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ALMOST STABLE ITERATION SCHEMES FOR LOCAL
STRONGLY PSEUDOCONTRACTIVE AND LOCAL STRONGLY
ACCRETIVE OPERATORS IN REAL UNIFORMLY SMOOTH

BANACH SPACES

ZEQING LIU, YUGUANG XU and SHIN MIN KANG

Abstract. In this paper we establish the strong convergence and almost stabil-
ity of the Ishikawa iteration methods with errors for the iterative approximations

of either fixed points of local strongly pseudocontractive operators or solutions of

nonlinear operator equations with local strongly accretive type in real uniformly
smooth Banach spaces. Our convergence results extend some known results in the

literature.

1. Introduction

Let X be a real Banach space, X∗ be its dual space and 〈x, f〉 be the generalized
duality pairing between x ∈ X and f ∈ X∗. The mapping J : X → 2X∗

defined
by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ X,

is called the normalized duality mapping. In the sequel, we denote by I and F (T )
the identity mapping on X and the set of all fixed points of T, respectively.

Let T be an operator on X. Assume that x0 ∈ X and xn+1 = f(T, xn) defines an
iteration scheme which produces a sequence {xn}∞n=0 ⊂ X. Suppose, furthermore,
that {xn}∞n=0 converges strongly to q ∈ F (T ) 6= ∅. Let {yn}∞n=0 be any sequence
in X and put εn = ‖yn+1 − f(T, yn)‖ for n ≥ 0.

Definition 1.1. ([13]–[15], [50]).
1. The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be

T -stable if limn→∞ εn = 0 implies that limn→∞ yn = q.
2. The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be

almost T -stable if
∑∞

n=0 εn < ∞ implies that limn→∞ yn = q.
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Note that {yn}∞n=0 is bounded provided that the iteration scheme {xn}∞n=0

defined by xn+1 = f(T, xn) is either T -stable or almost T -stable. Therefore we
revise Definition 1.1 as follows:

Definition 1.2.
1. The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be

T -stable if {yn}∞n=0 is bounded and limn→∞ εn = 0 imply that
limn→∞ yn = q.

2. The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be
almost T -stable if {yn}∞n=0 is bounded and

∑∞
n=0 εn < ∞ imply that

limn→∞ yn = q.

Definition 1.3. ([1]–[12], [18], [19], [53]–[55]). Let X be a real Banach space
and T : D(T ) ⊆ X → X be an operator, where D(T ) and R(T ) denote the domain
and range of T, respectively.

1. T is said to be local strongly pseudocontractive if for each x ∈ D(T ) there
exists tx > 1 such that for all y ∈ D(T ) and r > 0

(1.1) ‖x− y‖ ≤ ‖(1 + r)(x− y)− rtx(Tx− Ty)‖.
2. T is called local strongly accretive if for given x ∈ D(T ) there exists

kx ∈ (0, 1) such that for each y ∈ D(T ) there is j(x− y) ∈ J(x− y) satisfying

(1.2) 〈Tx− Ty, j(x− y)〉 ≥ kx‖x− y‖2.
3. T is called strongly pseudocontractive (respectively, strongly accretive) if it

is local strongly pseudocontractive (respectively, local strongly accretive)
and tx ≡ t (respectively, kx ≡ k) is independent of x ∈ D(T ).

4. T is said to be accretive for if given x, y ∈ D(T ) there is j(x−y) ∈ J(x−y)
satisfying

〈Tx− Ty, j(x− y)〉 ≥ 0.

5. T is said to be m-accretive if it is accretive and (I + rT )D(T ) = X for all
r > 0.

Clearly, each strongly pseudocontractive operator is local strongly pseudocon-
tractive and each strongly accretive operator is local strongly accretive. It is known
(see [54]) that T is local strongly pseudocontractive if and only if I − T is local
strongly accretive and kx = 1 − 1

tx
, where tx and kx are the constants appearing

in (1.1) and (1.2), respectively.
The concept of accretive operators was introduced independently by Browder

[1] and Kato [17] in 1967. An early fundamental result in the theory of accretive
operators, due to Browder, states that the initial value problem

du(T )
dt

+ Tu(T ) = 0, u(0) = u0,

is solvable if T is locally Lipschitzian and accretive on X. It is well known that if
T : X → X is strongly accretive and demi-continuous, then for any f ∈ X, the
equation

