SPECIAL REPRESENTATIONS OF THE BOREL AND MAXIMAL PARABOLIC SUBGROUPS OF $G_{2}(q)$

M. GHORBANY

Abstract

A square matrix over the complex field with a non-negative integral trace is called a quasi-permutation matrix. For a finite group G, the minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by $c(G)$, and $r(G)$ denotes the minimal degree of a faithful rational valued complex character of G. In this paper $c(G)$ and $r(G)$ are calculated for the Borel and maximal parabolic subgroups of $G_{2}(q)$.

1. Introduction

Let G be a finite linear group of degree n, that is, a finite group of automorphisms of an n-dimensional complex vector space. We shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n (See [12]). In [4] the authors investigated further the analogy between permutation groups and quasi-permutation groups. They also worked over the rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let $c(G)$ be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. By a rational valued character we mean a complex character χ of G such that $\chi(g) \in Q$ for all $g \in G$. As the values of the characters of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of

[^0]G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module.

We will call a homomorphism from G to $G L(n, Q)$ a rational representation of G and its corresponding character will be called a rational character of G. Let $r(G)$ denote the minimal degree of a faithful rational valued character of G.

Finding the above quantities has been carried out in some papers, for example in [5], [6], [7] and [10] we found them for the groups $G L(2, q), S U\left(3, q^{2}\right), \operatorname{PSU}\left(3, q^{2}\right)$, $S L(3, q), P S L(3, q)$ and $G_{2}\left(2^{n}\right)$ respectively. In [3] we found the rational character table and above values for the group $P G L(2, q)$.

In this paper we will calculate $c(G)$ and $r(G)$ where G is a Borel subgroup or the maximal parabolic subgroups of $G_{2}(q)$.

2. Notation and preliminaries

Let $G=G_{2}(q)$ be the Chevalley group of type G_{2} defined over K. An excellent description of the group can be found in [11]. We summarize some properties of the group. Let Σ be the set of roots of a simple Lie algebra of type G_{2}. In some fixed ordering the set of positive roots of Σ can be written as

$$
\Sigma^{+}=\{a, b, a+b, 2 a+b, 3 a+b, 3 a+2 b\}
$$

and Σ consists of the elements of Σ^{+}and their negatives. For each $r \in \Sigma$, let $x_{r}(t), x_{-r}(t)$ and ω_{r} be as in [11]. Moreover we denote the element $h(\chi)$ of [11] by $h\left(z_{1}, z_{2}, z_{3}\right)$, where $\chi\left(\xi_{i}\right)=z_{i}$ with $z_{1} z_{2} z_{3}=1$. Note that $a=\xi_{2}, b=\xi_{1}-\xi_{2}$ and $\xi_{1}+\xi_{2}+\xi_{3}=0$. For simplicity of notation $h\left(x^{i}, x^{j}, x^{-i-j}\right)$ is also denoted by $h_{x}(i, j,-i-j)$ for $x=\gamma, \theta, \omega$, etc. Let $X_{r}=\left\{x_{r}(t) \mid t \in K\right\}$ be the one-parameter subgroup corresponding to a root r. Set

$$
\begin{aligned}
H & =\left\{h\left(z_{1}, z_{2}, z_{3}\right) \mid z_{i} \in K^{\times}, z_{1} z_{2} z_{3}=1\right\} \\
U & =X_{a} X_{b} X_{a+b} X_{2 a+b} X_{3 a+b} X_{3 a+2 b} \\
B & =H U, \quad P=<B, \omega_{a}>, \quad Q=<B, \omega_{b}>
\end{aligned}
$$

Then $B=N_{G}(U)$ is a Borel subgroup and P and Q are the maximal parabolic subgroups containing B.

By [1], [8], [9], every irreducible character of B will be defined as an induced character of some linear character of a subgroup. This implies that B is an M-group. The character tables of the Borel subgroup B for different q are given in Tables I of [1], [8], [9].

The character tables of parabolic subgroups

$$
P=<B, \omega_{a}>=B \cup B \omega_{a} B, \quad Q=<B, \omega_{b}>=B \cup B \omega_{b} B
$$

for different q are given in Tables [A.4, A.6], [III, IV], [II-2, III-2] of [1], [8], [9] respectively.

Now we give algorithms for calculation of $r(G)$ and $c(G)$.
Definition 2.1. Let χ be a character of G such that, for all $g \in G, \chi(g) \in Q$ and $\chi(g) \geq 0$. Then we say that χ is a non-negative rational valued character.

