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EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL
EQUATIONS IN BANACH SPACES

A. SGHIR

Abstract. This paper concernes with the study of existence theorems for a general

class of functional differential equations of the form

u′(t) = f(t, u ◦ γ(t, ·)).
The obtained results generalize the retarded functional differential equations [5, 6,

8] and cover singular functional differential equations [1, 2, 4, 7, 9, 12].

1. Introduction

Let (E, | · |E) be a Banach space. For a fixed r > 0, we define C = C([−r, 0];E)
to be the Banach space of continuous E-valued functions on J := [−r, 0] with the
usual supremum norm ‖ϕ‖ = supθ∈[−r,0] |ϕ(θ)|E .

For a continuous function u : R → E and any t ∈ R, we denote by ut the
element of C, defined by

ut(θ) = u(t+ θ), θ ∈ J.

For each (σ, a) ∈ R× R∗+, we consider

Γσ,a = {γ : [σ, σ + a]× [−r, 0] → [σ − r, σ + a] continuous functions such that

for all θ ∈ [−r, 0], s ∈ [0, a], γ(σ, θ) = σ + θ and γ(σ + s, 0) = σ + s } .

It is clear that if u ∈ C([σ− r, σ+ a];E) and γ ∈ Γσ,a, then u ◦ γ(t, ·) ∈ C and t 7→
u◦γ(t, ·) is a continuous function for t ∈ [σ, σ+a], where u◦γ(t, ·)(θ) := u(γ(t, θ))
for all θ ∈ J , in particular, if γ(t, θ) = t + θ, then u ◦ γ(t, ·) = ut ∈ C and t 7→ ut
is continuous for t ∈ [σ, σ + a].

Now we introduce a general class of functional differential equations

(1.1) u′(t) = f(t, u ◦ γ(t, ·))

where f is a continuous function from [σ, σ + a]× C into E.
If γ(t, θ) = t+θ, then the equation R(f, γ) coincides with the classical retarded

functional differential equation u′(t) = f(t, ut) (see, for example [5, 6, 8]).

Received July 18, 2008; revised December 4, 2008.
2000 Mathematics Subject Classification. Primary 34K05; 34K30.
Key words and phrases. class of functional differential equations; singular functional differ-

ential equations.



288 A. SGHIR

If γ(t, θ) = ρ(ρ−1(t) + θ) where ρ : [σ − r, σ + b] → [σ − r, σ + a], (b > 0) is
defined by

ρ(τ) =

 σ +
∫ τ

σ

ds
ψ(s)

if τ ∈ [σ, σ + b]

τ if τ ∈ [σ − r, σ],

ψ : [σ, σ + b] → R+ is continuous, ψ > 0 on (σ, σ + b] and a :=
∫ σ+b

σ
ds
ψ(s) < +∞,

then the equation R(f, γ) coincides with the following initial value problem for the
singular functional differential equation (see [7]):{

ψ(τ)x′(τ) = g(τ, xτ ), τ ∈ (σ, σ + b]
xσ = ϕ,

where g : [σ, σ + b]× C → E is completely continuous and f(t, φ) := g(ρ−1(t), φ).
Also, in the Section 5, we shall study the general form{

ψ(τ)x(n)(τ) = g(τ, xτ , x′τ , . . . , x
(n−1)
τ ), τ ∈ (σ, σ + b], (b > 0)

xσ = ϕ,

or the second order delay equation of the form{
ψ(τ)x′′(τ) = g(τ, x(τ), x(τ − r1), x′(τ), x′(τ − r2)), τ ∈ (σ, σ + b], (b > 0)

xσ = ϕ, x′σ = ϕ′ on [−r, 0],

where r = max(r1, r2), (see [12]).

2. Preliminaries

Let D be a subset of R× C and let f be a continuous function from D into E. In
the sequel, we give (σ, a) ∈ R× R∗+ and γ ∈ Γσ,a. We say that the relation

u′(t) = f(t, u ◦ γ(t, ·)), ((t, u ◦ γ(t, ·)) ∈ D),

is a functional differential equation on D and will denote this equation by R(f, γ).

Definition 2.1. A function u is said to be a solution of the equation R(f, γ),
if there exists a real A such that 0 < A ≤ a and u ∈ C([σ − r, σ + A);E), (t, u ◦
γ(t, ·)) ∈ D and u satisfies the equation R(f, γ) for t ∈ [σ, σ + A). Then, we say
that u is a solution of R(f, γ) on [σ, σ +A)

For (σ, ϕ) ∈ R×C, we say u := u(σ, ϕ) is a solution of equation R(f, γ) through
(σ, ϕ), if there is A such that 0 < A ≤ a and u(σ, ϕ) is a solution of R(f, γ) on
[σ − r, σ +A) and uσ(σ, ϕ) = ϕ.

Let (σ, ϕ) ∈ R× C, we consider the function ϕ̃ defined by

ϕ̃(t) =

{
ϕ(t− σ) if t ∈ [σ − r, σ]

ϕ(0) if t ≥ σ.

