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ON THE DUAL SPACE Cj (S, X)

L. MEZIANI

ABSTRACT. Let S be a locally compact Hausdorff space and let us consider the space
Co(S, X) of continuous functions vanishing at infinity, from S into the Banach space
X. A theorem of 1. Singer, settled for S compact, states that the topological dual
C§ (S, X) is isometrically isomorphic to the Banach space robv(S, X*) of all regular
vector measures of bounded variation on S with values in the strong dual X*. Using
the Riesz-Kakutani theorem and some routine topological arguments, we propose a
constructive detailed proof which is, as far as we know, different from that supplied
elsewhere.

PRELIMINARIES

Let S be a locally compact Hausdorff space equipped with its Borel o-field Bg, and
let X be a Banach space. We denote by Cy(S, X) the Banach space (uniform norm)
of all continuous functions f : S — X, vanishing at infinity. If X = R, we put
Co(S,X) = Cy(S). According to the Riesz-Kakutani theorem [7, Theorem 6.19],
the dual C(.S) is isometric to the Banach space of all scalar regular measures on
S with the variation norm. All the measures we will deal with here are supposed
to be defined on the o-field Bs. We denote by X* the strong dual of X.

If A: Bs — Y is an additive set function from Bg into the Banach space Y, then
the variation of A is usually defined by the extented positive set function |A|(e)
given by:

(1) IAI(E) =SupZHA(Ei)II, E € Bs

where the supremum is taken over all finite partitions {E;} of F in Bg.

We say that A is of bounded variation if |A\[(E) < oo, for all E € Bg. It is
easy to check that |A| is additive. Moreover, if A is of bounded variation, then
A is o-additive if and only if |A| is o-additive. We say that A is regular if |A| is
regular in the customary sense [1]. We denote by robv(S,Y") the set of all regular
Y-valued vector measures on S. For A € robv(S,Y), put |A|(S) = ||A]|, then the
following proposition is well known [1]:
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Proposition 1.

(a) |IAll is @ norm making robv(S,Y") with the usual operations a Banach space.
(b) In the specific case Y = X*, we have

where the supremum is taken over all finite partitions {E;} of E in Bg, and
all finite systems {x;} of vectors in X with ||x;|| <1 for each i.

(2) |A|(E) = sup , E € Bg

The RHS of formula (2) is the so called semivariation of A [2]. So Proposition 1(b)
says that, for vector measures with values in a dual, the variation is equal to the
semivariation.

THE THEOREM OF SINGER

Theorem 1. There is an isometric isomorphism between the topological dual
C3(S,X) of Co(S,X) and the Banach space robv(S, X*), where the functional
U € C§(S,X) and the corresponding measure X € robv(S, X*) are related by the
integral formula

Uf= / Fdr e Co(S.X)
S
1] = AL

where the integral is the termed immediate integral of Dinculeanu [3].

3)

Let us recall that this theorem is the basic tool in the proof of the representation
theorem of N. Dinculeanu [2, Section 19].

Actually the original proof of this theorem [8] contains some gaps about the
strong o-additivity and regularity of the measure A attached to the functional U.
These gaps have been filled by J. Gil de Lamadrid in [5, pages 775-776]. Another
proof using the Hahn-Banach theorem and measures on product spaces, can be
found in [6]. To settle the proof of the theorem we need some preparatory lemmas.
Let us start with a U € C§(S, X), we will construct a A € robv(S, X*) such that
formula (3) holds.

Lemma 1. For each (f,z) € Cy(S) x X we define B(f,z) by
(4) B(f,z) =U(f - x), felyS), zeX.
Then B is a bounded bilinear form on Cy(S) x X with ||B|| < ||U||.

Proof. Tt is clear that B is bilinear. The norm inequality is immediate from the
following estimation: |B(f,z)| = |U(f - 2)| < |U| - | flleo - ll2||- O

Lemma 2. For each fized x € X, let W, (o) = B(e,x). Then there exists a
unique scalar reqular measure p, on Bg such that

(5) W,(f) = /S fdies  F€Co(S), and [Wal = sl
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Proof. From the construction of B in Lemma 1 we have |[W,(f)| < |U||“ | f]loo -
|z]|. So W, is linear and bounded, that is W, € C§(S), and we have |W,(f)| <
U - I flloo « llz]], therefore ||[W,]| < ||U|l - ||x||. Moreover, the correspondence
x —— W, is a bounded linear operator from X into the dual space C§(S) with the
norm at most ||U||. By the Riesz-Kakutani theorem, C(S) is canonically isometric
to the respective space of regular measures with the variation norm. Consequently,
for each x € X there is a unique scalar regular measure u, on Bg such that

W)= [ fdins 1€ Col(S) and W] = |
O
Lemma 3. Define the set function A on Bg by the following recipe: for A € Bg,
A(A) is the functional on X given by
(6) NA)o = po(4),  weX

where 1, comes from Lemma 2.
Then A(A) € X* for each A € Bg, moreover, A is additive.

