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ON SMALL INJECTIVE, SIMPLE-INJECTIVE
AND QUASI-FROBENIUS RINGS

LE VAN THUYET and TRUONG CONG QUYNH

Abstract. Let R be a ring. A right ideal I of R is called small in R if I + K 6= R

for every proper right ideal K of R. A ring R is called right small finitely injective
(briefly, SF-injective) (resp., right small principally injective (briefly, SP-injective)

if every homomorphism from a small and finitely generated right ideal (resp., a small

and principally right ideal) to RR can be extended to an endomorphism of RR. The
class of right SF-injective and SP-injective rings are broader than that of right small

injective rings (in [15]). Properties of right SF-injective rings and SP-injective rings

are studied and we give some characterizations of a QF-ring via right SF-injectivity
with ACC on right annihilators. Furthermore, we answer a question of Chen and

Ding.

1. Introduction

Throughout the paper R represents an associative ring with identity 1 6= 0 and all
modules are unitary R-module. We write MR (resp. RM) to indicate that M is a
right (resp. left) R-module. We use J (resp. Zr, Sr) for the Jacobson radical (resp.
the right singular ideal, the right socle of R) and E(MR) for the injective hull of
MR. If X is a subset of R, the right (resp. left) annihilator of X in R is denoted
by rR(X) (resp. lR(X)) or simply r(X) (resp. l(X)) if no confusion appears. If
N is a submodule of M (resp. proper submodule) we denote by N ≤ M (resp.
N < M). Moreover, we write N ≤e M , N � M , N ≤⊕ M and N ≤max M to
indicate that N is an essential submodule, a small submodule, a direct summand
and a maximal submodule of M , respectively. A module M is called uniform if M
6= 0 and every non-zero submodule of M is essential in M . M is finite dimensional
(or has finite rank) if E(M) is a finite direct sum of indecomposable submodules;
or equivalently, if M has an essential submodule which is a finite direct sum of
uniform submodules.

A module MR is called F-injective (resp., P-injective) if every right homomor-
phism from a finitely generated (resp., principal) right ideal toMR can be extended
to an R-homomorphism from RR to MR. A ring R is called right F-injective (resp.,
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right P-injective) if RR is F-injective (resp., P-injective). R is called right min-
injective if every right R-homomorphism from a minimal right ideal to R can be
extended to an endomorphism of RR. A ring R is said to be a right PF-ring if the
right RR is an injective cogenerator in the category of right R-modules. A ring R
is called QF-ring if it is right (or left) Artinian and right (or left) self-injective.

In [15], a module MR is called small injective if every homomorphism from a
small right ideal to MR can be extended to an R-homomorphism from RR to MR.
A ring R is called right small injective if RR is small injective. Under small injective
condition, Shen and Chen ([15]) gave some new characterizations of QF rings and
right PF rings. In [18], authors showed some characterizations of Jacobson radical
J via small injectivity. They proved that J is Noetherian as a right R-module if
and only if every direct sum of small injective right R-modules is small injective
if and only if E(N) is small injective for every small injective module ER.

In 1966, Faith proved that R is QF if and only if R is right self-injective and
satisfies ACC on right annihilators. Then around 1970, Björk proved that R is
QF if and only if R is right F-injective and satisfies ACC on right annihilators.
In this paper, we show that R is QF if and only if R is a semiregular and right
SF-injective ring with ACC on right annihilators if and only if R is a semilocal
and right SF-injective ring with ACC on right annihilators if and only if R is a
right SF-injective ring with ACC on right annihilators in which Sr ≤e RR. We
also give some characterizations of rings whose R-homomorphism from a small,
finitely generated right ideal to R with a simple image, can be extended to an
endomorphism of RR. Furthermore, we prove that if R is a right perfect, right
simple-injective and left pseudo-coherent ring, then R is QF. Some known results
are obtained as corollaries.

A general background material can be found in [1], [7], [19].

