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TRANSVERSALS OF RECTANGULAR ARRAYS

S. SZABÓ

Abstract. The paper deals with m by n rectangular arrays whose mn cells are
filled with symbols. A section of the array consists of m cells, one from each row

and no two from the same column. The paper focuses on the existence of sections

that do contain symbols with high multiplicity.

1. Introduction

An n by n array of cells filled with symbols 1, 2, . . . , n such that each symbol
appears in each row and each column exactly once is called a Latin square. A
section is a set of n cells, one from each row such that no two cells are in the
same column. A section is called a transversal if each of its symbols is distinct.
H. J. Ryser [5] conjectured that every n by n Latin square has a transversal for
odd n. P. W. Shor [6] proved that an n by n Latin square has a section with

n− 5.53(lnn)2

distinct symbols. S. K. Stein [7] showed that if an n by n array is filled with
symbols 1, 2, . . . , n such that each symbol appears exactly n times then there is a
section with 0.63n distinct symbols. P. Erdös and J. H. Spencer [4] proved that
if an n by n array is filled with symbols such that each symbol appears at most
(n − 1)/16 times, then the array has a transversal. In this paper we will use the
Erdös-Spencer technique to show that m by n arrays have sections in which no
symbol appears with high multiplicity.

2. The graph G

Consider an m by n table filled with symbols 1, 2, . . . such that each symbol appears
at most k times. In order to avoid trivial cases we assume that 2 ≤ m ≤ n. For
a given value of m and n there is a large number of such tables. We will work
with a fixed table. The symbol in the a-th row and the b-th column is denoted by
f(a, b). The s cells

[x1, y1], . . . , [xs, ys]
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in the table is called an s-clique if

(1) x1, . . . , xs are distinct numbers,
(2) y1, . . . , ys are distinct numbers,
(3) f(x1, y1) = · · · = f(xs, ys).

Again to avoid non-desired cases we assume that 2 ≤ s ≤ m ≤ n. Let T be the
set of all s-cliques in the table. We define a graph G in the following way. Let the
elements of T be the vertices of G. Two distinct vertices

{[x1, y1], . . . , [xs, ys]} and {[x′1, y′1], . . . , [x′s, y′s]}

are connected if
{x1, . . . , xs} ∩ {x′1, . . . , x′s} 6= ∅

or
{y1, . . . , ys} ∩ {y′1, . . . , y′s} 6= ∅.

Note that the degree of a vertex of G is at most

[s(m− s) + s(n− s) + s2]
(

k − 1
s− 1

)
.

The reason is the following. Choose an s-clique C. Then consider the s rows and
s columns of the table that contain a cell from C. These s rows and s columns
occupy s(m− s) + s(n− s) + s2 cells of the table. Let us call this the shaded area
of the table. Another s-clique C ′ is connected to C if and only if C ′ has a cell
from the shaded area. There are at most s(m− s) + s(n− s) + s2 choices for such
a cell. The common cell contains a symbol. This symbol appears at most k times
in the table. So there are at most

(
k−1
s−1

)
choices for the remaining s − 1 cells of

the clique C ′.

3. The probability space Ω

Let ω be an injective map from {1, . . . ,m} to {1, . . . , n}. The set of cells

[i, ω(i)], 1 ≤ i ≤ m

is called a section of the table. Intuitively a section consists of m cells of the table
such that no two cells are in the same row and no two cells are in the same column.

Let Ω be the probability space consisting of all sections of the table. Clearly,

|Ω| = n(n− 1) · · · (n−m + 1).

We assign the same probability to each element of Ω. For an element {[x1, y1], . . . ,
. . . , [xs, ys]} of T we define A([x1, y1], . . . , [xs, ys]) to be the subset of Ω which
contains all ω with ω(x1) = y1, . . . , ω(xs) = ys. Intuitively, A([x1, y1], . . . , [xs, ys])
is the set of all sections that contain the cells [x1, y1], . . . , [xs, ys]. For notational
convenience we number the elements of T by 1, 2, . . . , µ and identify the elements
of T by their numbers. If the vertex {[x1, y1], . . . , [xs, ys]} is numbered by i,
then A([x1, y1], · · · , [xs, ys]) will be denoted by Ai. As an example suppose that
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{[1, 1], . . . , [s, s]} is a vertex of G and is numbered by 1. The event A1 consists of
all the ω for which

ω(1) = 1, ω(2) = 2, . . . , ω(s) = s.

Pr[A1] =
[n− s][n− s− 1] · · · [n− s− (m− s) + 1]

n(n− 1) · · · (n−m + 1)

=
1

n(n− 1) · · · (n− s + 1)
= p.

In general Pr[Ai] = p for all i, 1 ≤ i ≤ µ.

4. The conditional probabilities

The content of this section is the following lemma.

Lemma 1. Suppose that the vertex 1 is not adjacent to any of the vertices
2, . . . , t in the graph G and that Pr[A2 · · ·At] > 0. Then Pr[A1|A2 · · ·At] ≤ p.

Proof. By definition

Pr[A1|A2 · · ·At] =
Pr[A1A2 · · ·At]
Pr[A2 · · ·At]

.

The event A1A2 · · ·At is the set of all ω for which

ω ∈ A1, ω 6∈ A2, . . . , ω 6∈ At.

Intuitively A1A2 · · ·At is the set of all sections that contain the clique {[1, 1], . . . ,
. . . , [s, s]} associated with A1 and do not contain any of the cliques associated with
the events A2, . . . , At. Let S(y1, . . . , ys) be the set of all ω with

ω(1) = y1, . . . , ω(s) = ys, ω 6∈ A2, . . . , ω 6∈ At.