We have ϕ̃ ∈ C([σ − r,+∞);E), ϕ̃σ = ϕ and ϕ̃(t+ σ) = ϕ(0) for t ≥ 0.
It is easy to see that the following result is immediate.
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Lemma 2.1. Suppose that f ∈ C(D;E), ϕ ∈ C and 0 < A ≤ a. Then, there
are equivalent statements:

i) u is solution of R(f, γ) on [σ − r, σ +A) through (σ, ϕ),
ii) u ∈ C([σ − r, σ +A);E), (t, u ◦ γ(t, ·)) ∈ D for all t ∈ [σ, σ +A) and

uσ = ϕ

u(t) = ϕ(0) +

t∫
σ

f(s, u ◦ γ(s, ·))ds, t ∈ [σ, σ +A);

iii) there exists y ∈ C([−r,A);E) such that (σ + t, yt + ϕ̃ ◦ γ(σ + t, ·)) ∈ D for
all t ∈ [0, A) and

y0 = 0

y(t) =

t∫
0

f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))ds, t ∈ [0, A).

For any real α, β > 0, define

Iα = [0, α], Îα = (0, α], Bβ = {ψ ∈ C : ‖ψ‖ ≤ β} ,
A(α, β) = {y ∈ C([−r, α];E) : y0 = 0 and yt ∈ Bβ , t ∈ Iα}

and
C0(D,E) = {f ∈ C(D,E) : f is bounded on D} .

We have A(α, β) is a closed bounded convex subset of C([−r, α];E) and C0(D,E)
is a Banach space with the norm ‖f‖0 = sup(t,ϕ)∈D |f(t, ϕ)|E .

Lemma 2.2. Suppose that Ω ⊂ R × C is open, W ⊂ Ω is compact and f0 ∈
C(Ω;E). Then, there exists a neighborhood V ⊂ Ω of W such that f0 ∈ C0(V ;E),
there exists a neighborhood U ⊂ C0(V ;E) of f0 and three positive constants M ,
α ≤ a and β such that

|f(σ, ϕ)|E < M for all (σ, ϕ) ∈ V and f ∈ U,

(σ0 + t, yt + ϕ̃0 ◦ γ(σ0 + t, ·)) ∈ V for any (σ0, ϕ0) ∈ W , t ∈ Iα, y ∈ A(α, β) and
γ ∈ Γσ0,a.

Proof. Since f0(W ) is a compact subset of the Banach space E, it is bounded,
and therefore exists M > 0 such that∣∣f0(σ0, ϕ0)

∣∣
E
<
M

3
for all (σ0, ϕ0) ∈ W . However f0 is continuous at (σ0, ϕ0), and therefore for
0 < ε < M

3 , there exists (α′, β′) ∈ R∗+ × R∗+ (with α′ ≤ a) such that for (t, ψ) ∈(
σ0 − α′, σ0 + α′

)
×B(ϕ0, β′) ⊂ Ω we have∣∣f0(t, ψ)
∣∣
E
≤

∣∣f0(t, ψ)− f0(σ0, ϕ0)
∣∣
E

+
∣∣f0(σ0, ϕ0)

∣∣
E
<

2M
3
.
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Consider β such that 0 < β < β′ and γ ∈ Γσ′,a. Since the function s ∈ [σ0,

σ0 +a] 7→ ϕ̃0 ◦ γ(s, ·) is continuous at σ0, then there exists α such that 0 < α < α′

and∥∥∥ϕ̃0 ◦ γ(σ0 + t, ·)− ϕ̃0 ◦ γ(σ0, ·)
∥∥∥ =

∥∥∥ϕ̃0 ◦ γ(σ0 + t, ·))− ϕ0
∥∥∥ < β′ − β, t ∈ Iα.

Define V =
⋃

(σ0,ϕ0)∈W
(
σ0 − α′, σ0 + α′

)
× B(ϕ0, β′). Then W ⊂ V ⊂ Ω, V is a

neighborhood of W and f0 ∈ C0(V ;E). Moreover (σ0+t, yt+ϕ̃0◦γ(σ0+t, ·)) ∈ V
for all t ∈ Iα, y ∈ A(α, β), γ ∈ Γσ0,a. Indeed σ0 + t ∈

(
σ0 − α′, σ0 + α′

)
and

yt + ϕ̃0 ◦ γ(σ0 + t, ·) ∈ B(ϕ0, β′) because∥∥∥yt + ϕ̃0 ◦ γ(σ0 + t, ·))− ϕ0
∥∥∥ ≤ ‖yt‖+

∥∥∥ϕ̃0 ◦ γ(σ0 + t, ·))− ϕ0
∥∥∥ ≤ β′.

Define U =
{
f ∈ C0(V ;E) :

∥∥f − f0
∥∥

0
< M

3

}
. Then U is a neighborhood of f0,

U ⊂ C0(V ;E) and for all (σ, ϕ) ∈ V , f ∈ U

|f(σ, ϕ)|E ≤
∣∣f(σ, ϕ)− f0(σ, ϕ)

∣∣
E

+
∣∣f0(σ, ϕ)

∣∣
E
< M.

�

The next lemma will be used to apply fixed point theorems for existence of
solutions of the equation R(f, γ).

Lemma 2.3. Suppose that Ω ⊂ R × C is open, W = {(σ, ϕ)} ⊂ Ω and
f0 ∈ C(Ω;E) are given, the neighborhoods V , U and the constants M , α and
β are the ones obtained from Lemma 2.2. Define an operator T : U × A(α, β) →
C([−r, α];E) by

T (f, y)(t) =


0 if t ∈ [−r, 0]
t∫

0

f((σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))ds if t ∈ Iα.

If Mα ≤ β, then T : U ×A(α, β) → A(α, ϕ) and T is continuous on U ×A(α, β).

Proof. It is clear that T maps U×A(α, β) into C([−r, α];E) and by Lemma 2.2,
for all t, t′ ∈ Iα

|T (f, y)(t)− T (f, y)(t′)|E ≤M |t− t′| and |T (f, y)(t)|E ≤Mα.