Let η_{i} for $0 \leq i \leq r$ be Galois conjugacy classes of irreducible complex characters of G. For $0 \leq i \leq r$ let φ_{i} be a representative of the class η_{i} with $\varphi_{o}=1_{G}$. Write $\Psi_{i}=\sum_{\chi_{i} \in \eta_{i}} \chi_{i}, m_{i}=m_{Q}\left(\varphi_{i}\right)$ and $K_{i}=\operatorname{ker} \varphi_{i}$. We know that $K_{i}=\operatorname{ker} \Psi_{i}$. For $I \subseteq\{0,1,2, \cdots, r\}$, put $K_{I}=\cap_{i \in I} K_{i}$. By definition of $r(G)$ and $c(G)$ and using the above notations we have:

$$
\begin{aligned}
& r(G)=\min \left\{\xi(1): \xi=\sum_{i=1}^{r} n_{i} \Psi_{i}, \quad n_{i} \geq 0, K_{I}=1 \text { for } I=\left\{i, i \neq 0, n_{i}>0\right\}\right\} \\
& c(G)=\min \left\{\xi(1): \xi=\sum_{i=0}^{r} n_{i} \Psi_{i}, \quad n_{i} \geq 0, K_{I}=1 \text { for } I=\left\{i, i \neq 0, n_{i}>0\right\}\right\}
\end{aligned}
$$

where $n_{0}=-\min \{\xi(g) \mid g \in G\}$ in the case of $c(G)$.
In [2] we defined $d(\chi), m(\chi)$ and $c(\chi)$ (see Definition 3.4). Here we can redefine it as follows:

Definition 2.2. Let χ be a complex character of G such that $\operatorname{ker} \chi=1$ and $\chi=\chi_{1}+\cdots+\chi_{n}$ for some $\chi_{i} \in \operatorname{Irr}(G)$. Then define
(1) $d(\chi)=\sum_{i=1}^{n}\left|\Gamma_{i}\left(\chi_{i}\right)\right| \chi_{i}(1)$,
(2) $m(\chi)= \begin{cases}0 & \text { if } \chi=1_{G}, \\ \left|\min \left\{\sum_{i=1}^{n} \sum_{\alpha \in \Gamma_{i}\left(\chi_{i}\right)} \chi_{i}^{\alpha}(g): g \in G\right\}\right| & \text { otherwise, }\end{cases}$
(3) $c(\chi)=\sum_{i=1}^{n} \sum_{\alpha \in \Gamma_{i}\left(\chi_{i}\right)} \chi_{i}^{\alpha}+m(\chi) 1_{G}$.

So

$$
r(G)=\min \{d(\chi): \operatorname{ker} \chi=1\}
$$

and

$$
c(G)=\min \{c(\chi)(1): \operatorname{ker} \chi=1\}
$$

We can see all the following statements in [2].
Corollary 2.3. Let $\chi \in \operatorname{Irr}(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)=d(\chi)+m(\chi)$.

Lemma 2.4. Let $\chi \in \operatorname{Irr}(G), \chi \neq 1_{G}$. Then $c(\chi)(1) \geq d(\chi)+1 \geq \chi(1)+1$.
Lemma 2.5. Let $\chi \in \operatorname{Irr}(G)$. Then
(1) $c(\chi)(1) \geq d(\chi) \geq \chi(1)$;
(2) $c(\chi)(1) \leq 2 d(\chi)$. Equality occurs if and only if $Z(\chi) / \operatorname{ker} \chi$ is of even order.

3. Quasi-PERMUTATION REPRESENTATIONS

In this section we will calculate $r(G)$ and $c(G)$ for Borel and parabolic subgroups of $G_{2}(q)$. First we shall determine the above quantities for a Borel subgroup.

Theorem 3.1. Let B be a Borel subgroup of $G_{2}(q)$, then
(1) $r(B)= \begin{cases}2 q(q-1)\left|\Gamma\left(\chi_{7}(k)\right)\right| & \text { if } q=3^{n}, \\ q^{2}(q-1)\left|\Gamma\left(\chi_{7}(k)\right)\right| & \text { otherwise, }\end{cases}$
(2) $c(B)= \begin{cases}2 q^{2}\left|\Gamma\left(\chi_{7}(k)\right)\right| & \text { if } q=3^{n}, \\ q^{3}\left|\Gamma\left(\chi_{7}(k)\right)\right| & \text { otherwise, }\end{cases}$
(3) $\lim _{q \rightarrow \infty} \frac{c(B)}{r(B)}=1$.

Proof. Since there are similar proofs for $q=2^{n}, q=p^{n} ; p \neq 3$, we will prove only the case $q=2^{n}$.

In order to calculate $r(B)$ and $c(B)$, we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \operatorname{ker} \chi=1$.