Tx = f(1.3)
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has a solution in X. Martin [50] proved that if T is a continuous accretive operator,
then T is m-accretive. Thus for any f ∈ X, the equation

x + Tx = f(1.4)

has a solution in X.
Recently several researches introduced and studied the iterative approxima-

tion methods to find either fixed points of φ-hemicontractive, strictly hemicon-
tractive, strictly successively hemicontractive, strongly pseudocntractive, gener-
alized asymptotically contractive and generalized hemicontractive, nonexpansive,
asymptotically nonexpansive mappings, local strictly pseudocontractive and local
strongly pseudocntractive operators or solutions of φ-strongly accretive, strongly
quasiaccretive, strongly accretive, local strongly accretive and m-accretive opera-
tors equations (1.3) and (1.4) (see, for example, [1]–[55]).

Rhoades [52] proved that the Mann and Ishikawa iteration methods may ex-
hibit different behaviors for different classes of nonlinear operators. A few stability
results for certain classes of nonlinear operators have been established by several
authors in [13]–[15], [23]–[25], [30], [32], [33], [38], [40]–[43], [48], [51]. Harder
and Hicks [14] revealed that the importance of investigating the stability of var-
ious iteration procedures for various classes of nonlinear operators. Harder [13]
obtained applications of stability results to first order differential equations. Osi-
like [51] obtained the stability of certain Mann and Ishikawa iteration sequences
for fixed points of Lipschitz strong pseudocontractions and solutions of nonlinear
accretive operator equations in real q-uniformly smooth Banach spaces.

The purpose of this paper is to establish the strong convergence and almost sta-
bility of the Ishikawa iteration methods with errors for either fixed point of local
strongly pseudocontractive operators or solutions of nonlinear operator equations
with local strongly accretive type in uniformly smooth Banach spaces. The con-
vergence results presented in this paper are generalizations and improvements of
the results in [3]–[8], [10], [12], [53], [55].

2. Preliminaries

The following results shall be needed in the sequel.

Lemma 2.1. ([56]). Let X be a real uniformly smooth Banach space. Then
there exists a nondecreasing continuous function b : [0,+∞) → [0,+∞) satisfying
the conditions

(a) b(0) = 0, b(ct) ≤ cb(t), ∀t ≥ 0, c ≥ 1;
(b) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ max{‖x‖, 1}‖y‖b(‖y‖), ∀x, y ∈ X.

Lemma 2.2. ([4]). Let X be a real Banach space. Then the following condi-
tions are equivalent.

(a) X is uniformly smooth;
(b) X∗ is uniformly convex;
(b) J is single valued and uniformly continuous on any bounded subset of X.
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Lemma 2.3. ([18]). Suppose that {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 and {ωn}∞n=0

are nonnegative sequences such that

αn+1 ≤ (1− ωn)αn + βnωn + γn, ∀n ≥ 0

with {ωn}∞n=0 ⊂ [0, 1],
∑∞

n=0 ωn = ∞,
∑∞

n=0 γn < ∞ and limn→∞ βn = 0. Then
limn→∞ αn = 0.

3. Main results

In this section, put dn = bn+cn and d′n = b′n+c′n for n ≥ 0. Let b, kq and tq are the
function and constants appearing in Lemma 2.1 and Definition 1.3, respectively,
where q ∈ F (T ).

Theorem 3.1. Let X be a real uniformly smooth Banach space and T : X → X
be a local strongly pseudocontractive operator. Let R(T ) be bounded and F (T ) 6= ∅.
Suppose that {un}∞n=0, {vn}∞n=0 are arbitrary bounded sequences in X and {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0 and {rn}∞n=0 are any sequences in
[0, 1] satisfying

an + bn + cn = a′n + b′n + c′n = 1, ∀n ≥ 0;(3.1)

cn(1− rn) = rnbn, ∀n ≥ 0;(3.2)

lim
n→∞

b(dn) = lim
n→∞

rn = lim
n→∞

b′n = lim
n→∞

c′n = 0;(3.3)
∞∑

n=0

dn = ∞.(3.4)

For any x0 ∈ X, the Ishikawa iteration sequences with errors {xn}∞n=0 are defined
by

zn = a′nxn + b′nTxn + c′nvn, xn+1 = anxn + bnTzn + cnun, ∀n ≥ 0.(3.5)

