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ON QUADRATIC INTEGRAL EQUATIONS OF URYSOHN
TYPE IN FRÉCHET SPACES

M. BENCHOHRA and M. A. DARWISH

Abstract. In this paper, we investigate the existence of a unique solution on a

semiinfinite interval for a quadratic integral equation of Urysohn type in Fréchet

spaces using a nonlinear alternative of Leray-Schauder type for contractive maps.

1. Introduction

In this paper, we establish the existence of the unique solution, defined on a
semi-infinite interval J = [0,+∞) for a quadratic integral equation of Urysohn
type, namely

(1) x(t) = f(t) + (Ax)(t)
∫ T

0

u(t, s, x(s)) ds, t ∈ J := [0,+∞),

where f : J → R, u : J × [0, T ] × R → R are given functions and A : C(J,R) →
C(J,R) is an appropriate operator. Here C(J,R) denotes the space of continuous
functions x : J → R.

Integral equations arise naturally from many applications in describing numer-
ous real world problems, see, for instance, books by Agarwal et al. [1], Agarwal
and O’Regan [2], Corduneanu [8], Deimling [13], O’Regan and Meehan [18] and
the references therein. On the other hand, also quadratic integral equations have
many useful applications in describing numerous events and problems of the real
world. For example, quadratic integral equations are often applicable in the theory
of radiative transfer, kinetic theory of gases, in the theory of neutron transport
and in the traffic theory. Especially, the so-called quadratic integral equation of
Chandrasekher type can been countered very often in many applications; see for
instance the book by Chandrasekher [7] and the research papers by Banas et al.
[3, 4], Benchohra and Darwish [6], Darwish [9, 10, 11, 12], Hu et al. [15],
Kelly [16], Leggett [17], Stuart [19] and the references therein. In [3] Banas et
al. established the existence of monotonic solutions of a Volterra counter part of
equation (1) by means of a technique associated with measure of noncompactness.
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The same technique have been applied to a class of quadratic Urysohn integral
equation over an unbounded interval by Banas and Olszowy [5].

In this paper, we investigate the question of unique solvability of equation (1).
Motivated by the previous papers considered for integral equations on a bounded
interval, here we extend these results to semi-infinite intervals for a class of qua-
dratic integral equations. The method we are going to use is to reduce the existence
of the unique solution for the quadratic integral equation (1) to the search for the
existence of the unique fixed-point of an appropriate operator on the Fréchet space
C(J,R) by applying a nonlinear alternative of Leray-Schauder type for contraction
maps due to Frigon and Granas [14].

2. Preliminaries

We introduce notations, definitions and theorems which are used throughout this
paper.

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. Let Y ⊂ X,
we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows : For
every n ∈ N, we consider the equivalence relation ∼ndefined by : x ∼n y if and
only if ‖x − y‖n = 0 for x, y ∈ X. We denote Xn = (X|∼n

, ‖ · ‖n) the quotient
space, the completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate
a sequence {Y n} of subsets Y n ⊂ Xn as follows: For every x ∈ X, we denote [x]n
the equivalence class of x of subset Xn and define Y n = {[x]n : x ∈ Y }. We denote
Y n, intn(Y n) and ∂nY

n, respectively, the closure, the interior and the boundary
of Y n with respect to ‖ · ‖n in Xn. We assume that the family of semi-norms
{‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.

Definition 2.1 ([14]). A function f : X → X is said to be a contraction if for
each n ∈ N there exists kn ∈ (0, 1) such that:

‖f(x)− f(y)‖n ≤ kn ‖x− y‖n for all x, y ∈ X.

Theorem 2.2 ([14]). Let Ω be a closed subset of a Fréchet space X such that
0 ∈ Ω and F : Ω→ X a contraction such that F (Ω) is bounded. Then either

(C1) F has a unique fixed point or
(C2) there exist λ ∈ (0, 1), n ∈ N and u ∈ ∂Ωn such that ‖u− λF (u)‖n = 0.