Proof. Let x,y € X, A € Bg, then A(A)(z + y) = pgt+y(A), where pi54, corre-
sponds to Wy, according to (5), thus Wy (f) = [ f dpieyy, for all f € Co(S).
Since

W;c+y(f) :B(f,sc+y) :B(fax)+B(f7y)v
we deduce from (5) that

Wx+y(f)=/Sfdux+y=/Sfduz+/sfduy=/sfd(ux+uy),

where the last equality is easy to check by standard method. Thus

[ Fdbany = [ fdls ). foreach £ € Co(S).
S S

From the fact that p, + p, is regular, the uniqueness part of the Riesz-Kakutani
theorem yields piz1y = ftz + pby. Likewise pog = afiz, for o € R. This proves that
A(A) is a linear functional on X. On the other hand we have

A(A)z] = |pa(A)] < 12l (A) < lpall = [Wel <[IU| - (||
(see the proof of Lemma 2). So we deduce that A(4) € X* and ||\(A)| < ||U]| for

each A € Bg.
Finally, it is clear that A is additive. O

The remaining lemmas are intended to prove that the additive set function A
is actually a vector measure. The following lemma is crucial:

Lemma 4. The set function A has finite variation. Moreover, we have ||A|| <||U]|.

Proof. We use formula (2) for the variation of A. Let A;, As,..., A, be a finite
partition of the locally compact space S by sets in Bg and let x1,zs,...,x, be
vectors in X with ||z;|| <1 for all i. We need an estimation of the sum Y | A(4;)x;.
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Let € > 0, then by the regularity of the measures p,,, there exist compact sets
Ky, K,, ..., K, and open sets G1,Ga,...,Gy, such that
KZCAZ CGZ' and |[1,I1 (GZ\KZ) < %, z:1,2,n

Note that the K; are pairwise disjoint since A; are so. Since S is Hausdorff, disjoint
compact sets have disjoint neighbourhoods. So, using a simple induction on n, we
can construct pairwise disjoint open sets Ui, Us,...,U, such that K; C U; for
each i. Letting V; = U; N G;, we get pairwise disjoint open sets V; such that
K; CcV, C G, for all 4.

Now, let g; : S — R be a continuous function such that 0 < g;(¢) < 1 for all
te S, gi(t)=1for all t € K;, support g; C V; (such functions exist by Urysohn’s
lemma since S is locally compact). We have

/ gidpz, = / gidpig,
S Vi

(since g; = 0 outside V;), so we deduce that

/gidﬂzi :/ gidpiz, +/ 9idpig, -
s VN K K,

i

But [, gidpe, = pe, (K;) (because g; = 1 on K;). Consequently, we have

S ViN K

This gives the following estimation

‘/ gidpe, — pa, (K)
S

/ gidpiz; | < / gid - |pra;
Vi\K; Vi\ K

< fpa; [(Vi\ Ki)  (since 0 < g; < 1)
< p; (G \ K) (since V; C G;)

<
2n
Therefore
(7) ’/ Gidptg, — pz, (K5)| < i, for each 3.
S 2n

Now, let f: S — X be the function defined by
f(t)zzgi(t)'ifz’, tes
1
then f is continuous and we have f(t) = 0 for each ¢ in S\UTV;, and f(t) = ¢;(¢)-z;

for each t in V;, because V; are pairwise disjoint and support g; C V;. Then we
deduce that || f|| <1 and by (5)

UF =3 Ul w) =3 [adp, sinee  Ulgem) = Wa(a).
1 1
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So
1 1
. zd x; x; z . i a
< 21: /S 9idtta, — pra, (K)| < 21: o
Therefore
(8) Uf =3 ()| < 5
1

Now, we turn to the estimation of | Y] A(4;)x;|.

—Ufl <> MA
1
Z Z/’L(El Uf - ZNzI(K)
1 1
and
Z Az — Z o, (K3)| = Z (A Z o, (K
1 1 1

Combining this with (8), we get

So

n

1
letting & \, 0 we obtain | >} M(A4;)z;| < ||U].
So, by taking the supremum for all finite partitions {4;} of S in Bg and all
systems {z;} in X with ||z;|| < 1, this leads to |[A|(S) < |U]|| < oo, by formula (2).
Then A has a finite variation. O

<|Ufl+e<|lU[-[fllc +e<[Ul+e  (since [If[| <1),

Lemma 5. For each A € Bs we have
9) [A|(A) = sup{|A|(K): K C A, K compact}
(10) [A|(A) inf {|A\|(G) : A C G,G open}

In other words the variation measure |\| of \ is regular, and so X is regular.
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Proof. Let A € Bg, since |A\| < oo, (9) is equivalent to the following approxi-
mation: For each € > 0, there is a compact K such that

(11) K C A, IA(A) —e < |A|(K)
Let € > 0, again since |A| < oo there exists a finite partition Ey, Es,..., E, of A
in Bg and z1,z2,..., o, in X with ||z;|| <1 for all ¢ such that

IAI(A) = g < , by formula (2).

