathbb{R}, \mu \times \rho)$ defined by $h(x)=(f(x), g(x))$ is weakly ω-continuous while g is not.

Theorem 2.12. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be a function with $g:(X, \tau) \longrightarrow$ $(X \times Y, \tau \times \sigma)$ denoting the graph function of f defined by $g(x)=(x, f(x))$ for every point $x \in X$. If f is weakly ω-continuous, then g is weakly ω-continuous.

Proof. Let $x \in X$ and let $W \in \tau \times \sigma$ with $g(x) \in W$. Then there exist $U \in \tau$ and $V \in \sigma$ such that $g(x)=(x, f(x)) \in U \times V \subseteq W$. Since f is weakly ω-continuous there exists $U_{1} \in \tau_{\omega}$ with $x \in U_{1}$ and $f\left(U_{1}\right) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)$. Put $U=U \cap U_{1}$. Then $U \in \tau_{\omega}$ with $x \in U$ and

$$
\begin{aligned}
& g(U)=g\left(U \cap U_{1}\right)=\left(U \cap U_{1}, f\left(U \cap U_{1}\right)\right) \subseteq U \times f\left(U_{1}\right) \\
& \quad \subseteq \operatorname{cl}_{\tau_{\omega}}(U) \times \operatorname{cl}_{\sigma_{\omega}}(V) \subseteq \operatorname{cl}_{(\tau \times \sigma)_{\omega}}(U \times V) \subseteq \operatorname{cl}_{(\tau \times \sigma)_{\omega}}(W)
\end{aligned}
$$

by Lemma 0.5 .
The following example shows that the convese of Theorem 2.12 is not true in general.

Example 2.13. Let $X=Y=\mathbb{R}$ with the topologies $\tau=\{\emptyset, \mathbb{R}, \mathbb{R}-\mathbb{Q}\}$, and $\sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(\mathbb{R}, \sigma)$ be the function defined by

$$
f(x)=\left\{\begin{array}{cl}
\sqrt{2} & \text { for } x \in \mathbb{R}-\mathbb{Q} \\
0 & \text { for } x \in \mathbb{Q}
\end{array}\right.
$$

Then f is not weakly ω-continuous. On the other hand, the graph function g is weakly ω-continuous since $\mathrm{cl}_{(\tau \times \sigma)_{\omega}}(\mathbb{R} \times \mathbb{Q})=\operatorname{cl}_{(\tau \times \sigma)_{\omega}}((\mathbb{R}-\mathbb{Q}) \times \mathbb{R})=\mathbb{R} \times \mathbb{R}($ see Example 2.10 part (a))

The following results follow immediately from the definitions and Lemma 0.3.
Theorem 2.14. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be a function.
(a) If f is weakly ω-continuous and A a subset of X, then the restriction $\left.f\right|_{A}$: $\left(A, \tau_{A}\right) \longrightarrow(Y, \sigma)$ is weakly ω-continuous.
(b) Let $x \in X$. If there exists an ω-open subset A of X containing x such that $\left.f\right|_{A}:\left(A, \tau_{A}\right) \longrightarrow(Y, \sigma)$ is weakly ω-continuous at x, then f is weakly ω-continuous at x.
(c) If $U=\left\{U_{\alpha}: \alpha \in \Delta\right\}$ is an ω-open cover of X, then f is weakly ω-continuous if and only if $\left.f\right|_{U_{\alpha}}$ is weakly ω-continuous for all $\alpha \in \Delta$.
The following example shows that the assumption A is ω-open in Theorem 2.14 part (b) can not be replaced by the statement A is ω-closed.

Example 2.15. Let $X=\mathbb{R}$ with the topology τ_{u} and let $Y=\{0,1\}$ with the topology $\sigma=\{\emptyset, Y,\{1\}\}$. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 1 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Then $\left.f\right|_{\mathbb{Q}}$ is weakly ω-continuous, but f is not.
Theorem 2.16. Let (X, τ) be an anti-locally countable space. Then (X, τ) is Hausdroff if and only if $\left(X, \tau_{\omega}\right)$ is Hausdroff.

