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CERTAIN CLASSES OF p-VALENT FUNCTIONS ASSOCIATED
WITH WRIGHT’S GENERALIZED HYPERGEOMETRIC

FUNCTIONS

G. MURUGUSUNDARAMOORTHY

Abstract. The Wright’s generalized hypergeometric function is used here to intro-
duce a new class of p-valent functions WT p(λ, α, β) defined in the open unit disc

and investigate its various characteristics. Further we obtain distortion bounds, ex-

treme points and radii of close-to-convexity, starlikeness and convexity of functions
belonging to the class WT p(λ, α, β).

1. Introduction

Let A(p) denote the class of functions of the form

(1.1) f(z) = zp +
∞∑

n=k

anzn, p < k; p, k ∈ N = {1, 2, 3, . . . }

which are analytic in the open disc U = {z : z ∈ C; |z| < 1}. For functions
f ∈ A(p) given by (1.1) and g ∈ A(p) given by

g(z) = zp +
∞∑

n=k

bnzn, p ∈ N = {1, 2, 3, . . . }

we define the Hadamard product (or convolution) of f and g by

(1.2) f(z) ∗ g(z) = (f ∗ g)(z) = zp +
∞∑

n=k

anbnzn, z ∈ U.

For positive real parameters α1, A1 . . . , αl, Al and β1, B1 . . . , βm, Bm (l,m ∈
N = 1, 2, 3, . . .) such that

1 +
m∑

n=k

Bn −
l∑

n=k

An ≥ 0, z ∈ U,
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the Wright’s generalized hypergeometric function [11]

lΨm[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm); z]

= lΨm[(αj , Aj)1,l(βj , Bj)1,m; z]

is defined by

lΨm[(αj , Aj)1,l(βt, Bt)1,m; z]

=
∞∑

n=k

 l∏
j=0

Γ(αj + nAj

  m∏
j=0

Γ(βj + nBj

−1

zn

n!
, z ∈ U.

If Aj = 1(j = 1, 2, . . . , l) and Bj = 1(j = 1, 2, . . . ,m), we have the relationship:

(1.3)

ΩlΨm[(αj , 1)1,l(βj , 1)1,m; z] ≡ lFm(α1, . . . αl;β1, . . . , βm; z)

=
∞∑

n=k

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!

(l ≤ m + 1; l,m ∈ N0 = N ∪ {0}; z ∈ U) is the generalized hypergeometric
function (see for details [2]) where (α)n is the Pochhammer symbol and

(1.4) Ω =

 l∏
j=0

Γ(αj)

−1  m∏
j=0

Γ(βj)

 .

By using the generalized hypergeometric function Dziok and Srivastava [2] in-
troduced the linear operator recently. In [3] Dziok and Raina extended the linear
operator by using Wright’s generalized hypergeometric function. First we define
a function

lφm[(αj , Aj)1,l; (βj , Bj)1,m; z] = Ωzp
lΨm[(αj , Aj)1,l(βj , Bj)1,m; z].

Let Θ[(αj , Aj)1,l; (βj , Bj)1,m] : A(p) → A(p) be a linear operator defined by

Θ[(αj , Aj)1,l; (βj , Bj)1,m]f(z) := zp
lφm[(αj , Aj)1,l; (βj , Bj)1,m; z] ∗ f(z)

We observe that, for f(z) of the form (1.1), we have

(1.5) Θ[(αj , Aj)1,l; (βj , Bj)1,m]f(z) = zp +
∞∑

n=k

σn anzn

where σn is defined by

(1.6) σn =
ΩΓ(α1 + A1(n− p)) . . .Γ(αl + Al(n− p))

(n− p)!Γ(β1 + B1(n− p)) . . .Γ(βm + Bm(n− p))
.
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For convenience, we write

(1.7) Θ[α1]f(z) = Θ[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm)]f(z)

Indeed, by setting Aj = 1(j = 1, . . . , l), Bj = 1(j = 1, . . . ,m) and p = 1
the linear operator Θ[α1], leads immediately to the Dziok-Srivastava operator [2]
which contains, as its further special cases, such other linear operators of Geometric
Function Theory as the Hohlov operator, the Carlson-Shaffer operator [1], the
Ruscheweyh derivative operator [6], the generalized Bernardi-Libera-Livingston
operator, the fractional derivative operator [8]. See also [2] and [3] in which
comprehensive details of various other operators are given.

Motivated by the earlier works of [2, 4, 5, 7, 9, 10] we introduce a new sub-
class of p-valent functions with negative coefficients and discuss some interesting
properties of this generalized function class.

For 0 ≤ λ ≤ 1, 0 ≤ α < 1 and 0 < β ≤ 1, we let Wp(λ, α, β) be the subclass of
A(p) consisting of functions of the form (1.1) and satisfying the inequality

(1.8)
∣∣∣∣ Jλ(z)− 1
Jλ(z) + (1− 2α)

∣∣∣∣ < β (z ∈ U)

where

(1.9) Jλ(z) = (1− λ)
Θ[α1]f(z)

zp
+ λ

(Θ[α1]f(z))′

pzp−1
,

Θ[α1]f(z) is given by (1.7). Further let WT p(λ, α, β) = Wp(λ, α, β)∩T (p), where

(1.10) T (p) :=

{
f ∈ A(p) : f(z) = zp −

∞∑
n=k

anzn, an ≥ 0; z ∈ U

}
.