Now, by Corollary 2.3 and Lemmas 2.4, 2.5 and [9, Table I-1], for the Borel subgroup B we have

$$
\begin{aligned}
d\left(\chi_{1}\right)= & \left|\Gamma\left(\chi_{1}(k, l)\right)\right| \chi_{1}(k, l)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q^{2}(q-1)+1 \\
& \quad \text { and } \quad c\left(\chi_{1}\right)(1) \geq q^{3}+2, \\
d\left(\chi_{2}\right)= & \left|\Gamma\left(\chi_{2}(k)\right)\right| \chi_{2}(k)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq(q-1)\left(q^{2}+1\right) \\
& \quad \text { and } \quad c\left(\chi_{2}\right)(1) \geq q\left(q^{2}+1\right), \\
d\left(\chi_{3}\right)= & \left|\Gamma\left(\chi_{3}(k)\right)\right| \chi_{3}(k)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq(q-1)\left(q^{2}+1\right) \\
& \text { and } \quad c\left(\chi_{3}\right)(1) \geq q\left(q^{2}+1\right), \\
d\left(\chi_{4}\right)= & \left|\Gamma\left(\chi_{4}(k)\right)\right| \chi_{4}(k)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q\left(q^{2}-1\right) \\
& \text { and } \quad c\left(\chi_{4}\right)(1) \geq q^{2}(q+1), \\
d\left(\chi_{5}\right)= & \left|\Gamma\left(\chi_{5}(k)\right)\right| \chi_{5}(k)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q\left(q^{2}-1\right) \\
& \text { and } \quad c\left(\chi_{5}\right)(1) \geq q^{2}(q+1), \\
d\left(\chi_{6}\right)= & \left|\Gamma\left(\chi_{6}(k)\right)\right| \chi_{6}(k)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q\left(q^{2}-1\right) \\
& \quad \text { and } \quad c\left(\chi_{6}\right)(1) \geq q^{2}(q+1), \\
d\left(\chi_{7}\right)= & \left|\Gamma\left(\theta_{1}\right)\right| \theta_{1}(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq(q-1)\left(q^{2}+q-1\right) \\
& \text { and } \quad c\left(\chi_{7}\right)(1) \geq q\left(q^{2}+q-1\right), \\
d\left(\chi_{8}\right)= & \left|\Gamma\left(\theta_{3}\right)\right| \theta_{3}(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q(q-1)(2 q-1) \\
& \text { and } \quad c\left(\chi_{8}\right)(1) \geq q^{2}(2 q-1), \\
d\left(\chi_{9}\right)= & \left|\Gamma\left(\Sigma_{l=0}^{2} \theta_{3}(k, l)\right)\right|\left(\Sigma_{l=0}^{2} \theta_{3}(k, l)\right)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q(q-1)(2 q-1) \\
& \text { and } \quad c\left(\chi_{9}\right)(1) \geq q^{2}(2 q-1),
\end{aligned}
$$