It is easy to see that for all t, t′ ∈ [−r, α]

|T (f, y)(t)− T (f, y)(t′)|E ≤M |t− t′| and |T (f, y)(t)|E ≤Mα.

Hence the family = = {T (f, y) : (f, y) ∈ U ×A(α, β)} is bounded and uniformly
equicontinuous. Also, we have (T (f, y))0 = 0 and (T (f, y))t ∈ Bβ if Mα ≤ β, thus
T maps U ×A(α, β) into A(α, β).

It remains to show that T is continuous on U ×A(α, β).
Let (fn, yn) be a sequence in U ×A(α, β) that converges to a member (f, y) of

U ×A(α, β).
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It is clear that for each s ∈ Iα
‖yns − ys‖ = sup

θ∈[−r,0]
|yn(s+ θ)− y(s+ θ)|E ≤ ‖yn − y‖1

:= sup
t∈[−r,α]

|yn(t)− y(t)|E .

We have (σ+ s, yns + ϕ̃ ◦ γ(σ+ s, ·), (σ+ s, ys + ϕ̃ ◦ γ(σ+ s, ·) ∈ V because s ∈ Iα
and yn, y ∈ A(α, β). Since (fn) converges uniformly to f in V , then the sequence
(fn(σ + s, yns + ϕ̃ ◦ γ(σ + s, ·))) converges to f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) in E,
but fn and f are bounded on V (see Lemma 2.2) and by the Lebesgue dominated
convergence theorem, we obtain

t∫
0

fn(σ + s, yns + ϕ̃ ◦ γ(σ + s, ·))ds −→
t∫

0

f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))ds

in E. Hence for all t ∈ Iα, T (fn, yn)(t) converges to T (f, y)(t) in E and
then (T (fn, yn)(t)) converges to T (f, y)(t) in E for all t ∈ [−r, α]. This implies
that the set {T (fn, yn)(t) : t ∈ [−r, α]} is relatively compact in E, but the family
{T (fn, yn) : n ∈ N} is bounded and uniformly equicontinuous and therefore by
the Ascoli theorem [3, 11], the family{T (fn, yn) : n ∈ N} is relatively compact in
C([−r, α];E). We shall show that T (fn, yn) converges to T (f, y) in C([−r, α];E).
Suppose, for the sake of contradiction, that there exists ε > 0 such that for all
N ∈ N

∃n > N : ‖T (fn, yn)− T (f, y)‖1 ≥ ε.

Then for

N = n0, ∃n1 > n0 : ‖T (fn1 , yn1)− T (f, y)‖1 ≥ ε

and for k > 1 and

N = nk−1, ∃nk > nk−1 : ‖T (fnk , ynk)− T (f, y)‖1 ≥ ε.

If necessary, passing, to a subsequence, we can assume that (T (fnk , ynk)) converges
to z ∈ A(α, β) such that ‖z − T (f, y)‖1 ≥ ε. Since (T (fnk , ynk)) converges to z
in C([−r, α];E ), then (T (fnk , ynk))(t) converges to z(t) in E for each t ∈ [−r, α],
but this sequence converges to T (f, y)(t) in E, which is a contradiction. Therefore
T is continuous on U ×A(α, β). �

3. Local existence of solutions

In this section we shall show existence theorem of solutions to R(f, γ) by using
the results obtained in the section two.

Definition 3.1. Suppose that Ω is an open set in R×C. A function f ∈ C(Ω;E)
is said to have the condition (l) if, for all (σ, ϕ) ∈ Ω, there exists a neighborhood
V ′ ⊂ Ω of (σ, ϕ) and a positive constant k such that for all bounded I × S1 ⊂ V ′

with bounded f(I × S1), then χ(f(I, S1)) ≤ kχ0(S1) where χ (resp. χ0) is the
measure of noncompactness [3, 11] on E (resp. C).
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Theorem 3.1. Suppose that Ω is an open set in R×C and f ∈ C(Ω;E). If f is
compact or satisfying the condition (l) (resp. f(t, ·) is locally Lipschitz), then for
all (σ, ϕ) ∈ Ω and γ ∈ Γσ,a there exists a positive constant α ≤ a and a solution
(resp. a unique solution) of the equation R(f, γ) on [σ − r, σ + α] through (α, ϕ).

Proof. By notations of Lemmas 2.2 and 2.3 with W = {(σ, ϕ)}, the operator
T1 = T (f, ·) maps A(α, β) into A(α, β) if α ≤ β

M and T1 is continuous.

First case. If f is compact we shall show that T1 is compact.
Let B be a bounded subset of A(α, β) and (zn) a sequence of T1B, then there

exists a sequence (yn) of B such that zn = T1y
n.

The set {f(σ + s, yns + ϕ̃ ◦ γ(σ + s, ·)) : n ∈ N, s ∈ Iα} is relatively compact be-
cause f is completely continuous. By Mazur theorem [3, 11] its closed convex hull
is compact. But, for all t ∈ Îα, we have (see [11, p. 25])

1
t

t∫
0

f(σ+s, yns +ϕ̃◦γ(σ+s, ·))ds ∈ Co{f(σ+s, yns +ϕ̃◦γ(σ+s, ·)): n ∈ N, s ∈ Iα}.