Proof. We need to show the sufficiency part only. Let $x, y \in X$ with $x \neq y$. Since $\left(X, \tau_{\omega}\right)$ is a Hausdroff space, there exist $W_{x}, W_{y} \in \tau_{\omega}$ such that $x \in W_{x}$, $y \in W_{y}$ and $W_{x} \cap W_{y}=\emptyset$. Choose $V_{x}, V_{y} \in \tau$ such that $x \in V_{x}, y \in V_{y}$, $V_{x}-W_{x}=C_{x}$, and $V_{y}-W_{y}=C_{y}$ where C_{x} and C_{y} are countable sets. Thus

$$
V_{x} \cap V_{y} \subseteq\left(C_{x} \cup W_{x}\right) \cap\left(C_{y} \cup W_{y}\right) \subseteq C_{x} \cup C_{y}
$$

Since (X, τ) is anti-locally countable, then $V_{x} \cap V_{y}=\emptyset$ and the result follows.
Theorem 2.16 is no longer true if the assumption of being anti-locally countable is omitted. To see that we consider the space ($\mathbb{N}, \tau_{\text {cof }}$) where $\tau_{\text {cof }}$ is the cofinite topology. Then ($\mathbb{N}, \tau_{\text {cof }}$) is not anti-locally countable. On the other hand, $\left(\mathbb{N},\left(\tau_{\text {cof }}\right)_{\omega}\right)=\left(\mathbb{N}, \tau_{\text {dis }}\right)$ is a Hausdroff space, but $\left(\mathbb{N}, \tau_{\text {cof }}\right)$ is not.

Theorem 2.17. Let $\left(A, \tau_{A}\right)$ be a subspace of a space (X, τ). If the retraction function $f:(X, \tau) \longrightarrow\left(A, \tau_{A}\right)$ defined by $f(x)=x$ for all $x \in A$ is weakly ω-continuous and (X, τ) is a Hausdroff space, then A is ω-closed.

Proof. Suppose A is not ω-closed. Then, there exists $x \in \operatorname{cl}_{\tau_{\omega}}(A)-A$. Since f is a retraction function, $x \neq f(x)$ and so there exist two disjoint open sets U and V in (X, τ) such that $x \in U$ and $f(x) \in V$. Thus $U \cap \operatorname{cl}_{\tau_{\omega}}(V) \subseteq U \cap \operatorname{cl}(V)=\emptyset$. Now let W be an ω-open set in (X, τ) such that $x \in W$. Then $U \cap W$ is an ω-open set in (X, τ) containing x and so $U \cap W \cap A \neq \emptyset$. Choose $y \in U \cap W \cap A$. Then $y=f(y) \in U$ and so $f(y) \notin \operatorname{cl}_{\tau_{\omega}}(V)$, i.e. $f(W)$ is not a subset of $\operatorname{cl}_{\tau_{\omega}}(V)$. Thus f is not weakly ω-continuous at x, a contradiction. Thus A is ω-closed.

Theorem 2.18. If (X, τ) is a connected anti-locally countable space and $f:(X, \tau) \longrightarrow(Y, \sigma)$ is a weakly ω-continuous surjection function, then (Y, σ) is connected.

Proof. At first we show that if V is a clopen subset of (Y, σ), then $f^{-1}(V)$ is clopen in (X, τ). Let V be a clopen subset of (Y, σ). Then by Proposition 1.4,

$$
f^{-1}(V) \subset \operatorname{int}_{\tau_{\omega}}\left(f^{-1}\left(\operatorname{cl}_{\sigma_{\omega}}(V)\right)\right) \subseteq \operatorname{int}_{\tau_{\omega}}\left(f^{-1}\left(\operatorname{cl}_{\sigma}(V)\right)\right)=\operatorname{int}_{\tau_{\omega}}\left(f^{-1}(V)\right)
$$

Thus $f^{-1}(V)$ is ω-open in (X, τ) and so, by Lemma 0.4 ,

$$
\operatorname{cl}_{\tau}\left(f^{-1}(V)\right)=\mathrm{cl}_{\tau_{\omega}}\left(f^{-1}(V)\right)
$$

