ON THE DUAL SPACE $C_{0}^{*}(S, X)$

L. MEZIANI

Abstract

Let S be a locally compact Hausdorff space and let us consider the space $C_{0}(S, X)$ of continuous functions vanishing at infinity, from S into the Banach space X. A theorem of I. Singer, settled for S compact, states that the topological dual $C_{0}^{*}(S, X)$ is isometrically isomorphic to the Banach space $r \sigma b v\left(S, X^{*}\right)$ of all regular vector measures of bounded variation on S with values in the strong dual X^{*}. Using the Riesz-Kakutani theorem and some routine topological arguments, we propose a constructive detailed proof which is, as far as we know, different from that supplied elsewhere.

Preliminaries

Let S be a locally compact Hausdorff space equipped with its Borel σ-field \mathcal{B}_{S}, and let X be a Banach space. We denote by $C_{0}(S, X)$ the Banach space (uniform norm) of all continuous functions $f: S \rightarrow X$, vanishing at infinity. If $X=\mathbb{R}$, we put $C_{0}(S, X)=C_{0}(S)$. According to the Riesz-Kakutani theorem [7, Theorem 6.19], the dual $C_{0}^{*}(S)$ is isometric to the Banach space of all scalar regular measures on S with the variation norm. All the measures we will deal with here are supposed to be defined on the σ-field \mathcal{B}_{S}. We denote by X^{*} the strong dual of X.

If $\lambda: \mathcal{B}_{S} \rightarrow Y$ is an additive set function from \mathcal{B}_{S} into the Banach space Y, then the variation of λ is usually defined by the extented positive set function $|\lambda|(\bullet)$ given by:

$$
\begin{equation*}
|\lambda|(E)=\sup \sum_{i}\left\|\lambda\left(E_{i}\right)\right\|, \quad E \in \mathcal{B}_{S} \tag{1}
\end{equation*}
$$

where the supremum is taken over all finite partitions $\left\{E_{i}\right\}$ of E in \mathcal{B}_{S}.
We say that λ is of bounded variation if $|\lambda|(E)<\infty$, for all $E \in \mathcal{B}_{S}$. It is easy to check that $|\lambda|$ is additive. Moreover, if λ is of bounded variation, then λ is σ-additive if and only if $|\lambda|$ is σ-additive. We say that λ is regular if $|\lambda|$ is regular in the customary sense [1]. We denote by $\operatorname{rrbv}(\mathcal{S}, Y)$ the set of all regular Y-valued vector measures on S. For $\lambda \in \operatorname{robv}(\mathcal{S}, Y)$, put $|\lambda|(S)=\|\lambda\|$, then the following proposition is well known [1]:

[^0]
Proposition 1.

(a) $\|\lambda\|$ is a norm making $\operatorname{r\sigma bv}(\mathcal{S}, Y)$ with the usual operations a Banach space.
(b) In the specific case $Y=X^{*}$, we have

$$
\begin{equation*}
|\lambda|(E)=\sup \left|\sum_{i} \lambda\left(E_{i}\right) x_{i}\right|, \quad E \in \mathcal{B}_{S} \tag{2}
\end{equation*}
$$

where the supremum is taken over all finite partitions $\left\{E_{i}\right\}$ of E in \mathcal{B}_{S}, and all finite systems $\left\{x_{i}\right\}$ of vectors in X with $\left\|x_{i}\right\| \leq 1$ for each i.
The RHS of formula (2) is the so called semivariation of λ [2]. So Proposition 1(b) says that, for vector measures with values in a dual, the variation is equal to the semivariation.