Then,

{T1y
n(t) : n ∈ N, s ∈ Îα} ⊂ αCo{f(σ + s, yns + ϕ̃ ◦ γ(σ + s, ·)) : n ∈ N, s ∈ Iα}

which is compact, hence {T1y
n(t) : n ∈ N, s ∈ Îα} is relatively compact. However

{T1y
n(t) : n ∈ N} is bounded and uniformly equicontinuous, then by the Ascoli

theorem, {T1y
n(t) : n ∈ N} is relatively compact, thus (zn) has a subsequence

that converges in C([−r, α];E). By Schauder fixed-point theorem and Lemma 2.3,
R(f, γ) has a solution on [σ − r, σ + α] through (σ, ϕ).

Second case. If f satisfies the condition (l).
Let V = (σ − α′, σ + α′)×B(ϕ, β′) be the neighborhood obtained in the Lem-

ma 2.2 and by the condition (l), there exist V ′ = (σ − α′′, σ + α′′) × B(ϕ, β′′)
and k > 0 such that if f(I × S1) is bounded for all bounded I × S1 ⊂ V ′, then
χ(f(I×S1)) ≤ kχ0(S1). Take α2 = min(α′, α′′), β2 = min(β′, β′′) and V1 = V ∩V ′.
Let 0 < β1 < β2, then there exists α1 such that 0 < α1 < α2 (see proof of
Lemma 2.2) and for all s ∈ Iα1

‖ϕ̃ ◦ γ(σ + s, ·)− ϕ̃ ◦ γ(σ, ·)‖ = ‖ϕ̃ ◦ γ(σ + s, ·)− ϕ‖ < β2 − β1.

Then for every s ∈ Iα1 and every y ∈ A(α1, β1), (σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) ∈ V1.
Thus, if α1 ≤ β1

M , then T1 maps A(α1, β1) into itself and T1 is continuous. Moreover
A(α1, β1) is closed, bounded convex subset of C([−r, α1];E). In order to apply
Darboux fixed point theorem [3, 11], we shall show that there exists δ ∈ [0, 1)
such that χ1

0(T1S) ≤ δχ1
0(S) for all S ⊂ A(α1, β1) where χ1

0 is the measure of
noncompactness on C([−r, α1];E).
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Let S ⊂ A(α1, β1), then for each t ∈ Îα1

χ(T1S(t)) = χ

({∫ t

0

f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))ds : y ∈ S
})

= χ

({
t
1
t

∫ t

0

f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))ds : y ∈ S
})

≤ α1χ(Co {f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) : y ∈ S, s ∈ [0, t]})

≤ α1χ({f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) : y ∈ S, s ∈ [0, t]}).

By definition of V1, we have for each t ∈ Îα1

{(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) : y ∈ S, s ∈ [0, t]} ⊂ V1.

Take
I = {σ + s : s ∈ [0, t]} ⊂ [σ, σ + α1] and

S1 = {ys + ϕ̃ ◦ γ(σ + s, .) : y ∈ S, s ∈ [0, t]} .

Then, I×S1 and f(I×S1) are bounded (because f is bounded on V see Lemma 2.2).
Hence, for each t ∈ Îα1 , χ(T1S(t)) ≤ kα1χ0(S1) and

χ0(S1) = χ0({ys : y ∈ S, s ∈ [0, t]}) + χ0({ϕ̃ ◦ γ(σ + s, ·) : s ∈ [0, t]})
≤ χ0({ys : y ∈ S, s ∈ [0, t]}).

Since χ0({ϕ̃ ◦ γ(σ + s, .) : s ∈ [0, t]}) = 0, the set {ϕ̃ ◦ γ(σ + s, ·) : s ∈ [0, t]} is rel-
atively compact.

Thus, for each t ∈ Îα1

χ(T1S(t)) ≤ kα1χ0(Ss) ≤ kα1χ
1
0(S) (see [13])

where Ss = {ys : s ∈ [0, t], y ∈ S}.
But the family

{
t 7→

∫ t
0
f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·)) ds

}
is uniformly bounded

and equicontinuous, then by Ambrosetti theorem [3, 11], we obtain

χ1
0(T1S) = sup

t∈[−r,α1]

χ(T1S(t)) ≤ kα1χ
1
0(S).

Take α1 < min
{

1
k ,

β1
M

}
and δ = kα1 ∈ [0, 1).

Third case. If f(t, ·) is locally Lipschitz.
Let V = (σ − α′, σ + α′) × B(ϕ, β′) be the neighborhood obtained in the

Lemma 2.2 and since f(t, ·) is locally Lipschitz then there exists V ′ = (σ − α′′,
σ + α′′) × B(ϕ, β′′) such that f(t, ·) is Lipschitz on V ′. T1 maps A(α1, β1) into
A(α1, β1) if α1 ≤ β1

M (see the second case of the existence of α1, β1) and T1 is a
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contraction strict if α1 < min
{
β1
M , 1

k

}
. Indeed, for all y, z ∈ A(α1, β1)

‖T1y − T1z‖1 = sup
t∈[−r,α1]

|T1y(t)− T1z(t)|E

≤ sup
t∈dIα1

∫ t

0

|f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))

− f(σ + s, zs + ϕ̃ ◦ γ(σ + s, ·))|Eds

≤ k sup
t∈dIα1

∫ t

0

‖ys − zs‖ds,

but for all s ∈ (0, t] ⊂ Îα1

‖ys − zs‖ ≤ sup
θ∈[−r,0]∩[−s,0]

|y(s+ θ)− z(s+ θ)|E ≤ ‖y − z‖1 .