Let {yn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by

wn = a′nyn + b′nTyn + c′nvn, εn = ‖yn+1 − anyn − bnTwn − cnun‖(3.6)

for all n ≥ 0. Then there exist nonnegative sequences {sn}∞n=0, {tn}∞n=0 and a
constant M > 0 such that limn→∞ sn = limn→∞ tn = 0 and

(a) {xn}∞n=0 converges strongly to the unique fixed point q of T and

‖xn+1 − q‖2 ≤ (1− dnkq)‖xn − q‖2

+ Mdn(d′nb(d′n) + c′n + sn + b(dn) + rn), ∀n ≥ 0;

(b) For all n ≥ 0

‖yn+1 − q‖2 ≤ (1− dnkq)‖yn − q‖2

+ Mdn(d′nb(d′n) + c′n + tn + b(dn) + rn) + Mεn;

(c)
∑∞

n=0 εn < ∞ implies that limn→∞ yn = q, so that {xn}∞n=0 is almost
T -stable;

(d) limn→∞ yn = q implies that limn→∞ εn = 0.
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Proof. Since T is local strongly pseudocontractive and F (T ) 6= ∅, it follows
from (1.1) that F (T ) is a singleton, say F (T ) = {q}. Thus there exists kq ∈ (0, 1)
such that

〈Tx− Tq, j(x− q)〉 ≤ (1− kq)‖x− q‖2, ∀x ∈ X.(3.7)

Set, for all n ≥ 0,

pn = anyn + bnSwn + cnun,(3.8)

D = 2 + 2‖x0 − q‖+ 2 sup{‖Tx− q‖ : x ∈ X}
+ sup{‖yn − q‖ : n ≥ 0}+ sup{‖un − q‖ : n ≥ 0}
+ sup{‖vn − q‖ : n ≥ 0},

(3.9)

sn = ‖j(xn − q)− j(zn − q)‖, tn = ‖j(yn − q)− j(wn − q)‖.(3.10)

It is easy to show that for all n ≥ 0

max{‖xn − q‖, ‖zn − q‖, ‖pn − q‖, ‖yn − q‖, ‖wn − q‖, } ≤ D
2 < D,(3.11)

εn ≤ ‖yn+1 − q‖+ ‖pn − q‖ ≤ D.(3.12)

In view of Lemma 2.1, (3.1), (3.5), (3.7) and (3.11), we infer that

‖zn−q‖2

= ‖(1− d′n)(xn − q) + d′n(Txn − q) + c′n(vn − Txn)‖2

≤ ‖(1− d′n)(xn − q) + d′n(Txn − q)‖2

+ 2c′n〈vn − Txn, j((1− d′n)(xn − q) + d′n(Txn − q))〉
+ max{‖(1− d′n)(xn − q) + d′n(Txn − q)‖, 1}
× c′n‖vn − Txn‖b(c′n‖vn − Txn‖)

≤ (1− d′n)2‖xn − q‖2 + 2d′n〈Txn − q, j((1− d′n)(xn − q))〉
+ max{(1− d′n)‖xn − q‖, 1}d′n‖Txn − q‖b(d′n‖Txn − q‖)
+ 2c′n‖vn − Txn‖‖(1− d′n)(xn − q) + d′n(Txn − q)‖+ D3c′nb(c′n)

≤ (1− d′n)2‖xn − q‖2 + 2d′n(1− d′n)〈Txn − q, j((xn − q))〉
+ D3d′nb(d′n) + 2D2c′n + D3c′nb(c′n)

≤ {(1− d′n)2 + 2d′n(1− d′n)(1− kq)}‖xn − q‖2 + 2D3(c′n + d′nb(d′n))

= {1− kqd
′
n + d′n

2(kq − 1) + kqdn(dn − 1)}‖xn − q‖2

+ 2D3(c′n + d′nb(d′n))

≤ (1− kqd
′
n)‖xn − q‖2 + 2D3(c′n + d′nb(d′n))

(3.13)

for all n ≥ 0. Observe that

‖(xn − q)− (zn − q)‖ ≤ b′n‖xn − Txn‖+ c′n‖xn − vn‖
≤ Dd′n → 0 as n →∞

(3.14)
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and

‖(yn − q)− (wn − q)‖ ≤ b′n‖yn − Tyn‖+ c′n‖yn − vn‖
≤ Dd′n → 0 as n →∞.