The theorem of Singer

Theorem 1. There is an isometric isomorphism between the topological dual $C_{0}^{*}(S, X)$ of $C_{0}(S, X)$ and the Banach space $\operatorname{robv}\left(\mathcal{S}, X^{*}\right)$, where the functional $U \in C_{0}^{*}(S, X)$ and the corresponding measure $\lambda \in \operatorname{robv}\left(\mathcal{S}, X^{*}\right)$ are related by the integral formula

$$
\begin{align*}
U f & =\int_{S} f \mathrm{~d} \lambda, \quad f \in C_{0}(S, X) \tag{3}\\
\|U\| & =\|\lambda\|
\end{align*}
$$

where the integral is the termed immediate integral of Dinculeanu [3].
Let us recall that this theorem is the basic tool in the proof of the representation theorem of N. Dinculeanu [2, Section 19].

Actually the original proof of this theorem [8] contains some gaps about the strong σ-additivity and regularity of the measure λ attached to the functional U. These gaps have been filled by J. Gil de Lamadrid in [5, pages 775-776]. Another proof using the Hahn-Banach theorem and measures on product spaces, can be found in $[\mathbf{6}]$. To settle the proof of the theorem we need some preparatory lemmas. Let us start with a $U \in C_{0}^{*}(S, X)$, we will construct a $\lambda \in \operatorname{robv}\left(\mathcal{S}, X^{*}\right)$ such that formula (3) holds.

Lemma 1. For each $(f, x) \in C_{0}(S) \times X$ we define $B(f, x)$ by

$$
\begin{equation*}
B(f, x)=U(f \cdot x), \quad f \in C_{0}(S), \quad x \in X \tag{4}
\end{equation*}
$$

Then B is a bounded bilinear form on $C_{0}(S) \times X$ with $\|B\| \leq\|U\|$.
Proof. It is clear that B is bilinear. The norm inequality is immediate from the following estimation: $|B(f, x)|=|U(f \cdot x)| \leq\|U\| \cdot\|f\|_{\infty} \cdot\|x\|$.

Lemma 2. For each fixed $x \in X$, let $W_{x}(\bullet)=B(\bullet, x)$. Then there exists a unique scalar regular measure μ_{x} on \mathcal{B}_{S} such that

$$
\begin{equation*}
W_{x}(f)=\int_{S} f \mathrm{~d} \mu_{x}, \quad f \in C_{0}(S), \text { and }\left\|W_{x}\right\|=\left\|\mu_{x}\right\| \tag{5}
\end{equation*}
$$

Proof. From the construction of B in Lemma 1 we have $\left|W_{x}(f)\right| \leq\|U\| \cdot\|f\|_{\infty}$. $\|x\|$. So W_{x} is linear and bounded, that is $W_{x} \in C_{0}^{*}(S)$, and we have $\left|W_{x}(f)\right| \leq$ $\|U\| \cdot\|f\|_{\infty} \cdot\|x\|$, therefore $\left\|W_{x}\right\| \leq\|U\| \cdot\|x\|$. Moreover, the correspondence $x \longmapsto W_{x}$ is a bounded linear operator from X into the dual space $C_{0}^{*}(S)$ with the norm at most $\|U\|$. By the Riesz-Kakutani theorem, $C_{0}^{*}(S)$ is canonically isometric to the respective space of regular measures with the variation norm. Consequently, for each $x \in X$ there is a unique scalar regular measure μ_{x} on \mathcal{B}_{S} such that

$$
W_{x}(f)=\int_{S} f \mathrm{~d} \mu_{x}, \quad f \in C_{0}(S) \text { and }\left\|W_{x}\right\|=\left\|\mu_{x}\right\|
$$