$$
\begin{aligned}
& d\left(\chi_{10}\right)=\left\lvert\, \Gamma\left(\theta _ { 4 } (r , s) \left|\theta_{4}(r, s)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq \frac{q(q-1)(3 q-1)}{2}\right.\right.\right. \\
& \text { and } \quad c\left(\chi_{10}\right)(1) \geq \frac{q^{2}(3 q-1)}{2} \text {, } \\
& d\left(\chi_{11}\right)=\left|\Gamma\left(\Sigma_{x \in K} \theta_{5}(x)\right)\right|\left(\Sigma_{x \in K} \theta_{5}(x)\right)(1)+\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q^{3}(q-1) \\
& \text { and } \quad c\left(\chi_{11}\right)(1) \geq q^{4} \text {, } \\
& d\left(\chi_{12}\right)=\left|\Gamma\left(\chi_{1}(k, l)\right)\right| \chi_{1}(k, l)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q^{2}(q-1)^{2}+1 \\
& \text { and } \quad c\left(\chi_{12}\right)(1) \geq q^{3}(q-1)+2 \text {, } \\
& d\left(\chi_{13}\right)=\left|\Gamma\left(\chi_{2}(k)\right)\right| \chi_{2}(k)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq(q-1)\left(q^{3}-q^{2}+1\right) \\
& \text { and } \quad c\left(\chi_{13}\right)(1) \geq q\left(q^{3}-q^{2}+1\right) \text {, } \\
& d\left(\chi_{14}\right)=\left|\Gamma\left(\chi_{3}(k)\right)\right| \chi_{3}(k)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq(q-1)\left(q^{3}-q^{2}+1\right) \\
& \text { and } \quad c\left(\chi_{14}\right)(1) \geq q\left(q^{3}-q^{2}+1\right) \text {, } \\
& d\left(\chi_{15}\right)=\left|\Gamma\left(\chi_{4}(k)\right)\right| \chi_{4}(k)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)\left(q^{2}-q+1\right) \\
& \text { and } c\left(\chi_{15}\right)(1) \geq q^{2}\left(q^{2}-q+1\right) \text {, } \\
& d\left(\chi_{16}\right)=\left|\Gamma\left(\chi_{5}(k)\right)\right| \chi_{5}(k)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)\left(q^{2}-q+1\right) \\
& \text { and } \quad c\left(\chi_{16}\right)(1) \geq q^{2}\left(q^{2}-q+1\right) \text {, } \\
& d\left(\chi_{17}\right)=\left|\Gamma\left(\chi_{6}(k)\right)\right| \chi_{6}(k)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)\left(q^{2}-q+1\right) \\
& \text { and } \quad c\left(\chi_{17}\right)(1) \geq q^{2}\left(q^{2}-q+1\right) \text {, } \\
& d\left(\chi_{18}\right)=\left|\Gamma\left(\theta_{1}\right)\right| \theta_{1}(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq(q-1)^{2}\left(q^{2}+1\right) \\
& \text { and } \quad c\left(\chi_{18}\right)(1) \geq q(q-1)\left(q^{2}+1\right) \text {, } \\
& d\left(\chi_{19}\right)=\left|\Gamma\left(\theta_{3}\right)\right| \theta_{3}(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)^{2}(q+1) \\
& \text { and } \quad c\left(\chi_{19}\right)(1) \geq q^{2}(q-1)(q+1) \text {, } \\
& d\left(\chi_{20}\right)=\left|\Gamma\left(\Sigma_{l=0}^{2} \theta_{3}(k, l)\right)\right|\left(\Sigma_{l=0}^{2} \theta_{3}(k, l)\right)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)^{2}(q+1) \\
& \text { and } \quad c\left(\chi_{20}\right)(1) \geq q^{2}(q-1)(q+1) \text {, } \\
& d\left(\chi_{21}\right)=\left\lvert\, \Gamma\left(\theta_{4}(r, s)| | \theta_{4}(r, s)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq \frac{q(q-1)^{2}(2 q+1)}{2}\right.\right. \\
& \text { and } \quad c\left(\chi_{21}\right)(1) \geq \frac{q^{2}(q-1)(2 q+1)}{2}, \\
& d\left(\chi_{22}\right)=\left|\Gamma\left(\Sigma_{x \in K} \theta_{5}(x)\right)\right|\left(\Sigma_{x \in K} \theta_{5}(x)\right)(1)+\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq 2 q^{2}(q-1)^{2} \\
& \text { and } \quad c\left(\chi_{22}\right)(1) \geq 2 q^{3}(q-1) \text {, } \\
& d\left(\chi_{7}(k)\right)=\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q^{2}(q-1) \\
& \text { and } \quad c\left(\chi_{7}\right)(k)(1) \geq q^{3} \text {, } \\
& d\left(\theta_{2}\right)=\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1)=q^{2}(q-1)^{2} \\
& \text { and } \quad c\left(\theta_{2}(1)=q^{3}(q-1)\right. \text {, }
\end{aligned}
$$

An overall picture is provided by the Table I on the next page.
For the character $\chi_{7}(k), k \in R_{0}$ as $\left|R_{0}\right|=q-1$, so $\left|\Gamma\left(\chi_{7}(k)\right)\right| \leq q-1$, where $\Gamma\left(\chi_{7}(k)\right)=\Gamma\left(Q\left(\chi_{7}(k)\right): Q\right)$. Therefore we have

$$
q^{2}(q-1) \leq d\left(\chi_{7}(k)\right) \leq q^{2}(q-1)^{2} .
$$

Now by Table I and the above equality we have

$$
\min \{d(\chi): \operatorname{ker} \chi=1\}=d\left(\chi_{7}(k)\right)=q^{2}(q-1)\left|\Gamma\left(\chi_{7}(k)\right)\right|
$$

and

$$
\min \{c(\chi)(1): \operatorname{ker} \chi=1\}=c\left(\chi_{7}(k)\right)(1)=q^{3}\left|\Gamma\left(\chi_{7}(k)\right)\right| .
$$

The quasi-permutation representations of Borel subgroup of $G_{2}\left(3^{n}\right)$ are constructed by the same method. In this case by $[\mathbf{8}$, Table I] we have

$$
\operatorname{ker} \chi_{7}(k) \bigcap \operatorname{ker} \chi_{6}(k)=1
$$

Now, it is not difficult to calculate the values of $d(\chi)$ and $c(\chi)(1)$, so

$$
\begin{aligned}
\min \{d(\chi): \operatorname{ker} \chi=1\} & =\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1)+\left|\Gamma\left(\chi_{6}(k)\right)\right| \chi_{6}(k)(1) \\
& =2 q(q-1)\left|\Gamma\left(\chi_{7}(k)\right)\right|=2 q(q-1)\left|\Gamma\left(\chi_{6}(k)\right)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\min \{c(\chi)(1): \text { ker } \chi=1\}= & 2 q^{2}\left|\Gamma\left(\chi_{7}(k)\right)\right|=2 q^{2}\left|\Gamma\left(\chi_{6}(k)\right)\right| \\
& \left(\text { Since }\left|\Gamma\left(\chi_{7}(k)\right)\right|=\left|\Gamma\left(\chi_{6}(k)\right)\right|\right) .
\end{aligned}
$$