(3.15)

Using Lemma 2.2, (3.14) and (3.15), we have

sn, tn → 0 as n →∞.(3.16)

Using again Lemma 2.1, (3.1), (3.2), (3.5), (3.7), (3.11) and (3.13), we obtain that

‖xn+1−q‖2

= ‖(1− dn)(xn − q) + dn(Tzn − q) + cn(un − Tzn)‖2

≤ (1− dn)2‖xn − q‖2 + 2dn(1− dn)〈Tzn − q, j(xn − q)〉
+ max{(1− dn)‖xn − q‖, 1}dn‖Tzn − q‖b(dn‖Tzn − q‖)
+ 2cn〈un − Tzn, j((1− dn)(xn − q) + dn(Tyn − q))〉
+ max{‖(1− dn)(xn − q) + dn(Tzn − q)‖, 1}
× cn‖un − Tzn‖b(cn‖un − Tzn‖)

≤ (1− dn)2‖xn − q‖2 + 2dn(1− dn)[〈Tzn − q, j(zn − q)〉
+ 〈Tzn − q, j(xn − q)− j(zn − q)〉] + D3(dnb(dn) + cnb(cn))

+ 2cn‖un − Tzn‖‖(1− dn)(xn − q) + dn(Tyn − q)‖
≤ (1− dn)2‖xn − q‖2 + 2dn(1− dn)(1− kq)‖zn − q‖2

+ 2dn(1− dn)‖Tzn − q‖‖j(xn − q)− j(zn − q)‖
+ D3(dnb(dn) + cnb(cn)) + 2cnD2

≤ {(1− dn)2 + 2dn(1− dn)(1− kq)(1− kqd
′
n)}‖xn − q‖2

+ 2Ddn(1− dn)sn + 4D3dn(1− dn)(1− kq)(c′n + d′nb(d′n))

+ D3(dnb(dn) + cnb(cn)) + 2D2cn

≤ (1− kqdn)‖xn − q‖2 + D5dn(d′nb(d′n) + c′n + sn + b(dn)) + 2D2cn

≤ (1− kqdn)‖xn − q‖2 + Mdn(d′nb(d′n) + c′n + sn + b(dn) + rn)

(3.17)

for all n ≥ 0, where M = D5. Let

αn = ‖xn − q‖2, ωn = kqdn, γn = 0,

βn = k−1
q M(d′nb(d′n) + c′n + sn + b(dn) + rn)

for all n ≥ 0. Thus (3.17) can be written as

αn+1 ≤ (1− ωn)αn + ωnβn + γn, ∀n ≥ 0.(3.18)

It follows from (3.3), (3.4), (3.16), (3.18) and Lemma 2.3 that αn → 0 as n →∞.
That is, xn → q as n →∞.
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Observe that Lemma 2.1 and (3.1), (3.6), (3.7) and (3.9) ensure that

‖wn−q‖2

= ‖(1− d′n)(yn − q) + d′n(Tyn − q) + c′n(vn − Tyn)‖2

≤ (1− d′n)2‖yn − q‖2 + 2d′n(1− d′n)〈Tyn − q, j(yn − q)〉
+ max{(1− d′n)‖yn − q‖, 1}d′n‖Tyn − q‖b(‖Tyn − q‖)
+ 2c′n〈vn − Tyn, j((1− d′n)(yn − q) + d′n(Tyn − q))〉
+ max{‖(1− d′n)(yn − q) + d′n(Tyn − q)‖, 1}
× c′n‖vn − Tyn‖b(c′n‖vn − Tyn‖)

≤ {(1− d′n)2 + 2d′n(1− d′n)(1− kq)}‖yn − q‖2 + D3d′nb(d′n)

+ 2c′n‖vn − Tyn‖‖(1− d′n)(yn − q) + d′n(Tyn − q)‖+ D3c′nb(c′n)

≤ (1− kqd
′
n)‖yn − q‖2 + 2D3d′nb(d′n) + 2D2c′n

(3.19)

for all n ≥ 0. In view of Lemma 2.1, (3.1), (3.8) and (3.11), we get that

‖pn−q‖2

= ‖(1− dn)(yn − q) + dn(Twn − q) + cn(un − Twn)‖2

≤ (1− dn)2‖yn − q‖2 + 2〈dn(Twn − q), j((1− dn)(yn − q))〉
×max{(1− dn)‖yn − q‖, 1}dn‖Twn − q‖b(dn‖Twn − q‖)