Lemma 3. Define the set function λ on \mathcal{B}_{S} by the following recipe: for $A \in \mathcal{B}_{S}$, $\lambda(A)$ is the functional on X given by

$$
\begin{equation*}
\lambda(A) x=\mu_{x}(A), \quad x \in X \tag{6}
\end{equation*}
$$

where μ_{x} comes from Lemma 2.
Then $\lambda(A) \in X^{*}$ for each $A \in \mathcal{B}_{S}$, moreover, λ is additive.
Proof. Let $x, y \in X, A \in \mathcal{B}_{S}$, then $\lambda(A)(x+y)=\mu_{x+y}(A)$, where μ_{x+y} corresponds to W_{x+y} according to (5), thus $W_{x+y}(f)=\int_{S} f \mathrm{~d} \mu_{x+y}$, for all $f \in C_{0}(S)$. Since

$$
W_{x+y}(f)=B(f, x+y)=B(f, x)+B(f, y)
$$

we deduce from (5) that

$$
W_{x+y}(f)=\int_{S} f \mathrm{~d} \mu_{x+y}=\int_{S} f \mathrm{~d} \mu_{x}+\int_{S} f \mathrm{~d} \mu_{y}=\int_{S} f \mathrm{~d}\left(\mu_{x}+\mu_{y}\right)
$$

where the last equality is easy to check by standard method. Thus

$$
\int_{S} f \mathrm{~d} \mu_{x+y}=\int_{S} f \mathrm{~d}\left(\mu_{x}+\mu_{y}\right), \quad \text { for each } f \in C_{0}(S)
$$

From the fact that $\mu_{x}+\mu_{y}$ is regular, the uniqueness part of the Riesz-Kakutani theorem yields $\mu_{x+y}=\mu_{x}+\mu_{y}$. Likewise $\mu_{\alpha x}=\alpha \mu_{x}$, for $\alpha \in \mathbb{R}$. This proves that $\lambda(A)$ is a linear functional on X. On the other hand we have

$$
|\lambda(A) x|=\left|\mu_{x}(A)\right| \leq\left|\mu_{x}\right|(A) \leq\left\|\mu_{x}\right\|=\left\|W_{x}\right\| \leq\|U\| \cdot\|x\|
$$

(see the proof of Lemma 2). So we deduce that $\lambda(A) \in X^{*}$ and $\|\lambda(A)\| \leq\|U\|$ for each $A \in \mathcal{B}_{S}$.

Finally, it is clear that λ is additive.
The remaining lemmas are intended to prove that the additive set function λ is actually a vector measure. The following lemma is crucial:

Lemma 4. The set function λ has finite variation. Moreover, we have $\|\lambda\| \leq\|U\|$.
Proof. We use formula (2) for the variation of λ. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite partition of the locally compact space S by sets in \mathcal{B}_{S} and let $x_{1}, x_{2}, \ldots, x_{n}$ be vectors in X with $\left\|x_{i}\right\| \leq 1$ for all i. We need an estimation of the sum $\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}$.

Let $\varepsilon>0$, then by the regularity of the measures $\mu_{x_{i}}$, there exist compact sets $K_{1}, K_{2}, \ldots, K_{n}$ and open sets $G_{1}, G_{2}, \ldots, G_{n}$ such that

$$
K_{i} \subset A_{i} \subset G_{i} \quad \text { and } \quad\left|\mu_{x_{i}}\right|\left(G_{i} \backslash K_{i}\right)<\frac{\varepsilon}{2 n}, \quad i=1,2, \ldots n
$$

Note that the K_{i} are pairwise disjoint since A_{i} are so. Since S is Hausdorff, disjoint compact sets have disjoint neighbourhoods. So, using a simple induction on n, we can construct pairwise disjoint open sets $U_{1}, U_{2}, \ldots, U_{n}$ such that $K_{i} \subset U_{i}$ for each i. Letting $V_{i}=U_{i} \cap G_{i}$, we get pairwise disjoint open sets V_{i} such that $K_{i} \subset V_{i} \subset G_{i}$, for all i.