By parts (1) and (2) we have

$$
\frac{c(B)}{r(B)}= \begin{cases}\frac{q^{2}}{q(q-1)} & \text { if } q=3^{n} \\ \frac{q^{3}}{q^{2}(q-1)} & \text { otherwise }\end{cases}
$$

Hence $\lim _{q \rightarrow \infty} \frac{c(B)}{r(B)}=1$. Therefore the result follows.
The following theorem gives the quasi-permutation representations of a maximal parabolic subgroup P.

Theorem 3.2.

A. Let P be a maximal parabolic subgroup of $G_{2}\left(p^{n}\right), p \neq 3$, then
(1) $r(P)=q^{2}(q-1)$,
(2) $c(P)=q^{3}$,
(3) $\lim _{q \rightarrow \infty} \frac{c(P)}{r(P)}=1$.

Table I

χ^{\prime}	$d(\chi)$	$c(\chi)(1)$
χ_{1}	$\geq q^{2}(q-1)+1$	$\geq q^{3}+2$
χ_{2}	$\geq(q-1)\left(q^{2}+1\right)$	$\geq q\left(q^{2}+1\right)$
χ_{3}	$\geq(q-1)\left(q^{2}+1\right)$	$\geq q\left(q^{2}+1\right)$
χ_{4}	$\geq q\left(q^{2}-1\right)$	$\geq q^{2}(q+1)$
χ_{5}	$\geq q\left(q^{2}-1\right)$	$\geq q^{2}(q+1)$
χ_{6}	$\geq q\left(q^{2}-1\right)$	$\geq q^{2}(q+1)$
χ_{7}	$\geq(q-1)\left(q^{2}+q-1\right)$	$\geq q\left(q^{2}+q-1\right)$
χ_{8}	$\geq q(q-1)(2 q-1)$	$\geq q^{2}(2 q-1)$
χ_{9}	$\geq q(q-1)(2 q-1)$	$\geq q^{2}(2 q-1)$
χ_{10}	$\geq q(q-1)(3 q-1) / 2$	$\geq q^{2}(3 q-1) / 2$
χ_{11}	$\geq q^{3}(q-1)$	$\geq q^{4}$
χ_{12}	$\geq q^{2}(q-1)^{2}+1$	$\geq q^{3}(q-1)+2$
χ_{13}	$\geq(q-1)\left(q^{3}-q^{2}+1\right)$	$\geq q\left(q^{3}-q^{2}+1\right)$
χ_{14}	$\geq(q-1)\left(q^{3}-q^{2}+1\right)$	$\geq q\left(q^{3}-q^{2}+1\right)$
χ_{15}	$\geq q(q-1)\left(q^{2}-q+1\right)$	$\geq q^{2}\left(q^{2}-q+1\right)$
χ_{16}	$\geq q(q-1)\left(q^{2}-q+1\right)$	$\geq q^{2}\left(q^{2}-q+1\right)$
χ_{17}	$\geq q(q-1)\left(q^{2}-q+1\right)$	$\geq q^{2}\left(q^{2}-q+1\right)$
χ_{18}	$\geq(q-1)^{2}\left(q^{2}+1\right)$	$\geq q(q-1)\left(q^{2}+1\right)$
χ_{19}	$\geq q(q-1)^{2}(q+1)$	$\geq q^{2}(q-1)(q+1)$
χ_{20}	$\geq q(q-1)^{2}(q+1)$	$\geq q^{2}(q-1)(q+1)$
χ_{21}	$\geq q(q-1)^{2}(2 q+1) / 2$	$\geq q^{2}(q-1)(2 q+1) / 2$
χ_{22}	$\geq 2 q^{2}(q-1)^{2}$	$\geq 2 q^{3}(q-1)$
$\chi_{7}(k)$	$\geq q^{2}(q-1)$	$\geq q^{3}$
θ_{2}	$=q^{2}(q-1)^{2}$	$=q^{3}(q-1)$

B. Let P be a maximal parabolic subgroup P of $G_{2}\left(3^{n}\right)$, then
(1) $r(P)=q(q-1)(q+2)$,
(2) $c(P)=q^{2}(q+1)$,
(3) $\lim _{q \rightarrow \infty} \frac{c(P)}{r(P)}=1$.

Proof. A. Similar to the proof of Theorem 3.1, in order to calculate $r(P)$ and $c(P)$ we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \operatorname{ker} \chi=1$.