+ 2〈cn(un − Twn), j((1− dn)(yn − q) + dn(Twn − q))〉
+ max{‖(1− dn)(yn − q) + dn(Twn − q)‖, 1}
× cn‖un − Twn‖b(cn‖un − Twn‖)

≤ (1− dn)2‖yn − q‖2 + 2dn(1− dn)(1− kq)‖wn − q‖2

+ 2dn(1− dn)〈Twn − q, j(yn − q)− j(wn − q)〉
+ D3dnb(dn) + 2cn‖un − Twn‖‖(1− dn)(yn − q)

+ dn(Twn − q)‖+ D3cnb(cn)

≤ {(1− dn)2 + 2dn(1− dn)(1− kq)(1− kqd
′
n)}‖yn − q‖2

+ 2dn(1− dn)Dtn + 2dn(1− dn)(1− kq)[2D3d′nb(d′n) + 2D2c′n]

+ 2D3dnb(dn) + 2cnD2

≤ (1− kqdn)‖yn − q‖2 + Mdn(d′nb(d′n) + c′n + tn + b(dn) + rn)

(3.20)

for any n ≥ 0 It follows from (3.2), (3.12) and (3.20) that

‖yn+1 − q‖2 ≤ (‖pn − q‖+ εn)2 ≤ ‖pn − q‖2 + Mεn

≤ (1− kqdn)‖yn − q‖2

+ Mdn(d′nb(d′n) + c′n + tn + b(dn) + rn) + Mεn

(3.21)

for any n ≥ 0.
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Suppose that
∑∞

n=0 εn < ∞. Put αn = ‖yn − q‖2, ωn = kqdn, γn = Mεn

βn = M(d′nb(d′n) + c′n + tn + b(dn) + rn)k−1
q for all n ≥ 0. Using Lemma 2.3,

(3.3), (3.4), (3.16) and (3.21), we conclude immediately that αn → 0 as n → ∞.
That is, yn → q as n →∞. Therefore {xn}∞n=0 is almost S-stable. Suppose that
limn→∞ yn = q. It follows from (3.20), (3.16) and (3.3) that

εn ≤ ‖yn+1 − q‖+ ‖pn − q‖
≤ ‖yn+1 − q‖+

[
(1− kqdn)‖yn − q‖2

+ Mdn(d′nb(d′n) + c′n + tn + b(dn) + rn)
]1/2 → 0

as n →∞. That is, εn → 0 as n →∞. This completes the proof. �

Theorem 3.2. Let X, T , R(T ), q, {un}∞n=0, {vn}∞n=0, {xn}∞n=0, {zn}∞n=0,
{yn}∞n=0, {wn}∞n=0 and {εn}∞n=0 be as in Theorem 3.1. Suppose that {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are any sequences in [0, 1] sat-
isfying (3.1) and

lim
n→∞

b(dn) = lim
n→∞

b′n = lim
n→∞

c′n = 0;(3.22)

∞∑
n=0

cn < ∞;(3.23)

∞∑
n=0

bn = ∞.(3.24)

Then the conclusions of Theorem 3.1 hold.

Proof. Let

αn = ‖xn − q‖2, ωn = kqdn, γn = 2D2 + rn,

βn = k−1
q M(d′nb(d′n) + c′n + sn + b(dn))

for all n ≥ 0. As in the proof of (3.17), we conclude that xn → q as n →∞.
Put αn = ‖yn − q‖2, ωn = kqdn, γn = M(rn + εn) and βn = M(d′nb(d′n) + c′n +

tn + b(dn))k−1
q for all n ≥ 0. It follows from (3.21) that yn → q as n → ∞. The

rest of the proof is similar to that of Theorem 3.1, and is omitted. This completes
the proof. �

The proof of Theorem 3.3 below is similar to that of Theorem 3.1, so we omit
the details.