2. On SP(SF)-injective rings

Definition 2.1. A module MR is called small principally injective (briefly,
SP-injective) if every homomorphism from a small and principal right ideal to MR

can be extended to an R-homomorphism from RR to MR. A module MR is called
small finitely injective (briefly, SF-injective) if every homomorphism from a small
and finitely generated right ideal to MR can be extended to an R-homomorphism
from RR to MR. A ring R is called right SP-injective (resp., right SF-injective) if
RR is SP-injective (resp., SF-injective).

The following implications are obvious:

small injective
↗ ↘

injective SF − injective −→ SP − injective
↘ ↗

F − injective
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Lemma 2.2. The following conditions are equivalent for a ring R:
(1) R is right SP-injective.
(2) lr(a) = Ra for all a ∈ J.
(3) r(a) ≤ r(b), where a ∈ J, b ∈ R, implies Rb ≤ Ra.
(4) l(bR ∩ r(a)) = l(b) +Ra for all a ∈ J and b ∈ R.
(5) If γ : aR→ R, a ∈ J , is an R-homomorphism, then γ(a) ∈ Ra.

Proof. A similar proving to [10, Lemma 5.1]. �

We also have:

Lemma 2.3. A ring R is right SF-injective if and only if it satisfies the fol-
lowing two conditions:

(1) l(T∩T ′) = l(T )+l(T ′) for all small, finitely generated right ideals T and T ′.
(2) R is right SP-injective.

Proof. (⇒) : Assume that R is right SF-injective. If T and T ′ are small, finitely
generated right ideals, then T + T ′ is a small finitely generated right ideal. Let
b ∈ l(T ∩ T ′) and then we define α : T + T ′ → R via α(t + t′) = bt, for all t ∈ T
and t′ ∈ T ′, so α = a., for some a ∈ R by hypothesis. Then b − a ∈ l(T ) and
a ∈ l(T ′). Hence b ∈ l(T ) + l(T ′). Thus (1) holds. (2) is clear.

(⇐) : We can prove it by induction on the number of generators of T and T ′. �

Corollary 2.4. Let R be a right SP-injective ring such that l(T ∩T ′) = l(T )+
l(T ′) for all right ideals T and T ′ of R where T is small, finitely generated. Then
every R-homomorphism ϕ : I → R extends to R→ R where Iis a small right ideal
and the image ϕ(I) is finitely generated.

Proposition 2.5. A direct product R=
∏
i∈I Ri of rings Ri is right SF-injective

(resp., right SP-injective) if and only if Ri is right SF-injective (resp., right
SP-injective) for each i ∈ I.

Proof. Assume that R =
∏
i∈I Ri is right SF-injective. For each i ∈ I, we

take any ai ∈ J(Ri) and bi ∈ Ri such that rRi
(ai) ≤ rRi

(bi). Let a = (aj)j∈I ,
b = (bj)j∈I , where aj = 0, bj = 0, ∀j 6= i and aj = ai, bj = bi if j = i. Then
a ∈ J(R), b ∈ R and rR(a) ≤ rR(b). So b ∈ Ra since R is right SP-injective.
Therefore bi ∈ Riai. Thus Ri is right SP-injective. On the other hand, for all
small, finitely generated right ideals Ti and T ′

i of Ri, ιi(Ti), ιi(T ′
i ) are small,

finitely generated right ideals of R, where ιi : Ri ↪→ R is the inclusion for each
i ∈ I. By hypothesis, lR(ιi(Ti) ∩ ιi(T ′

i )) = lR(ιi(Ti)) + lR(ιi(T ′
i )). This implies

that lRi
(Ti ∩ T ′

i ) = lRi
(Ti) + lRi

(T ′
i ). Thus Ri is right SF-injective by Lemma 2.3.

Conversely, R =
∏
i∈I Ri, where Ri is right SF-injective. For each a = (ai)i∈I ∈

J(R) and b = (bi)i∈I ∈ R such that rR(a) ≤ rR(b), then for each i ∈ I, ai ∈ J(Ri)
and rRi(ai) ≤ rRi(bi). Since Ri is right SF-injective, bi ∈ Riai. Hence b ∈ Ra. If
T and T ′ are small, finitely generated right ideals of R, then we can prove that
lR(T ∩ T ′) = lR(T ) + lR(T ′). Thus R is right SF-injective. �



164 LE VAN THUYET and TRUONG CONG QUYNH

A ring R is called left minannihilator if lr(K) = K for every minimal left ideal
K of R.