Intuitively S(y1, . . . , ys) is the set of all sections that contain the clique

{[1, y1], . . . , [s, ys]}

and do not contain any of the cliques associated with A2, . . . , At. Clearly, S(1, . . . ,
. . . , s) = A1A2 · · ·At and the sets S(y1, . . . , ys) form a partition of the set A2 · · ·At

as y1, . . . , ys vary over the possible n(n − 1) · · · (n − s + 1) values. Next we
try to establish that |S(1, . . . , s)| ≤ |S(y1, . . . , ys)|. If S(1, . . . , s) = ∅, then
|S(1, . . . , s)| ≤ |S(y1, . . . , ys)| holds. So we may assume that S(1, . . . , s) 6= ∅.
Choose an ω from S(1, . . . , s). Consider the cells [1, y1], . . . , [s, ys]. Then define
the sets A, B, C in the following way. Let

A = {y1, . . . , ys},
B = {a : a ∈ A, a ≤ s},
C = {a : a ∈ A, a > s, a ∈ range of ω}.
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Table 1. An illustration in the s = 8, u = 3, v = 4 case.

i1 i2 i3 i4 j1 j2 j3
y1 y3 y4 y7 y2 y6 y8 y5

∗ × x1

∗ × x2

×
∗ × x3

8 × •
7 • ×
6 × •
5 × •
4 × •
3 × •
2 × •
1 × •

1 2 3 4 5 6 7 8

Suppose that C has u elements, say j1, . . . , ju. Then {1, . . . , s} \B has at least u
elements, say i1, . . . , iv. There are x1, . . . , xu such that ω(x1) = j1, . . . , ω(xu) = ju.
Clearly, x1, . . . , xu ≥ s + 1. Define ω∗ by

ω∗(1) = y1 , . . . , ω∗(s) = ys,
ω∗(x1) = i1 , . . . , ω∗(xu) = iu

and ω∗(x) = ω(x) for all x, s + 1 ≤ x ≤ m, x 6∈ {x1, . . . , xu}. Note that ω∗ ∈
S(y1, . . . , ys). From a given ω∗ we can reconstruct ω without any ambiguity.
Namely setting

ω(1) = 1 , . . . , ω(s) = s,
ω(x1) = j1 , . . . , ω(xu) = ju

and ω(x) = ω∗(x) for all x, s + 1 ≤ x ≤ m, x 6∈ {x1, . . . , xu}. Thus the map
∗ : S(1, . . . , s) → S(y1, . . . , ys) defined by ω → ω∗ is injective. This gives that
|S(1, . . . , s)| ≤ |S(y1, . . . , ys)|. Table 1 illustrates our consideration in the s = 8,
u = 3, v = 4 special case. The cells [1, ω(1)], . . . , [m,ω(m)] are marked with “×”
and the cells [1, y1], . . . , [s, ys] are marked with “•”.

Now turn back to the probability estimations.

Pr[A1A2 · · ·At] =
|S(1, . . . , s)|

|Ω|
.

If |S(1, . . . , s)| = 0, then Pr[A1|A2 · · ·At] = 0 ≤ p and we are done. So we may
assume that |S(1, . . . , s)| 6= 0.

Pr[A2 · · ·At] =
∑

|S(y1, . . . , ys)|
|Ω|

≥ 1
|Ω|

[n(n− 1) · · · (n− s + 1)]|S(1, . . . , s)|.
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Thus
Pr[A1|A2 · · ·At] ≤

1
n(n− 1) · · · (n− s + 1)

= p.

�

5. Applications

We quote a version of the Lovász local lemma. For more details see [1].

Lemma 2. Let A1, . . . , Aµ be events in a probability space Ω such that
Pr[A1] = · · · = Pr[Aµ] = p. Let G be a graph on {1, . . . , µ} such that each
vertex in G has degree at most d. Suppose that Pr[Ai|Aj(1) · · ·Aj(t)] ≤ p when-
ever i is not adjacent to any of the vertices j(1), . . . , j(t). Then 4dp ≤ 1 implies
Pr[A1 · · ·Aµ] > 0.

Let us turn to the applications.
(a) In the s = 2 case d = 2(m + n − 2)(k − 1), p = 1/[n(n − 1)]. If k − 1 ≤

[n(n− 1)]/[8(m + n− 2)], then the 4dp ≤ 1 condition holds and the Lovász local
lemma guarantees the existence of a transversal. When m = n, this reduces to a
result similar to that of Erdös and Spencer.

In the remaining part we consider only n by n arrays, that is, we will assume
that m = n.

(b) In the s = 3 case d = (6n− 9)(k − 1)(k − 2)/2, p = 1/[n(n− 1)(n− 2)]. If
n(n− 1)(n− 2)

2(6n− 9)(k − 1)(k − 2)
≥ 1

then the condition 4dp ≤ 1 holds and by the Lovász local lemma there is a section
in which each symbol appears at most twice. We can say that for large n if each
symbol appears at most 0.28n times in the table, then there is a section in which
no symbol appears more than twice.

We would like to point out that P. J. Cameron and I. M. Wanless [2] show that
every Latin square of order n contains a section in which no symbol occurs more
than twice.

We single out one more special case. In this case each symbol appears at most n
times in an n by n table. So the conditions are similar to the conditions of Stein’s
result described in the introduction.

(c) In the s = 6 case d = (12n−36)(k−1) · · · (k−5)/120, p = 1/[n(n−1) · · · (n−
5)]. If k = n, then the condition 4dp ≤ 1 holds and by the Lovász local lemma
there is a section in which each symbol appears at most 5 times.
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