Finally
‖T1y − T1z‖1 ≤ kα1 ‖y − z‖1 for all y, z ∈ A(α1, β1).

Thus, the equation R(f, γ) has a unique solution on [σ− r, σ+α1] through (σ, ϕ).
�

Remark. If f = f1 + f2 where f1 is completely continuous and f2 is locally
Lipschitz, then the condition (l) is verified.

4. Global existence solutions

Definition 4.1. Let u (resp. v) be a solution of R(f, γ) on Ju = [σ− r, σ+A)
(resp. Jv = [σ − r, σ + B)) where 0 < A,B ≤ a. The solution v is said to be a
continuation of u if Jv ⊃ Ju and v = u on Ju.

The solution u is said to be noncontinuable if it has no proper continuation.

The following result of the existence of noncontinuable solutions follows from
Zorn lemma [14].

Proposition 4.1. If u is a solution of the equation R(f, γ) on Ju, then there
exists a noncontinuable solution û of R(f, γ) on Jbu such that û is a continuation
of u.

Theorem 3.1 gives a criterion of local existence for solutions to R(f, γ), then we
use the previous proposition to study the continuation of solutions to the equation
R(f, γ).

Theorem 4.1. Suppose that Ω is an open subset of R × C and f ∈ C(Ω;E).
If f is compact or verifies the condition (l) (resp. f(t, ·) is locally Lipschitz), then
for all (σ, ϕ) ∈ Ω and γ ∈ Γσ,a, there exists a noncontinuable solution (resp. a
unique solution) of R(f, γ) on [σ − r, σ + α) (0 < α ≤ a) through (σ, ϕ).

Proof. It remains to show unicity of a noncontinuable solution if f(t, ·) is lo-
cally Lipschitz. Suppose that there exist two noncontinuable solutions u : [σ − r,
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σ+αu) → E and v : [σ−r, σ+αv) → E ofR(f, γ) through (σ, ϕ), then uσ = vσ = ϕ.
If αu < αv, then v is a continuation of u, which is a contradiction, so αu = αv.

By Lemma 2.2, we associated with u (resp. v), y (resp. z) and we will see y = z
on J = (0, α). Suppose that in J there exists t′ > 0 such that y(t′) 6= z(t′). Define
t0 = inf {t ∈ J : y(t) 6= z(t)}, by continuity of y and z, then y(t0) = z(t0) and
yt0 = zt0 . Set ϕ0 = yt0 + ϕ̃◦γ(σ+ t0, ·) = zt0 + ϕ̃◦γ(σ+ t0, ·), then (σ+ t0, ϕ0) ∈ Ω
and there exist a neighborhood V ⊂ Ω of (σ, ϕ) and a positive constant k such
that f is k-Lipschitz on V . Let α′ > 0 such that for all t ∈ J , 0 < t − t0 ≤ α′,
then (σ + t, yt + ϕ̃ ◦ γ(σ + t, ·)), (σ + t, zt + ϕ̃ ◦ γ(σ + t, ·)) ∈ V . However

y(t)− z(t) = y(t)− y(t0) + z(t0)− z(t)

=
∫ t

t0

[f(σ + s, ys + ϕ̃ ◦ γ(σ + s, ·))− f(σ + s, zs + ϕ̃ ◦ γ(σ + s, ·))]ds,

and thus

|y(t)− z(t)|E ≤
∫ t

t0

k ‖ys − zs‖ds.

It follows from Gronwall inequality [5] that y(t) = z(t) for all t0 ≤ t ≤ t0 + α′,
which is a contradiction to the definition of t0. �

Now, let σ ∈ R and Γσ be a set of continuous functions γ : [σ,+∞)× [−r, 0] →
[σ−r,+∞) such that γ(σ, θ) = σ+θ, γ(σ+ t, 0) = σ+ t and γ([σ, σ+ t]× [−r, 0]) =
[σ − r, σ + t] for all θ ∈ [−r, 0], t ≥ 0.

The following theorem gives a global solutions of the equation R(f, γ) on [σ−r,
+∞).

Theorem 4.2. Let f : R × C →E be a continuous function. Suppose that f
is compact or verifies the condition (l) (resp. f(t, ·) is locally Lipschitz). Suppose
further that there exists a continuous function m : R → R+ such that

|f(t, ψ)|E ≤ m(t)h(‖ψ‖), (t, ψ) ∈ R× C,

where h is continuous nondecreasing on R+, positive on R+
∗ and

∫ +∞
0

ds
h(s) = +∞.

Then, for all (σ, ϕ) ∈ R × C and γ ∈ Γσ, there exists a function (resp. a unique
solution) u ∈ C([σ − r,+∞);E) which verifies the Cauchy problem:

(4.1)

{
u′(t) = f(t, u ◦ γ(t, ·)), t ≥ 0

uσ = ϕ.

Proof. By Theorem 4.1, there exists a noncontinuable solution (resp. a unique
solution) u of problem (4.1) on [σ − r, β) where β > σ. We shall show β = +∞.
Suppose that β < +∞. By Lemma 2.1, we have for t ∈ [σ, β)

|u(t)|E ≤ |ϕ(0)|E +
∫ t

σ

|f(s, u ◦ γ(s, ·))|E ds

≤ ‖ϕ‖+
∫ t

σ

m(s)h(‖u ◦ γ(s, ·)‖)ds.
(∗)
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Consider the function v given by

v(t) = sup {|u(s)|E : σ − r ≤ s ≤ t} , t ∈ [σ, β).