Proposition 2.6. Let R be a right SP-injective ring. Then:
(1) R is right mininjective and left minannihilator.
(2) J ≤ Zr.

Proof. (1) Since every minimal one-sided ideal of R is either nilpotent or a one-
sided direct summand of R, each right SP-injective ring is right mininjective and
left minannihilator.

(2) If a ∈ J we will show that r(a) ≤e RR. In fact, let b ∈ R such that
bR ∩ r(a) = 0. By Lemma 2.2, R = l(b) + Ra, so l(b) = R because a ∈ J . Hence
b = 0. This proves that a ∈ Zr. �

A ring R is called right Kasch if every simple right R-module embeds in RR.

Proposition 2.7. Let R be a right Kasch ring. Then:
(1) If R is right SP-injective, then:

a) The map ψ : T 7→ l(T ) from the set of maximal right ideals T of R to
the set of minimal left ideals of R is a bijection. And the inverse map
is given by K 7→ r(K), where K is a minimal left ideal of R.

b) For k ∈ R, Rk is minimal iff kR is minimal, in particular Sr = Sl.
(2) If R is right SF-injective, then rl(I) = I for every small, finitely generated

right ideal I of R. In particular, R is left SP-injective.

Proof. (1) a): By Proposition 2.6 (1) and [10, Theorem 2.32]. For b), if Rk is
minimal, then r(k) is maximal by a). This means kR is minimal. Conversely, by
[10, Theorem 2.21].

(2): Firstly, we have J = rl(J) because R is right Kasch. Let T be a right small,
finitely generated ideal of R. Therefore, T ≤ rl(T ) ≤ rl(J) = J . If b ∈ rl(T )\T ,
take I such that T ≤ I ≤max (bR + T ). Since R is right Kasch, we can find
a monomorphism σ : (bR + T )/I → R, and then define γ : bR + T → R via
γ(x) = σ(x+ I). Since bR+ I is a small, right finitely generated ideal of R and R
is right SF-injective, it follows that γ = c, where c ∈ R. Hence cb = σ(b+ I) 6= 0
because b 6∈ I. But if t ∈ T , then ct = σ(t + I) = 0 because T ≤ I, so c ∈ l(I).
Since b ∈ rl(T ) this gives cb = 0, a contradiction. Thus T = rl(T ). It is clear that
R is left SP-injective. �

Recall that a ring R is called semiregular if R/J is von Neumann regular and
idempotents can be lifted modulo J . Note that if R is semiregular, then for every
finitely generated right ideal I of R, R = H ⊕K, where H ≤ I and I ∩K � R.

Motivated by [15, Lemma 3.1] we have the following result.

Lemma 2.8. If R is a semiregular ring and I is a right ideal of R, then the
following conditions are equivalent:

(1) Every homomorphism from a finitely generated right ideal to I can be ex-
tended to an endomorphism of RR.
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(2) Every homomorphism from a small, finitely generated right ideal to I can
be extended to an endomorphism of RR.

Proof. (1)⇒ (2) is obvious.
(2)⇒ (1): Let f : K → I be an R-homomorphism, where K is a finitely generated
right ideal. Since R is semiregular, then R = H⊕L, where H ≤ K and K∩L� R.
Hence R = K+L and K = H ⊕ (K ∩L), K ∩L is a small, finitely generated right
ideal of R. Thus there exists an endomorphism g of RR such that g(x) = f(x)
for all x ∈ K ∩ L. We construct a homomorphism ϕ : RR → RR defined by
ϕ(r) = f(k) + g(l) for any r = k + l, k ∈ K, l ∈ L. Now we show that ϕ is
well defined. Indeed, if k1 + l1 = k2 + l2, where ki ∈ K, li ∈ L, i = 1, 2, then
k1 − k2 = l1 − l2 ∈ K ∩ L. Hence f(k1 − k2) = g(l1 − l2), which implies that
ϕ(k1 + l1) = ϕ(k2 + l2). Thus ϕ is an endomorphism of RR such that ϕ|K = f . �

Let I be an ideal of R. A ring R is called right I-semiregular if for every a ∈ I,
aR = eR⊕ T , where e2 = e and T ≤ IR.