Now we show that $f^{-1}(V)$ is ω-closed in (X, τ). Suppose by contrary that there exists $x \in \mathrm{cl}_{\tau_{\omega}}\left(f^{-1}(V)\right)-f^{-1}(V)$. Since f is weakly ω-continuous and $Y-V$ is an open set in (Y, σ) containing $f(x)$, there exists $U \in \tau_{\omega}$ such that $x \in U$ and

$$
f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(Y-V)=Y-V .
$$

But $x \in \operatorname{cl}_{\tau_{\omega}}\left(f^{-1}(V)\right)$ and so $U \cap f^{-1}(V) \neq \emptyset$. Therefore,

$$
\emptyset \neq f(U) \cap V \subseteq V \cap(Y-V)
$$

a contradiction. Thus $f^{-1}(V)$ is ω-closed in (X, τ) and so

$$
\operatorname{cl}_{\tau}\left(f^{-1}(V)\right)=\operatorname{cl}_{\tau_{\omega}}\left(f^{-1}(V)\right)=f^{-1}(V)
$$

i.e., $f^{-1}(V)$ is closed in (X, τ). Also by using Lemma 0.4,

$$
\operatorname{int}_{\tau} f^{-1}(V)=\operatorname{int}_{\tau_{\omega}}\left(f^{-1}(V)\right)=f^{-1}(V)
$$

i.e., $f^{-1}(V)$ is open in (X, τ).

Now suppose that (Y, σ) is not connected. Then, there exist nonempty open sets V_{1} and V_{2} in (Y, σ) such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=Y$. Hence we have $f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=\emptyset$ and $f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right)=X$. Since f is surjective, $f^{-1}\left(V_{j}\right) \neq \emptyset$ for $j=1,2$. Since V_{j} is clopen in (Y, σ), then $f^{-1}\left(V_{j}\right)$ is open in (X, τ) for $j=1,2$. This implies that (X, τ) is not connected, a contradiction. Therefore, (Y, σ) is connected.

Theorem 2.18 is no longer true if the assumption of being anti-locally countable is omitted. To see that we consider the following example.

Example 2.19. Let $X=\mathbb{R}$ with the topology $\tau=\{U \subseteq \mathbb{R}: \mathbb{Q} \subseteq U\} \cup\{\emptyset\}$ and let $Y=\{0,1,2\}$ with the topology $\rho=\{\emptyset, Y,\{1\},\{0,2\}\}$. Let $f:(\mathbb{R}, \tau) \longrightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & \text { for } x \in \mathbb{R}-\mathbb{Q} \\ 2 & \text { for } x \in \mathbb{Q}-\{0\} \\ 0 & \text { for } x=0\end{cases}
$$

Then f is weakly ω-continuous surjection, (X, τ) is connected but not anti-locally countable, and (Y, σ) is not connected.

Recall that a space (X, τ) is called almost Lindelöf [10] if whenever $\mathcal{U}=$ $\left\{U_{\alpha}: \alpha \in I\right\}$ is an open cover of (X, τ) there exists a countable subset I_{0} of I such that $X=\bigcup_{\alpha \in I_{0}} \operatorname{cl}\left(U_{\alpha}\right)$.

In [7, Theorem 4.1], Hdeib shows that a space (X, τ) is Lindelöf if and only if (X, τ_{ω}) is Lindelöf.

Theorem 2.20. For any space (X, τ), the following items are equivalent
(a) $\left(X, \tau_{\omega}\right)$ is almost Lindelöf.
(b) For every open cover $\mathcal{W}=\left\{W_{\alpha}: \alpha \in I\right\}$ of (X, τ) there exists a countable subset I_{0} of I such that $X=\bigcup_{\alpha \in I_{0}} \mathrm{cl}_{\tau_{\omega}}\left(W_{\alpha}\right)$.
Proof. We need to prove (b) implies (a). Let \mathcal{W} be an open cover of $\left(X, \tau_{\omega}\right)$. For each $x \in X$ we choose $W_{x} \in \mathcal{W}$ and an open set U_{x} in (X, τ) such that $x \in W_{x}$ and $U_{x}-W_{x}=C_{x}$ is countable. Therefore the collection $\mathcal{U}=\left\{U_{x}: x \in X\right\}$ is an open cover of (X, τ) and so, by assumption, it contains a countable subfamily
$\mathcal{U}^{*}=\left\{U_{x n}: n \in \mathbb{N}\right\}$ such that $X=\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(U_{x n}\right)$. But $\bigcup_{n \in \mathbb{N}} C_{x n}$ is a countable subset of X and we can choose a countable subfamily \mathcal{W}^{*} of \mathcal{W} such that

$$
\bigcup_{n \in \mathbb{N}} C_{x n}=\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(C_{x n}\right) \subseteq \cup\left\{W: W \in \mathcal{W}^{*}\right\}
$$