Now, let $g_{i}: S \rightarrow \mathbb{R}$ be a continuous function such that $0 \leq g_{i}(t) \leq 1$ for all $t \in S, g_{i}(t)=1$ for all $t \in K_{i}$, support $g_{i} \subset V_{i}$ (such functions exist by Urysohn's lemma since S is locally compact). We have

$$
\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}=\int_{V_{i}} g_{i} \mathrm{~d} \mu_{x_{i}}
$$

(since $g_{i} \equiv 0$ outside V_{i}), so we deduce that

$$
\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}=\int_{V_{i} \backslash K_{i}} g_{i} \mathrm{~d} \mu_{x_{i}}+\int_{K_{i}} g_{i} \mathrm{~d} \mu_{x_{i}} .
$$

But $\int_{K_{i}} g_{i} \mathrm{~d} \mu_{x_{i}}=\mu_{x_{i}}\left(K_{i}\right)$ (because $g_{i} \equiv 1$ on K_{i}). Consequently, we have

$$
\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}-\mu_{x_{i}}\left(K_{i}\right)=\int_{V_{i} \backslash K_{i}} g_{i} \mathrm{~d} \mu_{x_{i}} .
$$

This gives the following estimation

$$
\begin{array}{rlr}
\left|\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}-\mu_{x_{i}}\left(K_{i}\right)\right| & =\left|\int_{V_{i} \backslash K_{i}} g_{i} \mathrm{~d} \mu_{x_{i}}\right| \leq \int_{V_{i} \backslash K_{i}} g_{i} d \cdot\left|\mu_{x_{i}}\right| \\
& \leq\left|\mu_{x_{i}}\right|\left(V_{i} \backslash K_{i}\right) \quad\left(\text { since } 0 \leq g_{i} \leq 1\right) \\
& \leq\left|\mu_{x_{i}}\right|\left(G_{i} \backslash K_{i}\right) \quad\left(\text { since } V_{i} \subset G_{i}\right) \\
& <\frac{\varepsilon}{2 n} &
\end{array}
$$

Therefore

$$
\begin{equation*}
\left|\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}-\mu_{x_{i}}\left(K_{i}\right)\right|<\frac{\varepsilon}{2 n}, \quad \text { for each } i . \tag{7}
\end{equation*}
$$

Now, let $f: S \rightarrow X$ be the function defined by

$$
f(t)=\sum_{1}^{n} g_{i}(t) \cdot x_{i}, \quad t \in S
$$

then f is continuous and we have $f(t)=0$ for each t in $S \backslash \cup_{1}^{n} V_{i}$, and $f(t)=g_{i}(t) \cdot x_{i}$ for each t in V_{i}, because V_{i} are pairwise disjoint and support $g_{i} \subset V_{i}$. Then we deduce that $\|f\| \leq 1$ and by (5)

$$
U f=\sum_{1}^{n} U\left(g_{i} \cdot x_{i}\right)=\sum_{1}^{n} \int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}, \quad \text { since } \quad U\left(g_{i} \cdot x_{i}\right)=W_{x_{i}}\left(g_{i}\right)
$$

So

$$
\begin{aligned}
\left|U f-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right| & =\left|\sum_{1}^{n} \int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right| \\
& \leq \sum_{1}^{n}\left|\int_{S} g_{i} \mathrm{~d} \mu_{x_{i}}-\mu_{x_{i}}\left(K_{i}\right)\right|<\sum_{1}^{n} \frac{\varepsilon}{2 n}=\frac{\varepsilon}{2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|U f-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right|<\frac{\varepsilon}{2} \tag{8}
\end{equation*}
$$

Now, we turn to the estimation of $\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}\right|$.

$$
\begin{aligned}
\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}\right|-|U f| & \leq\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}-U f\right| \\
& \leq\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right|+\left|U f-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right| & =\left|\sum_{1}^{n} \mu_{x_{i}}\left(A_{i}\right)-\sum_{1}^{n} \mu_{x_{i}}\left(K_{i}\right)\right| \\
& \leq \sum_{1}^{n}\left|\mu_{x_{i}}\right|\left(A_{i} \backslash K_{i}\right) \\
& \leq \sum_{1}^{n}\left|\mu_{x_{i}}\right|\left(G_{i} \backslash K_{i}\right)<\sum_{1}^{n} \frac{\varepsilon}{2 n}=\frac{\varepsilon}{2}
\end{aligned}
$$