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and
[9, Table (II-2)], for the maximal parabolic subgroup P of $G_{2}\left(2^{n}\right)$ we have

$$
\begin{aligned}
d\left(\chi_{7}(k)\right) & =\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q^{2}\left(q^{2}-1\right) & & \text { and } & & c\left(\chi_{7}\right)(k)(1) \geq q^{3}(q+1), \\
d\left(\chi_{8}(k)\right) & =\left|\Gamma\left(\chi_{8}(k)\right)\right| \chi_{8}(k)(1) \geq q^{2}(q-1)^{2} & & \text { and } & & c\left(\chi_{8}\right)(k)(1) \geq q^{3}(q-1), \\
d\left(\theta_{7}\right) & =\left|\Gamma\left(\theta_{7}\right)\right| \theta_{7}(1)=q^{2}(q-1) & & \text { and } & & c\left(\theta_{7}(1)\right)=q^{3}, \\
d\left(\theta_{8}\right) & =\left|\Gamma\left(\theta_{8}\right)\right| \theta_{8}(1)=q^{3}(q-1) & & \text { and } & & c\left(\theta_{8}(1)\right)=q^{4} .
\end{aligned}
$$

The values are set out in the following table

Table II

χ	$d(\chi)$	$c(\chi)(1)$
$\chi_{7}(k)$	$\geq q^{2}\left(q^{2}-1\right)$	$\geq q^{3}(q+1)$
$\theta_{8}(k)$	$\geq q^{2}(q-1)^{2}$	$\geq q^{3}(q-1)$
θ_{7}	$=q^{2}(q-1)$	$=q^{3}$
θ_{8}	$=q^{3}(q-1)$	$=q^{4}$

Now, by Table II we have

$$
\begin{aligned}
& \left.\min \{d(\chi): \operatorname{ker} \chi=1\}=d\left(\chi_{7}(k)\right)=q^{2}(q-1)\right) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=c\left(\chi_{7}(k)\right)(1)=q^{3}
\end{aligned}
$$

By the same method for the maximal parabolic subgroup P of $G_{2}\left(p^{n}\right), p \neq 3$ and by [$\mathbf{1}$, Table A.6], Table III is constructed.

Table III

χ	$d(\chi)$	$c(\chi)(1)$
${ }_{P} \chi_{7}(k)$	$\geq q^{2}\left(q^{2}-1\right)$	$\geq q^{3}(q+1)$
${ }_{P} \theta_{8}(k)$	$\geq q^{2}(q-1)^{2}$	$\geq q^{3}(q-1)$
${ }_{P} \theta_{7}$	$=q^{2}(q-1)$	$=q^{3}$
${ }_{P} \theta_{8}$	$=q^{3}(q-1)$	$=q^{4}$
${ }_{P} \theta_{9}$	$=q^{2}(q-1)^{2} / 2$	$=q^{3}(q-1) / 2$
${ }_{P} \theta_{10}$	$=q^{2}(q-1)^{2} / 2$	$=q^{3}(q-1) / 2$
${ }_{P} \theta_{11}$	$=q^{2}\left(q^{2}-1\right) / 2$	$=q^{3}(q+1) / 2$
${ }_{P} \theta_{12}$	$=q^{2}\left(q^{2}-1\right) / 2$	$=q^{3}(q+1) / 2$

Now by Table III we have

$$
\begin{aligned}
& \left.\min \{d(\chi): \operatorname{ker} \chi=1\}=d\left(\chi_{7}(k)\right)=q^{2}(q-1)\right) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=c\left(\chi_{7}(k)\right)(1)=q^{3} .
\end{aligned}
$$

B. The quasi-permutation representations of maximal parabolic subgroup P of $G_{2}\left(3^{n}\right)$ are constructed by the same method in Theorem 3.1. In this case, by [8, Table III], we have

$$
\operatorname{ker} \theta_{11} \bigcap \operatorname{ker} \chi_{6}(k)=1
$$

This helps us to calculate

$$
\begin{aligned}
& \min \{d(\chi): \operatorname{ker} \chi=1\}=q(q-1)(q+1) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=q^{2}(q+1) .
\end{aligned}
$$

For the both parts, it is elementary to see that $\lim _{q \rightarrow \infty} \frac{c(P)}{r(P)}=1$. Therefore the result follows.

In the following theorem, we construct $r(G)$ and $c(G)$ of another parabolic subgroup Q of $G_{2}(q)$.

Theorem 3.3.