Then

$$
\begin{aligned}
X & =\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(U_{x n}\right) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(W_{x n} \cup C_{x n}\right) \\
& =\left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(W_{x n}\right)\right) \cup\left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(C_{x n}\right)\right) \\
& \subseteq\left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(W_{x n}\right)\right) \cup\left(\bigcup_{W \in \mathcal{W}^{*}} W\right) \\
& \subseteq\left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}\left(W_{x n}\right)\right) \cup\left(\bigcup_{W \in \mathcal{W}^{*}} \operatorname{cl}_{\tau_{\omega}}(W)\right)
\end{aligned}
$$

Thus $\left(X, \tau_{\omega}\right)$ is almost Lindelöf.
It is clear that if $\left(X, \tau_{\omega}\right)$ is almost Lindelöf, then (X, τ) is almost Lindelöf. To see that the converse is not true, in general; we consider the space (X, τ) where $X=\mathbb{R}$ and $\tau=\{U: \mathbb{Q} \subseteq U\} \cup\{\emptyset\}$. Then (X, τ) is almost Lindelöf since $\operatorname{cl}(\mathbb{Q})=\mathbb{R}$. On the other hand, $\tau_{\omega}=\tau_{\text {disc }}$ and so $\left(X, \tau_{\omega}\right)$ is not almost Lindelöf.

Corollary 2.21. Let (X, τ) be an anti-locally countable space. Then (X, τ) is almost Lindelöf if and only if $\left(X, \tau_{\omega}\right)$ is almost Lindelöf.

Theorem 2.22. Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be a weakly ω-continuous function from a Lindelöf space (X, τ) onto a space (Y, σ). Then $\left(Y, \sigma_{\omega}\right)$ is almost Lindelöf.

Proof. Let \mathcal{V} be an open cover of (Y, σ). For each $x \in X$ choose $V_{x} \in \mathcal{V}$ such that $f(x) \in V_{x}$. Since f is weakly ω-continuous, there exists an ω-open set U_{x} in (X, τ) such that $x \in U_{x}$ and $f\left(U_{x}\right) \subseteq \mathrm{cl}_{\sigma_{\omega}}\left(V_{x}\right)$. Therefore the collection $\mathcal{U}=\left\{U_{x}: x \in X\right\}$ is an ω-open cover of the Lindelöf space (X, τ), and so it contains a countable subfamily $\mathcal{U}^{*}=\left\{U_{x n}: n \in \mathbb{N}\right\}$ such that $X=\bigcup_{n \in \mathbb{N}} U_{x n}$.

Thus

$$
Y=f(X)=f\left(\bigcup_{n \in \mathbb{N}} U_{x n}\right)=\bigcup_{n \in \mathbb{N}} f\left(U_{x n}\right) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\sigma_{\omega}}\left(V_{x n}\right)
$$

Therefore $\left(Y, \sigma_{\omega}\right)$ is almost Lindelöf by Theorem 2.20.

References

1. Al-Ghour S., Certain covering properties related to paracompactness, Ph. D. thesis, University of Jordan 1999.
2. Al-Zoubi K., Semi ω-continuous functions, Abhath Al-Yarmouk, 12 (1) (2003), 119-131.
3. \qquad , On generalized ω-closed sets, Internat. J. Math. \& Math. Sci., 13 (2005), 2011-2021.
4. Al-Zoubi K. and Al-Nashef B., The topology of ω-open subsets, Al-Manarah, 9(2) (2003), 169-179.
5. Fomin S. V., Extensions of topological spaces, Ann. of Math. 44 (1943), 471-480.
6. Hdeib H., ω-continuous functions, Dirasat 16 (1989), 136-142.
7. Hdeib H., ω-closed mappings, Revista Colomb. De Matem. XVI (1982), 65-78.
8. Levine N., A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
9. Pareek C. M., Hereditarly Lindelof and hereditarly almost Lindelof spaces, Math. Japonica, 30(4) (1985), 635-639.
10. Willard S. and Dissanayake U. N. B., The almost Lindelöf degree, Canad. Math.Bull., 27(4) (1984).
K. Al-Zoubi, Department of Mathematics, Faculty of science, Yarmouk University, Irbid-Jordan, e-mail: Khalidz@yu.edu.jo
H. Al-Jarah, Department of Mathematics, Faculty of science, Yarmouk University, Irbid-Jordan, e-mail: hiamaljarah@yahoo.com

[^0]: Received January 28, 2010.
 2000 Mathematics Subject Classification. Primary 54C08, 54C10, 54C15, 54D20.
 Key words and phrases. ω-open sets; ω-continuous function; weakly continuous function; weakly ω-continuous function; ω-irresolute function.