It is clear that

v(t) ≤ ‖ϕ‖+
∫ t

σ

m(s)h(‖u ◦ γ(s, ·)‖)ds ≤ ‖ϕ‖+
∫ t

σ

m(s)h(v(s))ds.(∗∗)

Denoting by w(t) the right-hand side of the above inequality (∗∗), we obtain
w(σ) = ‖ϕ‖ and

v(t) ≤ w(t), w′(t) = m(t)h(v(t)) ≤ m(t)h(w(t)), t ∈ [σ, β).

Integrating over [σ, t], we obtain∫ t

σ

w′(s)
h(w(s))

ds =
∫ w(t)

w(σ)

ds
h(s)

≤
∫ t

σ

m(s)ds < +∞.

This inequality implies that there is a positive constant c such that for all t ∈ [σ, β),
w(t) ≤ c, then v(t) ≤ c. This majoration implies |u′(t)|E is bounded, hence u is
uniformly continuous on [σ− r, β), then there exists a unique continuous function
u : [σ − r, β] → E defined by

u(t) =

 u(t) if t < β

lim
s→β

u(s) if t = β.

Since γ(s, θ) ∈ [σ − r, s], then u ◦ γ(s, ·) = u ◦ γ(s, ·) and

u(β) = lim
s→β

u(s) = ϕ(0) + lim
s→β

∫ s

σ

f(s′, u ◦ γ(s′, ·))ds′

= ϕ(0) + lim
s→β

∫ s

σ

f(s′, u ◦ γ(s′, ·))ds′

= ϕ(0) +
∫ β

σ

f(s′, u ◦ γ(s′, ·))ds′.

This implies u is a solution to (4.1) on [σ − r, β], which is a contradiction, and
thus β = +∞. �

Remark. By the fixed-point theorem for a strict contraction, we obtain the
following result easily.

Theorem 4.3. Let Γ be the set of continuous functions γ : R × [−r, 0] → R
such that

γ([σ, σ + T ]× [−r, 0]) ⊂ [σ − r, σ + T ] for all (σ, T ) ∈ R× R∗+
and f : R×C → E be a continuous function such that f(t, ·) is Lipschitz. Then, for
all (σ, ϕ) ∈ R×C and γ ∈ Γ, there exists a unique function u ∈ C([σ−r,+∞);E)∩
C1([σ,+∞);E) which verifies the Cauchy problem:

(4.2)

{
u′(t) = f(t, u ◦ γ(t, ·)), t ≥ 0

uσ = ϕ.
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5. Applications

Retarded functional differential equations

Let (σ, a) ∈ R × R∗+. Consider γ : [σ, σ + a] × [−r, 0] → [σ − r, σ + a] defined
by γ(t, θ) = t + θ. Then γ ∈ Γσ,a and the equation R(f, γ) coincides with the
classical retarded functional differential equations u′(t) = f(t, ut) (see, for example
[5, 6, 8]).

Singular functional differential equations

Singular functional differential equations have been studied by many authors, for
instance, Baxely [1], Bobisud and O’Regan [2], Gatica and al [4], Huaxing and
Tadeusz [7], Labovskii [9] and O’Regan [12].

Our purpose in this section is to apply the previous results to give some theorems
of existence for singular functional differential equations.

Theorem 5.1. Consider the initial value problem for singular functional dif-
ferential equations

(5.1)

{
ψ(τ)x′(τ) = g(τ, xτ ), τ ∈ (σ, σ + b], (b > 0)

xσ = ϕ

where g : [σ, σ + b] × C → E is completely continuous, ψ : [σ, σ + b] → R+ is
continuous, ψ > 0 on (σ, σ + b) and a :=

∫ σ+b

σ
ds
ψ(s) < +∞. Then, (5.1) has at

least one noncontinuable solution.

Proof. Let ρ : [σ − r, σ + b] → [σ − r, σ + a] defined by

ρ(τ) =

 σ +
∫ τ

σ

ds
ψ(s)

if τ ∈ [σ, σ + b]

τ if τ ∈ [σ − r, σ],

then ρ is bijective and continuous.
For all τ ∈ [σ, σ + b] and θ ∈ [−r, 0], put

u(ρ(τ + θ)) = x(τ + θ).

Then, for all τ ∈ (σ, σ + b],

x′(τ) = u′(ρ(τ))ρ′(τ) = u′(ρ(τ))
1

ψ(τ)
.

Hence u′(ρ(τ)) = ψ(τ)x′(τ) = g(τ, xτ ), and thus

u′(t) = g(ρ−1(t), xρ−1(t)), t ∈ (σ, σ + a], and

xρ−1(t)(θ) = x(ρ−1(t) + θ) = u(ρ(ρ−1(t) + θ)).
Consider the function γ : [σ, σ + a] × [−r, 0] → [σ − r, σ + a] defined by γ(t, θ) =
ρ(ρ−1(t) + θ). It is clear that γ ∈ Γσ,a, xρ−1(t) = u ◦ γ(t, ·) and

uσ(θ) = u(σ + θ) = u(γ(σ, θ)) = u(ρ(ρ−1(σ) + θ)) = xσ(θ) = ϕ(θ).