The purpose of the present paper is to investigate the coefficient estimates,
extreme points, distortion theorems and the radii of convexity and starlikeness of
the class WT p(λ, α, β).

2. Coefficient Bounds

In this section we obtain coefficient estimates and extreme points of the class
WT p(λ, α, β).

Theorem 2.1. Let the function f be defined by (1.10). Then f ∈ WT p(λ, α, β)
if and only if

(2.1)
∞∑

n=k

(p + nλ− pλ)(1 + β)σnan ≤ 2pβ(1− α).
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Proof. Suppose f satisfies (2.1). Then for z ∈ U we have

|Jλ(z)− 1| − β |Jλ(z) + (1− 2α)|

=

∣∣∣∣∣−
∞∑

n=k

(p + nλ− pλ)
p

(1 + β)σnanzn−p

∣∣∣∣∣
− β

∣∣∣∣∣2(1− α)−
∞∑

n=k

(p + nλ− pλ)
p

σnanzn−p

∣∣∣∣∣
≤

∞∑
n=k

(p + nλ− pλ)
p

σnan − 2β(1− α) +
∞∑

n=k

(p + nλ− pλ)
p

βσnan

=
∞∑

n=k

(p + nλ− pλ)
p

[1 + β]σnan − 2β(1− α) ≤ 0.

Hence, by maximum modulus theorem and (1.8), f ∈ WT p(λ, α, β). To prove the
converse assume that∣∣∣∣ Jλ(z)− 1
Jλ(z) + (1− 2α)

∣∣∣∣ =

∣∣∣∣∣ −
∑∞

n=k
(p+nλ−pλ)

p σnanzn−p

2(1− α)−
∑∞

n=k
(p+nλ−pλ)

p σnanzn−p

∣∣∣∣∣ ≤ β, z ∈ U.

Thus

(2.2) Re

{ ∑∞
n=k

(p+nλ−pλ)
p anσnzn−p

2(1− α)−
∑∞

n=k
(p+nλ−pλ)

p σnanzn−p

}
< β,

since Re(z) ≤ |z| for all z. Choose values of z on the real axis such that Jλ(z)
is real. Upon clearing the denominator in (2.2) and letting z → 1− through real
values, we obtain the desired inequality (2.1). �

Corollary 2.1. If f(z) of the form (1.10) is in WT p(λ, α, β), then

(2.3) an ≤
2pβ(1− α)

(p + nλ− pλ)[1 + β]σn
, n = k, k + 1, . . . ,

with the equality only for the function

(2.4) f(z) = zp − 2pβ(1− α)
(p + nλ− pλ)[1 + β]σn

zn, n = k, k + 1, . . . , .

Theorem 2.2 (Extreme Points). Let

(2.5)
fp(z) = zp and

fn(z) = zp − 2pβ(1− α)
(p + nλ− pλ)[1 + β]σn

zn, n = k, k + 1, . . . .

Then f(z) is in the class WT p(λ, α, β) if and only if it can be expressed in the form

(2.6) f(z) = µpz
p +

∞∑
n=k

µnfn(z),

where µn ≥ 0 and µp +
∑∞

n=k µn = 1.
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Proof. Suppose f(z) can be written as in (2.6). Then

f(z) = µpz
p −

∞∑
n=k

µn

[
zp − 2pβ(1− α)

(p + nλ− pλ)[1 + β]σn
zn

]

= zp −
∞∑

n=k

µn
2pβ(1− α)

(p + nλ− pλ)[1 + β]σn
zn.

Now,
∞∑

n=k

(p + nλ− pλ)[1 + β]σn

2pβ(1− α)
µn

2pβ(1− α)
(p + nλ− pλ)[1 + β]σn

=
∞∑

n=k

µn = 1− µp ≤ 1.

Thus f ∈ WT p(λ, α, β). Conversely, let us have f ∈ WT p(λ, α, β). Then by using
(2.3), we set

µn =
(p + nλ− pλ)[1 + β]σnan

2pβ(1− α)
, n ≥ k

and µp = 1−
∑∞

n=k µn. Then we have (2.6) and hence this completes the proof of
Theorem 2.2. �

3. Distortion Bounds

In this section we obtain distortion bounds for the class WT p(λ, α, β).

Theorem 3.1. Let f be in the class WT p(λ, α, β), |z| = r < 1 and cn =
(p + nλ− pλ)σn. If the sequence {ck} is nondecreassing for n > k, then

rp − 2pβ(1− α)
(p + kλ− pλ)[1 + β]σk

rk ≤ |f(z)|

≤ rp +
2pβ(1− α)

(p + kλ− pλ)[1 + β]σk
rk

(3.1)

prp−1 − 2pkβ(1− α)
(p + kλ− pλ)[1 + β]σk

rk−1 ≤ |f ′(z)|

≤ prp−1 +
2pkβ(1− α)

(p + kλ− pλ)[1 + β]σk
rk−1.