Combining this with (8), we get

$$
\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}\right|-|U f|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

So

$$
\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}\right|<|U f|+\varepsilon \leq\|U\| \cdot\|f\|_{\infty}+\varepsilon \leq\|U\|+\varepsilon \quad(\text { since }\|f\| \leq 1),
$$

letting $\varepsilon \searrow 0$ we obtain $\left|\sum_{1}^{n} \lambda\left(A_{i}\right) x_{i}\right| \leq\|U\|$.
So, by taking the supremum for all finite partitions $\left\{A_{i}\right\}$ of S in \mathcal{B}_{S} and all systems $\left\{x_{i}\right\}$ in X with $\left\|x_{i}\right\| \leq 1$, this leads to $|\lambda|(S) \leq\|U\|<\infty$, by formula (2). Then λ has a finite variation.

Lemma 5. For each $A \in \mathcal{B}_{S}$ we have

$$
\begin{align*}
& |\lambda|(A)=\sup \{|\lambda|(K): K \subset A, K \text { compact }\} \tag{9}\\
& |\lambda|(A)=\inf \{|\lambda|(G): A \subset G, G \text { open }\} \tag{10}
\end{align*}
$$

In other words the variation measure $|\lambda|$ of λ is regular, and so λ is regular.

Proof. Let $A \in \mathcal{B}_{S}$, since $|\lambda|<\infty,(9)$ is equivalent to the following approximation: For each $\varepsilon>0$, there is a compact K such that

$$
\begin{equation*}
K \subset A, \quad|\lambda|(A)-\varepsilon<|\lambda|(K) \tag{11}
\end{equation*}
$$

Let $\varepsilon>0$, again since $|\lambda|<\infty$ there exists a finite partition $E_{1}, E_{2}, \ldots, E_{n}$ of A in \mathcal{B}_{S} and $x_{1}, x_{2}, \ldots, x_{n}$ in X with $\left\|x_{i}\right\| \leq 1$ for all i such that

$$
|\lambda|(A)-\frac{\varepsilon}{2}<\left|\sum_{1}^{n} \lambda\left(E_{i}\right) x_{i}\right|, \quad \text { by formula (2). }
$$

By formula (6) the measures $\lambda(\bullet) x_{i}=\mu_{x_{i}}(\bullet)$ are regular; consequently, there exist compact sets $K_{1}, K_{2}, \ldots, K_{n}$, with $K_{i} \subset E_{i}$ and $\left|\lambda\left(E_{i} \backslash K_{i}\right) x_{i}\right|<\frac{\varepsilon}{2 n}$ for all i. Then we have

$$
\begin{aligned}
|\lambda|(A)-\frac{\varepsilon}{2} & <\left|\sum_{1}^{n} \lambda\left(E_{i}\right) x_{i}\right| \leq\left|\sum_{1}^{n} \lambda\left(K_{i}\right) x_{i}\right|+\left|\sum_{1}^{n} \lambda\left(E_{i} \backslash K_{i}\right) x_{i}\right| \\
& \leq \sum_{1}^{n}\left|\lambda\left(K_{i}\right) x_{i}\right|+\sum_{1}^{n}\left|\lambda\left(E_{i} \backslash K_{i}\right) x_{i}\right|<|\lambda|(K)+\frac{\varepsilon}{2}
\end{aligned}
$$

where K is defined to be the compact set $\cup_{1}^{n} K_{i}$.
Therefore, (11) is valid and proves (9). We can get (10) by applying (9) to the complement A^{c} of the set A.

Lemma 6. The variation measure $|\lambda|$ is σ-additive.
Proof. Since λ is additive then so is $|\lambda|$. By the regularity property just proved, the result is a consequence of Alexandroff theorem (see [4, p. 138].