Theorem 3.3. Let K be a nonempty bounded closed convex subset of a real
uniformly smooth Banach space X and T : K → K be a local strongly pseudo-
contractive operator. Let q ∈ K be a fixed point of T and {un}∞n=0, {vn}∞n=0

be arbitrary sequences in K. Suppose that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0,
{b′n}∞n=0, {c′n}∞n=0 and {rn}∞n=0 are any sequences in [0, 1] satisfying (3.1)–(3.4). If
{xn}∞n=0 is the Ishikawa iteration sequence with errors generated from an arbitrary
x0 ∈ K by (3.5), then it converges strongly to the unique fixed point q of T.
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Theorem 3.4. Let X, K, T , q, {un}∞n=0, {vn}∞n=0, {xn}∞n=0, {zn}∞n=0 be as in
Theorem 3.2 and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 be
any sequences in [0, 1] satisfying (3.1) and (3.22)–(3.24). Then {xn}∞n=0 converges
strongly to the unique fixed point q of T.

Remark. Theorem 3.3 extends, improves and unifies Theorems 3.2 and 4.1 of
Chang [3], Theorems 3.3 and 4.1 of Chang et al. [4], the Theorem Chidume [5],
Theorems 1 and 2 of Chidume [6], Theorems 3 and 4 of Chidume [7], Theorem 4
of Chidume and Osilike [10], Theorem 4.2 of Tan and Xu [53] and Theorem 3.3
of Xu [55].

Theorem 3.5. Let X be a real uniformly smooth Banach space and T : X → X
be a local strongly accretive operator. Define G : X → X by Gx = f − Tx for
all x ∈ X. Suppose that R(T ) is bounded and the equation x + Tx = f has a
solution q for some f ∈ X. Suppose that {un}∞n=0, {vn}∞n=0 are arbitrary bounded
sequences in X and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0 and
{rn}∞n=0 are any sequences in [0, 1] satisfying (3.1)–(3.4). For arbitrary x0 ∈ X,
the Ishikawa iteration sequence with errors {xn}∞n=0 is defined by

zn = a′nxn + b′nGxn + c′nvn, xn+1 = anxn + bnGzn + cnun(3.25)

for all n ≥ 0. Let {yn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by

wn = a′nyn + b′nGyn + c′nvn,

εn = ‖yn+1 − anyn − bnGwn − cnun‖
(3.26)

for all n ≥ 0. Then there exist nonnegative sequences {sn}∞n=0, {tn}∞n=0 and a
constant M > 0 such that limn→∞ sn = limn→∞ tn = 0 and

(a) {xn}∞n=0 converges strongly to the unique solution q of the equation x+Tx=f
and

‖xn+1 − q‖2 ≤ (1− dnkq)‖xn − q‖2 + Mdn(d′nb(d′n)

+ c′n + sn + b(dn) + rn), ∀n ≥ 0;

(b) for all n ≥ 0

‖yn+1 − q‖2 ≤ (1− dnkq)‖yn − q‖2 + Mdn(d′nb(d′n) + c′n

+ tn + b(dn) + rn) + Mεn;

(c)
∑∞

n=0 εn < ∞ implies that limn→∞ yn = q, so that {xn}∞n=0 is almost
G-stable;

(d) limn→∞ yn = q implies that limn→∞ εn = 0.

Proof. It follows from (1.2) that for given x ∈ X there exists kx ∈ (0, 1) such
that

〈Tx− Ty, j(x− y)〉 ≥ kx‖x− y‖2, ∀ y ∈ X,
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which implies that

〈(I −G)x− (I −G)y, j(x− y)〉 = ‖x− y‖2 − 〈Gx−Gy, j(x− y)〉
= ‖x− y‖2 + 〈Tx− Ty, j(x− y)〉
≥ kx‖x− y‖2, ∀ y ∈ X.

That is, I −G is local strongly accretive. Thus G is local strongly pseudocontrac-
tive. It is easy to see that q is a unique fixed point of G. Therefore, q is the unique
solution of the equation x+Tx = f . The rest of the argument uses the same ideas
as that of Theorem 3.1 and is thus omitted. This completes the proof. �

Theorem 3.6. Let X, T , G, R(T ), f , q, {un}∞n=0, {vn}∞n=0, {xn}∞n=0, {zn}∞n=0,
{yn}∞n=0, {wn}∞n=0 and {εn}∞n=0 be as in Theorem 3.3. Suppose that {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0 and {c′n}∞=0 are any sequences in [0, 1] sat-
isfying (3.1) and (3.22)–(3.24). Then the conclusions of Theorem 3.5 hold.