Corollary 2.9. Let R be a rightZr-semiregular ring. Then R is right SF-injective
if and only if R is right F-injective.

It is well-known if R is semiperfect and right small injective with Sr ≤e RR,
then R is right self-injective. This result is proved by Yousif and Zhou (see [20,
Theorem 2.11]). In [15, Theorem 3.4], they showed that a semilocal (or semireg-
ular) ring R is right self-injective if and only if R is right small injective. From
Lemma 2.8 we also have a similar result.

Theorem 2.10. Let R be a semiregular ring. Then

(1) R is right P-injective if and only if R is right SP-injective.

(2) R is right F-injective if and only if R is right SF-injective.

Because a semiperfect ring is semiregular, we have:

Corollary 2.11. Let R be a semiperfect ring. Then

(1) R is right P-injective if and only if R is right SP-injective.

(2) R is right F-injective if and only if R is right SF-injective.

Next we obtain some characterizations of QF-ring via right SF-injectivity with
ACC on right annihilators. The following theorem extends [15, Theorem 3.8].

Theorem 2.12. For a ring R, the following conditions are equivalent:

(1) R is QF.

(2) R is a semiregular and right SF-injective ring with ACC on right annihila-
tors.

(3) R is a semilocal and right SF-injective ring with ACC on right annihilators.

(4) R is a right SF-injective ring with ACC on right annihilators in which
Sr ≤e RR.
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Proof. It is obvious that (1)⇒ (2), (3), (4).
(2) ⇒ (1): By Theorem 2.10, R is right F-injective. Thus R is QF by [3,

Theorem 4.1].
(3) ⇒ (1): Since R satisfies ACC on right annihilators, Zr is nilpotent and

so Zr ≤ J . Therefore, J = Zr is nilpotent by Proposition 2.6. Hence R is
semiprimary.

(4)⇒ (1): By [13, Theorem 2.1] or [14, Lemma 2.11], R is semiprimary. �

Corollary 2.13. Let R be a ring. Then R is QF if and only if R is a semilocal,
left and right SP-injective ring with ACC on right annihilators.

Remark. The condition “semilocal” in Theorem 2.12 can not be omitted, since
the ring of integers Z is SP-injective, Noetherian, but Z is not QF.

The following result extends [11, Theorem 2.2].

Proposition 2.14. If R is right SP-injective and R/Soc(RR) has ACC on
right annihilators, then J is nilpotent.

Proof. Here we use a similar argument to that one in [2, Theorem 3]. Suppose
that R/Soc(RR) has ACC on right annihilators. Let S = Soc(RR) and R = R/S.
For any a1, a2, . . . in J , since

rR̄(ā1) ≤ rR̄(ā2ā1) ≤ . . . ,

by hypothesis there exists a positive integer m such that

rR̄(ām . . . ā2ā1) = rR̄(ām+k . . . ā2ā1)

for k = 0, 1, 2, . . . . Now for any positive integer n, since an+1an . . . a1 ∈ J ≤ Zr,
r(an+1an . . . a1) ≤e RR. Hence S ≤ r(an+1an . . . a1). We claim that

rR̄(ān . . . ā2ā1) ≤ r(an+1an . . . a1)/S ≤ rR̄(ān+1 . . . ā2ā1).

In fact, assume b + S ∈ rR̄(ān . . . ā2ā1). Then we have an . . . a1b ∈ S. But
since S ≤ r(an+1), we get an+1an . . . a1b = 0. Thus b ∈ r(an+1an . . . a1), and
so b + S ∈ r(an+1an . . . a1)/S. Now the other inclusion r(an+1an . . . a1)/S ≤
rR̄(ān+1 . . . ā2ā1) is obvious.