�
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Finally, the initial value problem (5.1) is equivalent to following problem

(5.2)

{
u′(t) = f(t, u ◦ γ(t, ·)), t ∈ (σ, σ + a]

uσ = ϕ,

where f(t, φ) = g(ρ−1(t), φ), f is also completely continuous and by Theorem 4.1,
the problem (5.2) has at least one noncontinuable solution u on [σ− r, σ+α) with
α ≤ a. It easy to see that the problem (5.1) has also a noncontinuable solution x
on [σ − r, σ + β) where α, β are fasten by the relation α =

∫ σ+β

σ
ds
ψ(s) .

An important criteria given by the following theorem assure the existence of
global solutions of (5.1).

Theorem 5.2. Assume the conditions of Theorem 5.1 are satisfied. Suppose
further that

(1) for all (τ, φ) ∈ [σ, σ + b]× C

|g(τ, φ)|E ≤ m(τ)h(‖φ‖),

where m : [σ, σ+b] → R+ and h : R+ → R+
∗ are continuous, h nondecreasing

on R+ and
∫ σ+b

σ
m(s)
ψ(s) ds <

∫ +∞
‖ϕ‖

ds
h(s) , or

(2) for all (τ, φ) ∈ [σ, σ + b]× C

|g(τ, φ)|E ≤ h(τ, |φ(0)|E),

where h : [σ, σ + b] × R+ → R+ is a continuous function and the set of
solutions to the singular ordinary differential equation{

ψ(τ)y′(τ) = h(τ, y(τ))

y(λ) = µ

is bounded on C([λ, σ + b]; R), or
(3) (ξ) there are three functions V ∈ C([σ, σ + b]× C; R+), a1, a2 ∈ C(R+; R+)

with lim
s→+∞

a1(s) = +∞ and a1(‖φ‖) ≤ V (t, φ) ≤ a2(‖φ‖) for all (t, φ) ∈
[σ, σ + b]× C
(ξ′) for any 0 < β ≤ b and for any solution x of (5.1) on [σ− r, σ+ β), we
have for all t ∈ (σ, σ + β)

D+V (t, xt(σ, ϕ)) := lim sup
k→0+

1
k

[V (t+ k, xt+k(t, ϕ))− V (t, xt(σ, ϕ))]

≤ [ψ(t)]−1h(t, V (t, xt(σ, ϕ))

where h : [σ, σ + b] × R+ → R+ is a continuous function and the set of
solutions of the singular ordinary differential equation{

ψ(t)y′(t) = h(t, y(t))
y(λ) = µ

is bounded on C([λ, σ + b]; R).
Then (5.1) has at least one global solution on [σ − r, σ + b].
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Proof.
– Suppose that the condition (1) is verified.
Let x (resp. u) be a solution of (5.1) (resp. (5.2)) on [σ − r, σ + β1) (resp. on
[σ − r, σ + α1)) with α1 =

∫ σ+β1

σ
ds
ψ(s) . By using the same argument seen in the

Theorem 4.2, we obtain

lim
τ→σ+β1

x(τ) = lim
t→σ+α1

u(t) exist.

Take

x1(τ) =

 x(τ) if τ ∈ [σ − r, σ + β1)

lim
τ ′→σ+β1

x(τ ′) if τ = σ + β1.

Then x1 is a solution to (5.1) on [σ − r, σ + β1]. If β1 < b, consider the problem{
ψ(τ)x′(τ) = g(τ, xτ ), τ ∈ [σ + β1, σ + b]

xσ+β1 = x1
σ+β1

,

then this problem has a solution x2 on [σ + β1 − r, σ + β1 + β2]. Define

z(t) =

{
x1(t) if t ∈ [σ − r, σ + β1]

x2(t) if t ∈ [σ + β1, σ + β1 + β2].

Then z is a solution of (5.1) on [σ − r, σ + β1 + β2]. Repeating this method, we
can get a global solution of (5.1) on [σ − r, σ + b].

– Suppose that the condition (2) is verified.
Let x be a solution of (5.1) on [σ−r, σ+β1). Takem(τ) = |x(τ)|E , τ ∈ [σ, σ+β),

then m(σ) ≤ ‖ϕ‖ = y(σ) (with µ = ‖ϕ‖) and for all τ ∈ (σ, σ + β)

ψ(τ)D+m(τ) := ψ(τ)lim sup
k→0+

m(τ + k)−m(τ)
k

≤ ψ(τ) |x′(τ)|E ≤ h(τ,m(τ)).

Consequently, by [10] we obtainm(τ) ≤ ymax(τ) (where ymax is a maximal solution
of singular the ordinary differential equation). LetM=sup {ymax(τ) :τ ∈ [σ, σ + b]}.
Note that |x(τ)|E ≤ M, τ ∈ [σ, σ + β1). We shall prove that lim

τ→σ+β1
x(τ) exists.

For σ < τ < τ ′ < σ + β we have

|x(τ)− x(τ ′)|E ≤
∫ τ ′

τ

[ψ(s)]−1 |g(s, xs)|E ds

≤
∫ τ ′

τ

[ψ(s)]−1h(s, |x(s)|E)ds ≤M ′
∫ τ ′

τ

[ψ(s)]−1ds,

where M ′ = max{h(s, t) : s ∈ [σ, σ + b], t ≤M}.
For any ε > 0, we can find η > 0 such that∣∣∣∣∣

∫ τ ′

τ

ds
ψ(s)

∣∣∣∣∣ < ε

M ′
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whenever |τ − τ ′| < η, now for any τ < τ ′ such that |τ − (σ + β)| < η
2 and

|τ ′ − (σ + β)| < η
2 , then

|x(τ)− x(τ ′)|E ≤M ′
∫ τ ′

τ

[ψ(s)]−1ds < ε.