3. Main Theorem

In this section, we will study equation (1) assuming that the following assumptions
are satisfied:

(a1) f : J → R is a continuous function.
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(a2) For each n ∈ N there exists Ln > 0 such that

|(Ax)(t)− (Ax̄)(t)| ≤ Ln |x(t)− x̄(t)|

for each x, x̄ ∈ C(J,R) and t ∈ [0, n].
(a3) There exist nonnegative constants a and b such that

|(Ax)(t)| ≤ a+ b |x(t)|

for each x ∈ C(J,R) and t ∈ J .
(a4) u : J × J ×R→ R is a continuous function and for each n ∈ N there exists

a constant L∗n > 0 such that

|u(t, s, x)− u(t, s, x̄)| ≤ L∗n |x− x̄|

for all (t, s) ∈ [0, n]× [0, T ] and x, x̄ ∈ R.
(a5) There exists a continuous nondecreasing function ψ : J → (0,∞) and p ∈

C(J,R+) such that

|u(t, s, x)| ≤ p(s) ψ(|x|)

for each (t, s) ∈ J × [0, T ] and x ∈ R and moreover there exists a constant
Mn, n ∈ N, such that

(2)
Mn

‖f‖n + T (a+ b Mn) ψ(Mn) p∗
> 1,

where p∗ = sup{p(s) : s ∈ [0, T ]}.

Theorem 3.1. Suppose that hypotheses (a1)− (a5) are satisfied. If

(3) (a+ b Mn) L∗n T + TLn ψ(Mn)p∗ < 1,

then the equation (1) has a unique solution.

Proof. For every n ∈ N, we define in C(J,R) the semi-norms by

‖y‖n := sup {|y(t)| : t ∈ [0, n] }.

Then C(J,R) is a Fréchet space with the family of semi-norms {‖ · ‖n}n∈N.
Transform the problem (1) into a fixed-point problem. Consider the operator

F : C(J,R)→ C(J,R) defined by

(Fy)(t) = f(t) + (Ay)(t)
∫ T

0

u(t, s, y(s)) ds, t ∈ J.

Let y be a possible solution of the problem (1). Given n ∈ N and t ≤ n, then
with the view of (a1), (a3), (a5) we have

|y(t)| ≤ |f(t)|+ |(Ay)(t)|
∫ T

0

|u(t, s, y(s))| ds

≤ |f(t)|+ (a+ b|y(t)|)
∫ T

0

p(s) ψ(|y(s)|) ds

≤ ‖f‖n + T (a+ b‖y‖n) ψ(‖y‖n)p∗.
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Then
‖y‖n

‖f‖n + T (a+ b‖y‖n) ψ(‖y‖n)p∗
≤ 1.

From (2) it follows that for each n ∈ N

‖y‖n 6= Mn.

Now, set
Ω = {y ∈ C(J,R) : ‖y‖n ≤Mn for all n ∈ N}.

Clearly, Ω is a closed subset of C(J,R). We shall show that F : Ω → C(J,R) is
a contraction operator. Indeed, consider y, y ∈ Ω, for each t ∈ [0, n] and n ∈ N,
from (a2)− (a4) we have

|(Fy)(t)− (Fy)(t)| ≤

∣∣∣∣∣(Ay)(t)
∫ T

0

u(t, s, y(s)) ds− (Ay)(t)
∫ T

0

u(t, s, y(s)) ds

∣∣∣∣∣
≤

∣∣∣∣∣(Ay)(t)
∫ T

0

u(t, s, y(s)) ds− (Ay)(t)
∫ T

0

u(t, s, y(s)) ds

∣∣∣∣∣
+

∣∣∣∣∣(Ay)(t)
∫ T

0

u(t, s, y(s)) ds− (Ay)(t)
∫ T

0

u(t, s, y(s)) ds

∣∣∣∣∣
≤ |(Ay)(t)|

∫ T

0

|u(t, s, y(s))− u(t, s, y(s))| ds

+ |(Ay)(t)− (Ay)(t)|
∫ T

0

|u(t, s, y(s))| ds

≤ (a+ b |y(t)|) L∗n
∫ T

0

|y(s)− y(s))| ds

+ Ln |y(t)− y(t)|
∫ T

0

p(s) ψ(|y(s)|) ds

≤ [(a+ b Mn) L∗n T + TLn ψ(Mn)p∗] ‖y − y‖n.