Lemma 7. The set function λ is a regular vector measure, that is λ is a member of $\operatorname{robv}\left(\mathcal{S}, X^{*}\right)$.

Proof. We know that λ is additive, so to prove the σ-additivity it is enough to prove the continuity at \emptyset, that is for every sequence A_{n} in \mathcal{B}_{S} decreasing to \emptyset, we have $\lambda\left(A_{n}\right) \rightarrow 0$. But it is a consequence of the σ-additivity of $|\lambda|$ and the fact that $\|\lambda(A)\| \leq|\lambda|(A)$, for each $A \in \mathcal{B}_{S}$. On the other hand λ is regular since $|\lambda|$ is regular by Lemma 5 .

Lemma 8. Let $v, \mu \in \operatorname{robv}\left(\mathcal{S}, X^{*}\right)$ be such that $\int_{S} f \mathrm{~d} v=\int_{S} f \mathrm{~d} \mu$ for all $f \in C_{0}(S, X)$, then $v \equiv \mu$.

Proof. Take $f \in C_{0}(S, X)$ of the form $f(\bullet)=g(\bullet) \cdot x$ where $g \in C_{0}(S)$ and x fixed in X. Then by standard tools we have $\int_{S} f \mathrm{~d} v=\int_{S} g \mathrm{~d} v(\bullet) x$ and $\int_{S} f \mathrm{~d} \mu=\int_{S} g \mathrm{~d} \mu(\bullet) x$. This yields $\int_{S} g \mathrm{~d} v(\bullet) x=\int_{S} g \mathrm{~d} \mu(\bullet) x$. Since both scalar measures $v(\bullet) x$ and $\mu(\bullet) x$ are regular and since g is arbitrary, we deduce from Riesz-Kakutani theorem that $v(\bullet) x=\mu(\bullet) x$ for each $x \in X$. Thus $v \equiv \mu$.

Now, we are in a position to give the proof of Theorem 1.

Proof of Theorem 1. First we prove relation (3), i.e, for all $f \in C_{0}(S, X)$, $U f=\int_{S} f \mathrm{~d} \lambda$ where λ is the vector measure constructed in Lemma 3.

Let $f \in C_{0}(S, X)$ be of the form $f(\bullet)=g(\bullet) \cdot x$ for $g \in C_{0}(S)$ and x fixed in X. Then

$$
\begin{array}{rlrl}
U f & =W_{x}(g) & \\
& =\int_{S} g \mathrm{~d} \mu_{x} & & \text { by Lemma 2, formula (5) } \\
& =\int_{S} g \mathrm{~d} \lambda(\bullet) x & & \text { by Lemma 3, formula (6) }
\end{array}
$$

But we have $\int_{S} g \mathrm{~d} \lambda(\bullet) x=\int_{S} g \cdot x \cdot \mathrm{~d} \lambda$. Therefore, formula (3) is satisfied for $f=g \cdot x$. By linearity we can see that formula (3) is satisfied for all $f \in C_{0}(S) \otimes X$, the vector space of all $f \in C_{0}(S, X)$ of the form $f(\bullet)=\sum_{1}^{n} g_{i}(\bullet) \cdot x_{i}$ with $g_{i} \in C_{0}(S)$ for each i. It is well known that $C_{0}(S) \otimes X$ is dense in $C_{0}(S, X)$ (see [2, Proposition 1 of Section 19]. Consequently, if $f \in C_{0}(S, X)$, there is a sequence f_{n} in $C_{0}(S) \otimes X$ converging to f uniformly on S. By the integration process with respect to an operator valued measure we get

$$
\left|\int_{S} f_{n} \mathrm{~d} \lambda-\int_{S} f \mathrm{~d} \lambda\right| \leq\left\|f_{n}-f\right\|_{\infty} \cdot \tilde{\lambda}(S)
$$

where $\tilde{\lambda}$ is the semivariation of λ defined by the RHS of formula (2) and which is, in the present context, equal to the variation $|\lambda|$ (see the Preliminaries). As λ is of finite variation and $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$, we have $\int_{S} f_{n} \mathrm{~d} \lambda \rightarrow \int_{S} f d \lambda$. But $U f_{n}=\int_{S} f_{n} \mathrm{~d} \lambda$ because $f_{n} \in C_{0}(S) \otimes X$ for each n. Since U is bounded and $f_{n} \rightarrow f$ uniformly we get $U f_{n}=\int_{S} f_{n} \mathrm{~d} \lambda \rightarrow U f$.