By this fact, it follows that

r(am+1am . . . a1)/S = r(am+2am+1 . . . a1)/S

because rR̄(ām . . . ā2ā1) = rR̄(ām+2 . . . ā2ā1). Therefore

r(am+1am . . . a1) = r(am+2am+1am . . . a1),

and hence (am+1am . . . a1)R ∩ r(am+2) = 0. But r(am+2) is an essential right
ideal of R, and so am+1am . . . a1 = 0. Hence J is right T-nilpotent and the ideal
(J +S)/S of the ring R̄ = R/S is also right T-nilpotent. By [1, Proposition 29.1],
(J+S)/S is nilpotent, and so there is a positive integer t such that J t ≤ S. Hence
J t+1 ≤ SJ . Thus J is nilpotent. �

Theorem 2.15. If R is a semilocal and right SF-injective ring such that R/Sr
is right Goldie, then R is QF.
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Proof. By Proposition 2.14, J is nilpotent, and hence R is semiprimary. Hence
R is right F-injective by Theorem 2.10. This implies that R is right GPF (i.e., R
is semiperfect, right P-injective with Sr ≤e RR) and so R is right Kasch by [11,
Corollary 2.3]. Therefore R is left P-injective by [3, Proposition 4.1]. Thus R is
QF by [10, Theorem 3.38]. �

Corollary 2.16. If R is a semilocal and right SF-injective ring satisfying ACC
on essential right ideals, then R is QF.

Now we consider rings whose small and finitely generated right ideals are pro-
jective. We have the following result.

Theorem 2.17. For a ring R the following conditions are equivalent:
(1) Every small and finitely generated right ideal of R is projective.
(2) Every quotient module of a SF-injective module is SF-injective.
(3) Every quotient module of a F-injective module is SF-injective.
(4) Every quotient module of a small injective module is SF-injective.
(5) Every quotient module of an injective module is SF-injective.

Proof. (2)⇒ (3)⇒ (5) and (2) ⇒ (4)⇒ (5) are obvious.
(1) ⇒ (2): Assume that ER is SF-injective and π : E → B is an epimorphism.

Let f : I → B be an R-homomorphism, where I is a small and finitely generated
right ideal of R.

0 −→ I
ι
↪→ R

f→↓
E

π−→ B −→ 0

where ι is the inclusion.
By (1), I is projective. Therefore there exists an R-homomorphism h : I → E

such that πh = f . Now since E is SF-injective, there is an R-homomorphism
h′ : R → E such that h′ι = h. Let h′′ = πh′ : R → B, then h′′ι = f . This means
BR is SF-injective.

(5)⇒ (1): For every small and finitely generated right ideal I of R, we consider
the epimorphism h : A→ B and R-homomorphism α : I → B.

Since B = h(A)
ψ∼= A/Kerh

ι1
↪→ E(A)/Kerh, where ι1 is the inclusion and

ψ(h(a)) = a + Kerh, for all a ∈ A. Then let j = ι1ψ. We consider the following
diagram:

I
ι
↪→ R

ϕ

↙ α→↓
E

h−→ B −→ 0
j→↓

E(A)
p−→ E(A)/Kerh −→ 0

where ι is the inclusion and p is the natural epimorphism.
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By (5), E(A)/Kerh is SF-injective and then there exists an R-homomorphism
α′ : R → E(A)/Kerh such that α′ι = jα. Since RR is projective, there is an
R-homomorphism α′′ : R → E(A) such that pα′′ = α′. Let h′ = α′′ι : I → E(A).
It is easy to see that h′(I) ≤ A, so there exists an R-homomorphism ϕ : I → A
such that ϕ(x) = h′(x), for all x ∈ I.

Now we claim that hϕ = α. In fact, for each x ∈ I we have

j(α(x)) = α′(ι(x)) = α′(x) = p(α′′(x)) = p(h′(x)) = p(ϕ(x)).