Therefore,

‖Fy −Fy‖n ≤ [(a+ b Mn) L∗n T + TLn ψ(Mn)p∗] ‖y − y‖n.

F is a contraction for all n ∈ N. From the choice of Ω there is no y ∈ ∂Ω such
that y = λ F(y) for some λ ∈ (0, 1). Then the statement (C2) in Theorem 2.2
does not hold. The nonlinear alternative of Leray-Schauder type [14] shows that
(C1) holds, and hence we deduce that the operator F has a unique fixed-point y
in Ω which is a solution of Equation (1). This completes the proof. �

Example. Consider the quadratic integral equation of Urysohn type, namely

(4) x(t) =
1

t+ 2
+
|x(t)|

1 + |x(t)|

∫ 1

0

1
t+ 2

1
s+ 4

x(s) ds, t ∈ J := [0,+∞).
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Set
f(t) =

1
t+ 2

, t ∈ J,

q(t) =
1

t+ 2
, t ∈ J,

p(s) =
1

s+ 4
, s ∈ [0, 1],

(Ax)(t) =
x(t)

1 + x(t)
, t ∈ J and x ∈ C(J,R+),

ψ(x) = x, for each x ≥ 0,

u(t, s, x) =
1

t+ 2
1

s+ 4
x, for each (t, s) ∈ J × [0, 1], and x ∈ R.

It is clear that equation (4) can be written as equation (1). Let us show that
conditions (a1)− (a5) hold. For each n ∈ N, (t, s) ∈ [0, n]× [0, 1] and x, x̄ ∈ R we
have

|u(t, s, x)− u(t, s, x̄)| = |q(t)p(s)x− q(t)p(s)x̄|

≤ 1
t+ 2

1
s+ 4

|x− x̄| ≤ 1
8
|x− x̄|.

Hence (a4) is satisfied with L∗n = 1
8 .

For each n ∈ N, t ∈ [0, n], and x, x̄ ∈ C([0, n],R+) we have

|(Ax)(t)− (Ax̄)(t)|=
∣∣∣∣ x(t)
1 + x(t)

− x̄(t)
1 + x̄(t)

∣∣∣∣= |x(t)− x̄(t)|
(1 + x(t))(1 + x̄(t))

≤|x(t)−x̄(t)|.

Hence (a2) is satisfied with Ln = 1.
For each n ∈ N, t ∈ [0, n], and x ∈ C([0, n],R) we have

|(Ax)(t)| = |x(t)|
1 + |x(t)|

≤ |x(t)|.

Hence (a3) holds with a = 0 and b = 1.
A simple calculation shows that conditions (2) and (3) hold for Mn ∈

(
4−
√

8
2 ,

4+
√

8
2

)
and Mn ∈ (0, 8

3 ), respectively.
Consequently from Theorem 3.1 Equation (4) has a unique solution.

Remark 3.2. Let us mention that our analysis is still applied to the following
quadratic integral equations which were widely considered in the literature on
bounded intervals and with the measure of noncompactness and appropriate fixed
point theorems

x(t) = f(t) + x(t)
∫ T

0

u(t, s, x(s)) ds, t ∈ J := [0,+∞),(5)

and

x(t) = f(t) + g(t, x(t))
∫ T

0

u(t, s, x(s)) ds, t ∈ J := [0,+∞).(6)
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Bel-Abbès, Algérie,
e-mail : benchohra@univ-sba.dz

M. A. Darwish, Alexandria University at Damanhour, 22511 Damanhour, Egypt,

e-mail : darwishma@yahoo.com, mdarwish@ictp.trieste.it