Remark. The convergence result in Theorem 3.6 generalizes Theorems 11 and
12 of Chidume [8].

Theorem 3.7. Let X be a real uniformly smooth Banach space and T : X → X
be a local strongly accretive operator. Define S : X → X by Sx = f + x − Tx
for all x ∈ X. Suppose that the equation Tx = f has a solution q for some
f ∈ X and either R(T ) or R(I − T ) is bounded. Assume that {un}∞n=0, {vn}∞n=0

are arbitrary bounded sequences in X and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0,
{b′n}∞n=0, {c′n}∞n=0 and {rn}∞n=0 are any sequences in [0, 1] satisfying (3.1)–(3.4).
For arbitrary x0 ∈ X, the Ishikawa iteration sequence with errors {xn}∞n=0 is
defined by

zn = a′nxn + b′nSxn + c′nvn, xn+1 = anxn + bnSzn + cnun, ∀n ≥ 0.(3.27)

Let {yn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by

wn = a′nyn + b′nSyn + c′nvn,

εn = ‖yn+1 − anyn − bnSwn − cnun‖
(3.28)

for all n ≥ 0. Then there exist nonnegative sequences {sn}∞n=0, {tn}∞n=0 and a
constant M > 0 such that limn→∞ sn = limn→∞ tn = 0 and

(a) {xn}∞n=0 converges strongly to the unique solution q of the equation Tx = f
and

‖xn+1 − q‖2 ≤ (1− dnkq)‖xn − q‖2 + Mdn(d′nb(d′n)

+ c′n + sn + b(dn) + rn)

for all n ≥ 0;

(b) for all n ≥ 0

‖yn+1 − q‖2 ≤ (1− dnkq)‖yn − q‖2 + Mdn(d′nb(d′n)

+ c′n + tn + b(dn) + rn) + Mεn;
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(c)
∑∞

n=0 εn < ∞ implies that limn→∞ yn = q, so that {xn}∞n=0 is almost
S-stable;

(d) limn→∞ yn = q implies that limn→∞ εn = 0.

Proof. Since T is local strongly accretive and q is a solution of the equation
Tx = f, it follows that q is a unique solution of the equation Tx = f and there
exists kq ∈ (0, 1) such that

〈Tx− Tq, j(x− q)〉 ≥ kq‖x− q‖2, ∀x ∈ X,

which implies that

‖x− q‖ ≤ k−1
q ‖Tx− Tq‖, ∀x ∈ X(3.29)

and

〈Sx− Sq, j(x− q)〉 ≤ (1− kq)‖x− q‖2, ∀x ∈ X.(3.30)

We now claim that R(S) is bounded. Suppose that R(I − T ) is bounded. It is
clear that R(S) is bounded. Suppose that R(T ) is bounded. From (3.29), we have

‖Sx− Sy‖ ≤ ‖x− y‖+ ‖Tx− Ty‖
≤ ‖x− q‖+ ‖y − q‖+ ‖Tx− Tq‖+ ‖Ty − Tq‖
≤ (1 + k−1

q )(‖Tx− Tq‖+ ‖Ty − Tq‖), ∀x, y ∈ X,

which implies that R(S) is bounded. Note that S is local strongly pseudocontrac-
tive and F (S) = {q}. The rest of the proof follows immediately as in the proof of
Theorem 3.1, and is therefore omitted. This completes the proof. �

Theorem 3.8. Let X, T , S, R(T ), R(I−T ), f , q, {un}∞n=0, {vn}∞n=0, {xn}∞n=0,
{zn}∞n=0, {yn}∞n=0, {wn}∞n=0 and {εn}∞n=0 be as in Theorem 3.4. Suppose that
{an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are any sequences
in [0, 1] satisfying (3.1) and (3.22)–(3.24). Then the conclusions of Theorem 3.4
hold.

Remark. The convergence result in Theorem 3.8 extends Theorem 1 of Chi-
dume [7], Theorems 7 and 8 of Chidume [8], Theorem 3.2 of Ding [12], Theorem
4.1 of Tan and Xu [53] and Theorem 3.1 of Xu [55].

Acknowledgement. The authors thank the referee for his valuable suggestion
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