(3.2)

The bounds in (3.1) and (3.2) are sharp since the equalities are attained by the
function

(3.3) f(z) = zp − 2pβ(1− α)
(p + kλ− pλ)[1 + β]σk

zk.

Proof. In the view of Theorem 2.1, we have

(3.4)
∞∑

n=k

an ≤
2pβ(1− α)

(p + kλ− pλ)[1 + β]σk
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Using (1.10) and (3.4), we obtain

(3.5)
|z|p − |z|k

∞∑
n=k

an ≤ |f(z)| ≤ |z|p + |z|k
∞∑

n=k

an

rp − rk 2pβ(1− α)
(p + kλ− pλ)[1 + β]σk

≤ |f(z)| ≤ rp + rk 2pβ(1− α)
(p + kλ− pλ)[1 + β]σk

.

Hence (3.1) follows from (3.5). Also,

|f ′(z)| ≤ prp−1 + rk−1
∞∑

n=k

nan ≤ prp−1 + rk−1 2pkβ(1− α)
(p + kλ− pλ)[1 + β]σk

.

Similarly, we can prove the left hand inequality given in (3.2) which completes the
proof of the theorem. �

4. Radius of Starlikeness and Convexity

The radii of close-to-convexity, starlikeness and convexity for the classWT p(λ, α, β)
are given in this section.

Theorem 4.1. Let the function f(z) defined by (1.10) belong to the class
WT p(λ, α, β). Then f(z) is p-valently close-to-convex of order δ (0 ≤ δ < p)
in the disc |z| < r1, where

(4.1) r1 := inf
n≥k

[
(p− δ)(p + nλ− pλ)[1 + β] σn

2pnβ(1− α)

] 1
n−p

.

Proof. The function f ∈ T (p) is close-to-convex of order δ, if

(4.2)
∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ < p− δ.

For the left-hand side of (4.2) we have∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ ≤ ∞∑
n=k

nan|z|n−p.

The last expression is less than p− δ if
∞∑

n=k

n

p− δ
an|z|n−p < 1.

Using the fact that f ∈ WT p(λ, α, β) if and only if
∞∑

n=k

(p + nλ− pλ)[1 + β]σnan

2pβ(1− α)
≤ 1,

we can say (4.2) is true if

n

p− δ
|z|n−p ≤ (p + nλ− pλ)[1 + β]σn

2pβ(1− α)
.
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Or, equivalently,

|z|n−p =
[
(p− δ)(p + nλ− pλ)[1 + β] σn

2pnβ(1− α)

]
which completes the proof. �

Theorem 4.2. Let f ∈ WT p(λ, α, β). Then
(1) f is p-valently starlike of order δ (0 ≤ δ < p) in the disc |z| < r2; that is,

Re
{

zf ′(z)
f(z)

}
> δ, (|z| < r2) where

r2 = inf
n≥k

{
(p− δ)(p + nλ− pλ)[1 + β] σn

2pβ(1− α)(k + p− δ)

} 1
n

.

(2) f is p-valently convex of order δ (0 ≤ δ < p) in the disc |z| < r3, that is
Re

{
1 + zf ′′(z)

f ′(z)

}
> δ, (|z| < r3) where

r3 = inf
n≥p+1

{
(p− δ)(p + nλ− pλ)[1 + β]σn

2nβ(1− α)(n− δ)

} 1
n

.

Proof. (1) The function f ∈ T (p) is p-valently starlike of order δ, if

(4.3)
∣∣∣∣zf ′(z)

f(z)
− p

∣∣∣∣ < p− δ.

For the left hand side of (4.3) we have∣∣∣∣zf ′(z)
f(z)

− p

∣∣∣∣ ≤ ∑∞
n=k(n− p)an |z|n

1−
∑∞

n=k an |z|n
.

The last expression is less than p− δ if
∞∑

n=k

n− δ

p− δ
an|z|n < 1.

Using the fact that f ∈ WT p(λ, α, β) if and only if
∞∑

n=k

(p + nλ− pλ)[1 + β]σnan

2pβ(1− α)
< 1,

we can say (4.3) is true if

n− δ

p− δ
|z|n <

(p + nλ− pλ)[1 + β]σn

2pβ(1− α)
.

Or, equivalently,

|z|n <
(p− δ)(p + nλ− pλ)[1 + β]σn

2pβ(1− α)(n− δ)
which yields the starlikeness of the family.

(2) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (2),
on lines similar to the proof of (1). �
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Remark. In view of the relationship (1.3) the linear operator (1.5) and by setting
Aj = 1 (j = 1, . . . , l) and Bj = 1(j = 1, . . . ,m) and specific choices of parameters
l, m, α1, β1 the various results presented in this paper would provide interesting
extensions and generalizations of p-valent function classes. The details involved
in the derivations of such specializations of the results presented here are fairly
straightforward.

Acknowledgment. The author would like to thank the referee for valuable
suggestions.
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