A. Let Q be a maximal parabolic subgroup of $G_{2}\left(p^{n}\right), p \neq 3$, then
(1) $r(Q)=q\left(q^{2}-1\right)\left|\Gamma\left(\chi_{7}(k)\right)\right|$,
(2) $c(Q)=q^{3}\left|\Gamma\left(\chi_{7}(k)\right)\right|$,
(3) $\lim _{q \rightarrow \infty} \frac{c(Q)}{r(Q)}=1$.
B. Let Q be a maximal parabolic subgroup of $G_{2}\left(3^{n}\right)$, then
(1) $r(Q)=q(q-1)(q+2)$,
(2) $c(Q)=q^{2}(q+1)$,
(3) $\lim _{q \rightarrow \infty} \frac{c(Q)}{r(Q)}=1$.

Proof. A) As we have mentioned before, in order to calculate $r(Q)$ and $c(Q)$ we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \operatorname{ker} \chi=1$.

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [$\mathbf{9}$, Table III-2] for the maximal parabolic subgroup Q of $G_{2}\left(2^{n}\right)$ we have

$$
\begin{aligned}
d\left(\chi_{7}(k)\right) & =\left|\Gamma\left(\chi_{7}(k)\right)\right| \chi_{7}(k)(1) \geq q\left(q^{2}-1\right) \quad \text { and } c\left(\chi_{7}\right)(k)(1) \geq q^{3}, \\
d\left(\theta_{2}\right) & =\left|\Gamma\left(\theta_{2}\right)\right| \theta_{2}(1) \geq q(q-1)\left(q^{2}-1\right) \text { and } c\left(\theta_{2}(1) \geq q^{3}(q-1),\right. \\
d\left(\Sigma_{l=0}^{2} \theta_{2}(k, l)\right) & =\left|\Gamma\left(\Sigma_{l=0}^{2} \theta_{2}(k, l)\right)\right|\left(\Sigma_{l=0}^{2} \theta_{2}(k, l)\right)(1) \geq q(q-1)\left(q^{2}-1\right) \text { and } \\
c\left(\Sigma_{l=0}^{2} \theta_{2}(k, l)(1)\right. & \geq q^{4}(q-1), \\
d\left(\Sigma_{x \in X} \theta_{3}(x)\right) & =\left|\Gamma\left(\Sigma_{x \in X} \theta_{3}(x)\right)\right|\left(\Sigma_{x \in X} \theta_{3}(x)\right)(1)=q^{2}(q-1)\left(q^{2}-1\right) \text { and } \\
c\left(\Sigma_{x \in X} \theta_{3}(x)\right)(1) & =q^{4}(q-1)
\end{aligned}
$$

The values are set out in Table IV.
For the character $\chi_{7}(k), k \in R_{0}$ as $\left|R_{0}\right|=q-1$, so $\left|\Gamma\left(\chi_{7}(k)\right)\right| \leq q-1$, where $\Gamma\left(\chi_{7}(k)\right)=\Gamma\left(Q\left(\chi_{7}(k)\right): Q\right)$. Therefore we have

$$
q\left(q^{2}-1\right) \leq d\left(\chi_{7}(k)\right) \leq q(q-1)\left(q^{2}-1\right)
$$

Now, by Table IV we have

$$
\begin{aligned}
& \min \{d(\chi): \operatorname{ker} \chi=1\}=d\left(\chi_{7}(k)\right)=m q\left(q^{2}-1\right) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=c\left(\chi_{7}(k)\right)(1)=m q^{3}, \quad \text { where } m=\left|\Gamma\left(\chi_{7}(k)\right)\right|
\end{aligned}
$$

Table IV

χ	$d(\chi)$	$c(\chi)(1)$
$\chi_{7}(k)$	$\geq q\left(q^{2}-1\right)$	$\geq q^{3}$
$\chi_{8}(k)$	$\geq q(q-1)\left(q^{2}-1\right)$	$\geq q^{3}(q-1)$
$\Sigma_{l=0}^{2} \theta_{2}(k, l)$	$\geq q(q-1)\left(q^{2}-1\right)$	$\geq q^{3}(q-1)$
$\Sigma_{x \in X} \theta_{3}(x)$	$=q^{2}(q-1)\left(q^{2}-1\right)$	$=q^{4}(q-1)$

For the maximal parabolic subgroup Q of $G_{2}\left(p^{n}\right), p \neq 3$, by the same method and [1, Table A.6], Table V is constructed.