1

By formula (6) the measures A\(e)x; = i, (®) are regular; consequently, there exist
compact sets K1, Ks,..., Ky, with K; C E; and |A(E; \ K;)z;| < Qi for all <.
n

Then we have

n

1

n

1

<

A(A4) -5 < +

1

n

< DK+ D7 IAEN K| < AI(K) + -,
1 1

where K is defined to be the compact set QJKZ».

Therefore, (11) is valid and proves (9). We can get (10) by applying (9) to the
complement A€ of the set A. O

Lemma 6. The variation measure |\| is o-additive.

Proof. Since ) is additive then so is |A|. By the regularity property just proved,
the result is a consequence of Alexandroff theorem (see [4, p. 138]. O

Lemma 7. The set function X\ is a regular vector measure, that is A is a member
of robu(S, X*).

Proof. We know that X\ is additive, so to prove the o-additivity it is enough to
prove the continuity at @), that is for every sequence A, in Bg decreasing to (), we
have A(A,) — 0. But it is a consequence of the o-additivity of |[A| and the fact
that [[A(A)]| < |A|(A), for each A € Bs. On the other hand X is regular since |A| is
regular by Lemma 5. ([

Lemma 8. Let v, p € robv(S,X*) be such that [ fdv = [q fdu for all
feCo(S,X), thenv = p.

Proof. Take f € Cy(S,X) of the form f(e) = g(e) - x where g € Cy(5)
and z fixed in X. Then by standard tools we have [g fdv = [ggdv(e)z and
Js fdu = [ggdu(e)x. This yields [;gdv(e)z = [ggdu(e)z. Since both scalar
measures v(e)z and p(e)x are regular and since g is arbitrary, we deduce from
Riesz-Kakutani theorem that v(e)x = u(e)z for each z € X. Thus v = p. O

Now, we are in a position to give the proof of Theorem 1.
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Proof of Theorem 1. First we prove relation (3), ie, for all f € Cy(S,X),
Uf=J g JdA where A is the vector measure constructed in Lemma 3.

Let f € Cy(S, X) be of the form f(e) = g(e) -z for g € Cy(S) and x fixed in X.
Then

Uf =Wai(g)
= / gd iy by Lemma 2, formula (5)
s
= / gdA(e)x by Lemma 3, formula (6).
s

But we have [¢ gdA(e)z = [ g-z-dX. Therefore, formula (3) is satisfied for f = g-z.
By linearity we can see that formula (3) is satisfied for all f € Cy(S) ® X, the

vector space of all f € Cy(S, X) of the form f(e) = g;(e)-x; with g; € Cy(S) for
1

each i. It is well known that Cy(S) ® X is dense in Cy(S, X) (see [2, Proposition 1
of Section 19]. Consequently, if f € Cy(S, X), there is a sequence f,, in Cp(S) @ X
converging to f uniformly on S. By the integration process with respect to an
operator valued measure we get

S S

where X is the semivariation of A defined by the RHS of formula (2) and which
is, in the present context, equal to the variation |A| (see the Preliminaries). As
A is of finite variation and [|f, — flloo — 0, we have [¢ fndX\ — [of d\. But
Uf, = fs fndX because f, € Cy(S) ® X for each n. Since U is bounded and
fn — f uniformly we get Uf, = [¢ fndA — Uf.

Hence,

Uf = /Sfd)\, for all f € Cy(S5,X).

By Lemma 8, A is the unique measure in robv(S, X*) satisfying relation (3). This

proves that the correspondence U % A from C§ (S, X) into robv(S, X*) is well-
defined. Moreover, we have

Ufl= I/Sfd/\I < [ flloo - A(S) = I1fllos - IAIL

so |U]| < ||Al| and by Lemma 4 we get ||[U|| = ||[A||. This implies that ¢ is an
isometry and then it is one-one. It is not difficult to show that ¢ is linear (make
use of Lemma 8). To complete the proof, we must show that ¢ is onto. To this end,
let us start with p € robv(S, X*), to which we associate the functional on Cy(S, X)
given by Uf = [ fdu, f € Co(S,X). Tt is clear that U is linear and bounded, so
U € C§(S,X). We show that o(U) = u. Put p(U) = A, that is A is the vector
measure constructed along Lemmas 3-7. Then by formula (3), Uf = [ fd\ for
all f € Cy(S,X), which yields [¢ f du = [g fdA for all f € Co(S,X). From
Lemma 8, we deduce that u = A, and this complete the proof of Theorem 1. [
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