Hence,

$$
U f=\int_{S} f \mathrm{~d} \lambda, \quad \text { for all } f \in C_{0}(S, X)
$$

By Lemma $8, \lambda$ is the unique measure in $\operatorname{robv}\left(S, X^{*}\right)$ satisfying relation (3). This proves that the correspondence $U \xrightarrow{\varphi} \lambda$ from $C_{0}^{*}(S, X)$ into $r \sigma b v\left(S, X^{*}\right)$ is welldefined. Moreover, we have

$$
|U f|=\left|\int_{S} f \mathrm{~d} \lambda\right| \leq\|f\|_{\infty} \cdot \tilde{\lambda}(S)=\|f\|_{\infty} \cdot\|\lambda\|
$$

so $\|U\| \leq\|\lambda\|$ and by Lemma 4 we get $\|U\|=\|\lambda\|$. This implies that φ is an isometry and then it is one-one. It is not difficult to show that φ is linear (make use of Lemma 8). To complete the proof, we must show that φ is onto. To this end, let us start with $\mu \in \operatorname{r\sigma bv}\left(S, X^{*}\right)$, to which we associate the functional on $C_{0}(S, X)$ given by $U f=\int_{S} f \mathrm{~d} \mu, f \in C_{0}(S, X)$. It is clear that U is linear and bounded, so $U \in C_{0}^{*}(S, X)$. We show that $\varphi(U)=\mu$. Put $\varphi(U)=\lambda$, that is λ is the vector measure constructed along Lemmas 3-7. Then by formula (3), $U f=\int_{S} f \mathrm{~d} \lambda$ for all $f \in C_{0}(S, X)$, which yields $\int_{S} f \mathrm{~d} \mu=\int_{S} f \mathrm{~d} \lambda$ for all $f \in C_{0}(S, X)$. From Lemma 8, we deduce that $\mu=\lambda$, and this complete the proof of Theorem 1.

Acknowledgement. I would gratefully like to thank the referee for the valuable and helpful comments.

References

1. Diestel J. and Uhl J. J., Jr., Vector Measures, AMS, Providence, Math. Surveys 15, 1977.
2. Dinculeanu N., Vector Measures, Pergamon Press, 1967.
3. Dinculeanu N., Vector Integration and Stochastic integration in Banach Spaces, Wiley Interscience, 2000.
4. Dunford N. and Schwartz J., Linear Operators, Part. 1, Interscience Publishers, 1958.
5. Gil de Lamadrid J., Measures and Tensors, Canad. J. Math. 18 (1966), 762-793.
6. Hensgen W., A simple Proof of Singer's Representation Theorem, Proc. Amer. Math. Soc. 124(10), 1996.
7. Rudin W., Real and Complex Analysis, McGraw Hill, 3rd ed. 1987.
8. Singer I., Linear Functionals on the space of Continuous Mappings of a Compact Hausdorff Space into a Banach Space (in Russian), Rev. Roum. Math. Pures Appl. 2 (1957), 301-315.
L. Meziani, Department of Mathematics. Faculty of Science King Abdulaziz University P.O Box 80203 Jeddah, 21589, Saudi Arabia,
e-mail: mezianilakhdar@hotmail.com

[^0]: Received April 9, 2008.
 2000 Mathematics Subject Classification. Primary 46E40; Secondary 46G10.
 Key words and phrases. Vector-valued functions; bounded functionals' vector measures.