Since α is the epimorphism, α(x) = h(a) for some a ∈ A. Therefore j(α(x)) =
j(h(a)) = a + Kerh, and so a + Kerh = ϕ(x) + Kerh, h(a − ϕ(x)) = 0. Hence
hϕ(x) = h(a) = α(x). Thus I is projective. �

Example 2.18. i) Let R = F [x1, x2, . . .], where F is a field and xi are com-
muting indeterminants satisfying the relations: x3

i = 0 for all i, xixj = 0 for all
i 6= j, and x2

i = x2
j for all i and j. Then R is a commutative, semiprimary F-

injective ring. But R is not a self-injective ring (see [10, Example 5.45]). Thus R
is SF-injective, but R is not a small injective ring. Because if R is small injective,
then R is self-injective by [15, Theorem 3.4], a contradiction.

ii) Let F be a field and assume that a 7→ ā is an isomorphism F → F ⊆ F ,
where the subfield F 6= F . Let R denote the left vector space on basis {1, t}, and
make R into an F -algebra by defining t2 = 0 and ta = āt for all a ∈ F (see [10,
Example 2.5]). Then R is a right SP-injective (since R is right P-injective) and
semiprimary ring but not a right SF-injective ring. If R is a right SF-injective
ring, then R is right F-injective by Theorem 2.10. This is a contradiction by [10,
Example 5.22]. Moreover, R is not left SP-injective since R is not left mininjective.

iii) The ring of integers Z is a commutative ring with J = 0. So R is small
injective, but R is not P-injective.

3. On simple-FJ-injective rings

Definition 3.1. A ring R is called right simple-FJ-injective if every right
R-homomorphism from a small, finitely generated right ideal to R with a sim-
ple image, can be extended to an endomorphism of RR.

We have the implications simple−injective⇒ simple−J-injective⇒ simple−
FJ-injective. But the converses in general are not true. By Example 2.18(i),
R is commutative, semiprimary and simple-FJ-injective. But R is not simple-J-
-injective. In fact, if R is simple-J-injective then R is simple-injective by [15,
Corollary 3.6]. Hence R is self-injective by [10, Theorem 6.47]. This is a contra-
diction.

Lemma 3.2. If R is right simple-FJ-injective, then R is right mininjective and
a left minannihilator.

Proof. We can prove it as in Proposition 2.6. �
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Lemma 3.3. A ring R is right simple-FJ-injective a ring if and only if every
R-homomorphism f : I → R extends to RR → RR, where I is a small, finitely
generated right ideal and f(I) is finitely generated, semisimple.

Proof. Write f(I)=
⊕n

i=1 Si where Si is a simple right ideal. Letπi :
⊕n

i=1Si→Si
be the projection for each i. Since R is right simple-FJ-injective, πif = ci., for
some ci ∈ R and for each i. Thus f = c., with c = c1 + . . .+ cn. �

Proposition 3.4. Let R be a right simple-FJ-injective and right Kasch ring.
Then

(1) rl(I) = I for every small, finitely generated right ideal I of R.
(2) Sr = Sl.

Proof. By Proposition 2.7. �

In [20], a ring R is called right (I − K) − m-injective if for any m-generated
right ideal U ≤ I and any R-homomorphism f : UR → KR, f = c., for some c ∈ R,
where I,K are two right ideals of R and m ≥ 1.

Lemma 3.5 ([20], Lemma 2.5). If R is a right (J, Sr)−1-injective, right Kasch
and semiregular ring, then l(J) is an essential left ideal of RR.

Lemma 3.6. Let R be a right simple-FJ-injective and semiregular ring. Then
every R-homomorphism f : K → R extends to RR → RR where K is a finitely
generated right ideal and f(K) is simple.

Proof. Let f : K → I be an R-homomorphism, where K is a finitely generated
right ideal and f(K) is simple. Since R is semiregular, then K = eR ⊕ L, where
e2 = e ∈ R and L ≤ J . So L is a small, finitely generated right ideal of R. It is
easy to see that K = eR⊕(1−e)L. Therefore (1−e)L is a small, finitely generated
right ideal of R. By hypothesis, there exists an endomorphism g of RR such that
g(x) = f(x) for all x ∈ (1 − e)L. We construct a homomorphism ϕ : RR → RR
defined by ϕ(x) = f(ex) + g((1− e)x) for any x ∈ R. Then ϕ|K = f . �

Proposition 3.7. Let R be a right simple-FJ-injective ring. Then
(1) If R is semiregular and e is a local idempotent of R, then Soc(eR) is either

0 or simple and essential in eRR.
(2) If R is semiperfect, then the following conditions are equivalent

a) Soc(eR) 6= 0 for each local idempotent e.
b) Sr is finitely generated and essential in RR.