Table V

χ	$d(\chi)$	$c(\chi)(1)$
$Q \chi_{7}(k)$	$\geq q\left(q^{2}-1\right)$	$\geq q^{3}$
$\Sigma_{l=0}^{2} Q^{2} \theta_{2}(k, l)$	$\geq q(q-1)\left(q^{2}-1\right)$	$\geq q^{3}(q-1)$
$\Sigma_{x \in F_{q}^{*}} Q^{2} \theta_{3}(x)$	$\geq q(q-1)^{2}\left(q^{2}-1\right)$	$\geq q^{4}(q-1)^{2}$
$\Sigma_{x \in F_{q}} Q_{Q} \theta_{4}(x)$	$=q^{2}(q-1)\left(q^{2}-1\right)$	$=q^{4}(q-1)$
$Q_{5}(k)+Q_{Q} \theta_{6}(k)$	$\geq q(q-1)\left(q^{2}-1\right)$	$\geq q^{3}(q-1)$

For the character ${ }_{Q} \chi_{7}(k), k \in R_{0} \quad$ as $\left|R_{0}\right|=q-1$, so $\left|\Gamma\left({ }_{Q} \chi_{7}(k)\right)\right| \leq q-1$, where $\Gamma\left({ }_{Q \chi_{7}}(k)\right)=\Gamma\left(Q\left({ }_{Q} \chi_{7}(k)\right): Q\right)$. Therefore we have

$$
q\left(q^{2}-1\right) \leq d\left(\chi_{7}(k)\right) \leq q(q-1)\left(q^{2}-1\right)
$$

Now, by Table V we have

$$
\begin{aligned}
& \min \{d(\chi): \operatorname{ker} \chi=1\}=d\left({ }_{Q} \chi_{7}(k)\right)=m q\left(q^{2}-1\right) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=c\left({ }_{Q} \chi_{7}(k)\right)(1)=m q^{3}, \quad \text { where } m=\mid \Gamma\left({ }_{\left.Q \chi_{7}(k)\right) \mid} .\right.
\end{aligned}
$$

B. The quasi-permutation representations of maximal parabolic subgroup Q of $G_{2}\left(3^{n}\right)$ are constructed by the same method as in Theorem 3.1. In this case, by Table III of [8], we have

$$
\operatorname{ker} \theta_{11} \bigcap \operatorname{ker} \chi_{6}(k)=1
$$

This helps us to obtain

$$
\begin{aligned}
& \min \{d(\chi): \operatorname{ker} \chi=1\}=q(q-1)(q+2) \quad \text { and } \\
& \min \{c(\chi)(1): \operatorname{ker} \chi=1\}=q^{2}(q+1)
\end{aligned}
$$

It is obviously that also in this case $\lim _{q \rightarrow \infty} \frac{c(Q)}{r(Q)}=1$. Therefore the result follows.

References

1. An J. and Huang S. C., Character tables of parabolic subgroups of the Chevalley groups of type G_{2}, Comm. Algebra, 34 (2006), 1763-1792.
2. Behravesh H., Quasi-permutation representations of p-groups of class 2, J. London Math. Soc. 55(2) (1997), 251-260.
3. Behravesh H., Daneshkhah A., Darafsheh M. R. and Ghorbany M., The rational character table and quasi-permutation representations of the group $P G L(2, q)$, Ital. J. Pure Appl. Math. 11 (2001), 9-18.
4. Burns J. M., Goldsmith B., Hartley B. and Sandling R., On quasi-permutation representations of finite groups, Glasgow Math. J. 36 (1994), 301-308.
5. Darafsheh M. R., Ghorbany M., Daneshkhah A. and Behravesh H., Quasi-permutation representation of the group $G L(2, q)$, J. Algebra 243 (2001), 142-167.
6. Darafsheh M. R. and Ghorbany M., Quasi-permutation representations of the groups $S U\left(3, q^{2}\right)$ and $P S U\left(3, q^{2}\right)$, Southwest Asian Bulletin of Mathemetics 26 (2002), 395-406.
7. Darafsheh M. R. and Ghorbany M., Quasi-permutation representations of the groups $S L(3, q)$ and $P S L(3, q)$, Iran. J. Sci. Technol. Trans. A Sci. 26(A1) (2002), 145-154.
8. Enomoto H., The characters of the finite Chevalley group $G_{2}(q), q=3^{f}$, Japan. J. Math. 2(2) (1976), 191-248.
9. Enomoto H. and Yamada H., The characters of $G_{2}\left(2^{n}\right)$, Japan. J. Math. 12(2) (1986), 326-377.
10. Ghorbany M., Special representations of the group $G_{2}\left(2^{n}\right)$ with minimal degrees, Southwest Asian Bulletin of Mathemetics 30 (2006), 663-670.
11. Ree R., A family of simple groups associated with the simple Lie algebra of type $\left(G_{2}\right)$, Amer. J. Math. 83 (1961), 432-462.
12. Wong W. J., Linear groups analogous to permutation groups, J. Austral. Math. Soc (Sec. A) 3 (1963), 180-184.
M. Ghorbany, Department of Mathematics, Iran University of Science and Technology, Emam, Behshahr, Mazandaran, Iran, e-mail: m-ghorbani@iust.ac.ir

[^0]: Received April 6, 2008; revised December 16, 2008.
 2000 Mathematics Subject Classification. Primary 20C15.
 Key words and phrases. Borel and parabolic subgroups; rational valued character; quasipermutation representations.