The rest of the proof is identical to the condition (1).

– Suppose that the condition (3) is verified.
Let m(t) = V (t, xt). By (ξ) we obtain

m(σ) ≤ a2(‖xσ‖) = a2(‖ϕ‖) := y(σ)

and by (ξ′) we have

ψ(t)D+m(t) ≤ h(t,m(t)), t ∈ (σ, σ + β).

Then, m(t) ≤ ymax(t) where ymax is a maximal solution of the singular ordinary
differential equation. Hence

a1(‖xt‖) ≤ V (t, φ) = m(t) ≤ ymax(t) ≤M.

But lim
s→+∞

a1(s) = +∞, there exists M ′ > 0 such that M < a1(M ′), so ‖xt‖ ≤M ′.

Let M1 = sup {|g(t, ϕ)|E : t ∈ (σ, σ + β), ‖ϕ‖ < M ′}, then the rest of the proof is
similar to the condition (2). �

Theorem 5.3. Consider the initial value problem for singular functional dif-
ferential equations

(5.3)

{
ψ(τ)x(n)(τ) = g(τ, xτ , x′τ , . . . , x

(n−1)
τ ), τ ∈ (σ, σ + b], (b > 0)

xσ = ϕ ∈ C(n−1)([−r, 0];E),

where g : [σ, σ + b] × Cn → E is completely continuous, ψ : [σ, σ + b] → R+ is
continuous, ψ > 0 on (σ, σ + b] and a :=

∫ σ+b

σ
ds
ψ(s) < +∞. Then, (5.3) has at

least one noncontinuable solution.

Proof. Let ρ and γ be the functions defined in Theorem 5.1. For all τ ∈ [σ, σ+b]
and θ ∈ [−r, 0], put

u(ρ(τ + θ)) =


u1(ρ(τ + θ))
u2(ρ(τ + θ))

...
un(ρ(τ + θ))

 =


x(τ + θ)
x′(τ + θ)

...
x(n−1)(τ + θ)

 .

Using the same technique as in the proof of Theorem 5.1, the problem (5.3) be-
comes equivalent to the following problem

(5.4)

{
u′(t) = F1(t, u ◦ γ(t, ·)) + F2(t, u ◦ γ(t, ·)), t ∈ (σ, σ + a]

uσ = (ϕ,ϕ′, . . . , ϕ(n−1)),
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where F1, F2 : [σ, σ + a]× C([−r, 0];En) → En are defined by

F1(t, φ) =


ψ(ρ−1(t))φ2(0)

...
ψ(ρ−1(t))φn(0)

0

 , F2(t, φ) =


0
...
0

g(ρ−1(t), φ1, φ2, . . . , φn)


with φ1, φ2, . . . , φn which are the components of φ ∈ C([−r, 0];En). It is easy
to see that F1(t, ·) is Lipschitz and F2 is completely continuous, then F = F1 +
F2 verifies the condition (l) and by Theorem 4.1, the problem (5.4) has at least
one noncontinuable solution and therefore, the problem (5.3) has also at least a
noncontinuable solution. �

Theorem 5.4. Consider the initial value problem for singular functional equa-
tions

(5.5)


ψ(τ)x′(τ) = g(τ, x(τ − r1), . . . , x(τ − rm)), τ ∈]σ, σ + b], (b > 0)

xσ = ϕ on [−r, 0] with
r = max

1≤i≤m
(ri), ri ≥ 0

where g : [σ, σ + b] × E2 → E is completely continuous, ψ : [σ, σ + b] → R+ is
continuous, ψ > 0 on (σ, σ + b] and a :=

∫ σ+b

σ
ds
ψ(s) < +∞.

Then, (5.5) has at least one noncontinuable solution.

Proof. Using the same argument as in the proof of Theorem 4.1, we can see
that the problem (5.5) is equivalent to the following problem

(5.6)

{
u′(t) = f(t, u ◦ γ(t, ·)), t ∈ (σ, σ + a]

uσ = ϕ,

where f(t, φ) = g(ρ−1(t), φ(−r1), . . . , φ(−rm)). �

Theorem 5.5. Consider the initial value problem for singular functional equa-
tions
(5.7) 

ψ(τ)x′′(τ) = g(τ, x(τ), x(τ − r1), x′(τ), x′(τ − r2)), τ ∈ (σ, σ + b]

xσ = ϕ, x′σ = ϕ′, on [−r, 0] with
r = max(r1, r2)

where g : [σ, σ + b] × E2 → E is completely continuous, ψ : [σ, σ + b] → R+ is
continuous, ψ > 0 on (σ, σ + b] and a :=

∫ σ+b

σ
ds
ψ(s) < +∞.

Then, (5.7) has at least one noncontinuable solution.

Proof. The problem (5.7) is equivalent to the following problem

(5.8)

{
u′(t) = F1(t, u ◦ γ(t, ·)) + F2(t, u ◦ γ(t, ·)), t ∈ (σ, σ + a]

uσ = Φ with Φ = (ϕ,ϕ′),
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where F1, F2 : [σ, σ + a]× C([−r, 0];E2) → E2 are defined by

F1(t, φ) =
(
ψ(ρ−1(t))φ2(0)

0

)
and

F2(t, φ) =
(

0
g(ρ−1(t), φ1(0), φ1(−r1)φ2(0), φ2(−r2))

)
with φ : θ ∈ [−r, 0] → φ(θ) = (φ1(θ), φ2(θ)), φ1, φ2 ∈ C. �
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