Proof. (1) Suppose that Soc(eR) 6= 0 and let aR be a simple right ideal of eR.
If 0 6= b ∈ eR such that aR ∩ bR = 0, then we construct an R-homomorphism
γ : aR ⊕ bR → eR by γ(ax + by) = ax, for all x, y ∈ R. Therefore Im γ = aR
is simple. By Lemma 3.6, γ = c. for some c ∈ R. Let c′ = ece ∈ eRe. So
(e− c′)a = ea− eca = 0. On the other hand, End(eRR) ∼= eRe is local. It implies
that c′ is invertible in eRe, but c′b = eceb = ecb = 0 and so b = 0, which is a
contradiction. Hence aR ∩ bR 6= 0, aR ≤ bR since aR is simple. Thus Soc(eR) is
simple and essential in eRR.
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(2) If 1 = e1 + . . . + en, where the ei are orthogonal local idempotents, then
Sr =

⊕n
i=1 Soc(eiR) and a)⇒ b) follows from (1). The converse is clear. �

Proposition 3.8. Let R be a semiperfect, right simple-FJ-injective ring with
Soc(eR) 6= 0 for each local idempotent e ∈ R. Then:

(1) rl(I) = I for every finitely generated right ideal I of R, so R is left P-
injective.

(2) R is left and right Kasch.
(3) Sr = Sl = r(J) = l(J) is essential in RR and in RR.
(4) J = Zr = Zl = r(S) = l(S), with Sr = Sl = S.

(5) R is left and right finitely cogenerated.

Proof. (2): by [12, Theorem 3.7] and (1) by Proposition 3.4 and [20, Lemma 1.4].
(3): Sr = Sl = S is essential in RR and in RR by Proposition 3.4, Lemma 3.5

and Proposition 3.7. S = r(J) = l(J) because R is left and right Kasch.
(4): follows from (2) and (3).
(5): follows from Proposition 3.7 and [10, Theorem 5.31]. �

Remark. There exists a semiprimary and right simple-FJ-injective ring, but it
can not be right simple-injective. On the other hand, there is a ring R that is right
simple-FJ-injective but not right SP-injective (see [20, Example 1.7]).

From the above proposition, we have the following result.

Proposition 3.9. If R is a right simple-FJ-injective ring with ACC on right
annihilators in which Sr ≤e RR, then R is QF.

Proof. By [13, Theorem 2.1] or [14, Lemma 2.11], R is semiprimary. Hence R
is left and right mininjective by Proposition 3.8. Thus R is QF. �

Corollary 3.10 ([14], Theorem 2.15). If R is a right simple-injective ring with
ACC on right annihilators in which Sr ≤e RR then R is QF.

Recall that a ring R is called right pseudo-coherent if r(S) is finitely generated
for every finite subset S of R (see [3]). Chen and Ding [5] proved that if R is a left
perfect, right simple-injective and right (or left) pseudo-coherent ring, then R is
QF. They gave a question: If R is a right simple-injective ring which is also right
perfect and right (or left) pseudo-coherent, is R a QF ring? The following results
are motivated by this question.

Firstly, we have the following result

Lemma 3.11 (Osofsky’s Lemma). If R is a left perfect ring in which J/J2 is
right finitely generated, then R is right Artinian.

Theorem 3.12. Assume that R is left perfect, right simple-FJ-injective. If R
is right (or left) pseudo-coherent ring, then R is QF.

Proof. Since R is left perfect, Soc(eR) 6= 0 for each local idempotent e ∈ R.
Thus by Proposition 3.8, J = r(S) = l(S) with S = Sr = Sl = r(J) = l(J) is
a finitely generated left and right ideal. Hence by hypothesis, R is left (or right)
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pseudo-coherent, and so J is a finitely generated left (or right) ideal. If J is a
finitely generated right R-module, then J/J2 is too. Consequently, R is right
Artinian by Lemma 3.11. If J is a finitely generated left R-module, then J is
nilpotent by [10, Lemma 5.64], and so R is semiprimary. Hence R is left Artinian
by Lemma 3.11. Thus R is QF. �

Corollary 3.13 ([5], Theorem 2.6). Assume that R is left perfect, right simple-
-injective. If R a is right (or left) pseudo-coherent ring, then R is QF.

We consider a ring which is right simple-FJ-injective and left pseudo-coherent.

Theorem 3.14. If R is a right perfect, right simple-FJ-injective and left pseudo-
-coherent ring then R is QF.

Proof. Since R is right perfect and left pseudo-coherent, R satisfies DCC on
finitely generated left ideals. Hence if A ⊆ R, l(A) = l(A0) for some finite subset
A0 of A. It follows that R satisfies DCC on left annihilators, and hence R has ACC
on right annihilators. Therefore R is semiprimary by [6, Proposition 1]. Thus R
is QF by Theorem 3.12. �

Corollary 3.15. If R is a right perfect, right simple-injective and left pseudo-
-coherent ring, then R is QF.

Acknowledgment. The authors would like to thank the referee for the valu-
able suggestions and comments.

References

1. Anderson F. W. and Fuller K. R., Rings and categories of modules, Springer-Verlag, New

York, 1974.
2. Armendariz E. P. and Park J. K., Self-injective rings with restricted chain conditions, Arch.

Math. 58 (1992), 24–33.
3. Björk J. E., Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970),

63–73.

4. Chen J. and Ding N., On general principally injective rings, Comm. Algebra, 27(5) (1999),
2097–2116.

5. , On generalization of injective rings, In International Symposium on Ring Theory,

South Korea, June 28 – July 3, 1999.
6. Faith C., Ring with ascending condition on annihilators, Nagoya Math. J., 27 (1966),

179–191.

7. , Algebra II: Ring Theory, Springer-Verlag, Berlin, 1976.
8. Faith C., and Huynh D. V., When self-injective rings are QF: A report on a problem,

J. of Algebra and It’s Appl. 1(1) (2002), 75–105.

9. Goodeal K. R. and Warfield R. B., An introduction to noncommutative Noetherian rings,
Cambridge University Press, 1989.

10. Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press,
2003.

11. , Principally injective rings, J. Algebra 174 (1995), 77–93.

12. , Mininjective rings, J. Algebra 187 (1997), 548–578.
13. Quynh T. C. and Thuyet L. V., On rings with ACC on annihilators and having essential

socles, Proc. of Int. of Math. and Appl. (ICMA, Bangkok 2005)(Organized by Yongwimon

Lenbury and Nguyen Van Sanh), East-West J. Math. Spec Vol. (2006), 227–234.



172 LE VAN THUYET and TRUONG CONG QUYNH

14. Shen L. and Chen J., A note on Quasi-Frobenius rings, arXiv: Math., RA/0504068 v.1

(2005).
15. , Small injective rings, arXiv: Math., RA/0505445 v.21 (2005).

16. Thoang L. D. and Thuyet L. V., On semiperfect mininjective rings with essential socles,

Southeast Asian Bull. Math. 30 (2006), 555–560.
17. Thuyet L. V., On continuous rings with chain conditions, Vietnam J. Math. 19(1) (1991),

49–59.
18. Thuyet L. V. and Quynh T. C., On small injective ring and modules, to appear in Journal

of Algebra and it’s Application.

19. Wisbauer R., Foundations of module and ring theory, Gordon and Breach, 1991.
20. Yousif M. F. and Zhou Y. Q., FP-injective, simple-injective and quasi-Frobenius rings,

Comm. Algebra, 32(6) (2004), 2273–2285.

Le van Thuyet, Department of Mathematics, Hue University, Vietnam,

e-mail : lvthuyethue@gmail.com

Truong Cong Quynh, Department of Mathematics, Da Nang University, Vietnam,

e-mail : matht2q2004@hotmail.com


