ITERATIVE SOLUTIONS OF NONLINEAR EQUATIONS WITH ϕ-STRONGLY ACCRETIVE OPERATORS

SHIN MIN KANG, CHI FENG and ZEQING LIU

Abstract

Suppose that X is an arbitrary real Banach space and $T: X \rightarrow X$ is a Lipschitz continuous ϕ-strongly accretive operator or uniformly continuous ϕ-strongly accretive operator. We prove that under different conditions the three--step iteration methods with errors converge strongly to the solution of the equation $T x=f$ for a given $f \in X$.

1. Introduction

Let X be a real Banach space with norm $\|\cdot\|$ and dual X^{*}, and J denote the normalized duality mapping from X into $2^{X^{*}}$ given by

$$
J(x)=\left\{f \in X^{*}:\|f\|^{2}=\|x\|^{2}=\langle x, f\rangle\right\}, \quad x \in X
$$

where $\langle\cdot, \cdot\rangle$ is the generalized duality pairing. In this paper, I denotes the identity operator on X, R^{+}and $\delta(K)$ denote the set of nonnegative real numbers and the diameter of K for any $K \subseteq X$, respectively. An operator T with domain $D(T)$ and range $R(T)$ in X is called ϕ-strongly accretive if there exists a strictly increasing function $\phi: R^{+} \rightarrow R^{+}$with $\phi(0)=0$ such that for any $x, y \in D(T)$ there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq \phi(\|x-y\|)\|x-y\| . \tag{1.1}
\end{equation*}
$$

If there exists a positive constant $k>0$ such that (1.1) holds with $\phi(\|x-y\|)$ replaced by $k\|x-y\|$, then T is called strongly accretive. The accretive operators were introduced independently in 1967 by Browder [1] and Kato [8]. An early fundamental result in the theory of accretive operator, due to Browder, states the initial value problem

$$
\begin{equation*}
\frac{d u}{d t}+T u=0, \quad u(0)=u_{0} \tag{1.2}
\end{equation*}
$$

is solvable if T is locally Lipschitz and accretive on X. Martin [11] proved that if $T: X \rightarrow X$ is strongly accretive and continuous, then T is subjective so that the

Received April 9, 2007.
2000 Mathematics Subject Classification. Primary 47H05, 47H10, 47H15.
Key words and phrases. ϕ-strongly accretive operators; three-step iteration method with errors; Banach spaces.
equation

$$
\begin{equation*}
T x=f \tag{1.3}
\end{equation*}
$$

has a solution for any given $f \in X$. Using the Mann and Ishikawa iteration methods with errors, Chang [3], Chidume [4], [5], Ding [7], Liu and Kang [10] and Osilike [12], [13] obtained a few convergence theorems for Lipschitz ϕ-strongly accretive operators. Chang [2] and Yin, Liu and Lee [16] also got some convergence theorems for uniformly continuous ϕ-strongly accretive operators.

The purpose of this paper is to study the three-step iterative approximation of solution to equation (1.3) in the case when T is a Lipschitz ϕ-strongly accretive operator and X is a real Banach space. We also show that if $T: X \rightarrow X$ is a uniformly continuous ϕ-strongly accretive operator, then the three-step iteration method with errors converges strongly to the solution of equation (1.3). Our results generalize, improve the known results in [2]-[7], [10], [12], [13] and [15].

2. Preliminaries

The following Lemmas play a crucial role in the proofs of our main results.
Lemma 2.1 ([7]). Suppose that $\phi: R^{+} \rightarrow R^{+}$is a strictly increasing function with $\phi(0)=0$. Assume that $\left\{r_{n}\right\}_{n=0}^{\infty},\left\{s_{n}\right\}_{n=0}^{\infty},\left\{k_{n}\right\}_{n=0}^{\infty}$ and $\left\{t_{n}\right\}_{n=0}^{\infty}$ are sequences of nonnegative numbers satisfying the following conditions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} k_{n}<\infty, \quad \sum_{n=0}^{\infty} t_{n}<\infty, \quad \sum_{n=0}^{\infty} s_{n}=\infty \tag{2.1}
\end{equation*}
$$

and
(2.2) $r_{n+1} \leq\left(1+k_{n}\right) r_{n}-s_{n} r_{n} \frac{\phi\left(r_{n+1}\right)}{1+r_{n+1}+\phi\left(r_{n+1}\right)}+t_{n} \quad$ for $n \geq 0$.

Then $\lim _{n \rightarrow \infty} r_{n}=0$.
Lemma 2.2 ([10]). Suppose that X is an arbitrary Banach space and $T: X \rightarrow$ X is a continuous ϕ-strongly accretive operator. Then the equation $T x=f$ has a unique solution for any $f \in X$.

Lemma 2.3 ([9]). Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ be three nonnegative real sequences satisfying the inequality

$$
\alpha_{n+1} \leq\left(1-\omega_{n}\right) \alpha_{n}+\omega_{n} \beta_{n}+\gamma_{n} \quad \text { for } n \geq 0,
$$

where $\left\{\omega_{n}\right\}_{n=0}^{\infty} \subset[0,1], \sum_{n=0}^{\infty} \omega_{n}=\infty, \lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \gamma_{n}<\infty$. Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

3. Main Results

Theorem 3.1. Suppose that X is an arbitrary real Banach space and $T: X \rightarrow$ X is a Lipschitz ϕ-strongly accretive operator. Assume that $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$,
$\left\{w_{n}\right\}_{n=0}^{\infty}$ are sequences in X and $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{c_{n}\right\}_{n=0}^{\infty}$ are sequences in $[0,1]$ such that $\left\{\left\|w_{n}\right\|\right\}_{n=0}^{\infty}$ is bounded and

$$
\begin{gather*}
\sum_{n=0}^{\infty} a_{n}^{2}<\infty, \quad \sum_{n=0}^{\infty} a_{n} b_{n}<\infty, \quad \sum_{n=0}^{\infty}\left\|u_{n}\right\|<\infty, \quad \sum_{n=0}^{\infty}\left\|v_{n}\right\|<\infty \tag{3.1}\\
\sum_{n=0}^{\infty} a_{n}=\infty \tag{3.2}
\end{gather*}
$$

For any given $f \in X$, define $S: X \rightarrow X$ by $S x=f+x-T x$ for all $x \in X$. Then the three-step iteration sequence with errors $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined for arbitrary $x_{0} \in X$ by

$$
\begin{align*}
z_{n} & =\left(1-c_{n}\right) x_{n}+c_{n} S x_{n}+w_{n}, \\
y_{n} & =\left(1-b_{n}\right) x_{n}+b_{n} S z_{n}+v_{n}, \tag{3.3}\\
x_{n+1} & =\left(1-a_{n}\right) x_{n}+a_{n} S y_{n}+u_{n}, \quad n \geq 0
\end{align*}
$$

converges strongly to the unique solution q of the equation $T x=f$. Moreover

$$
\begin{align*}
\left\|x_{n+1}-q\right\| \leq & {\left[1+\left(3+3 L^{3}+L^{4}\right) a_{n}^{2}+L\left(1+L^{2}\right) a_{n} b_{n}\right]\left\|x_{n}-q\right\| } \\
& -A\left(x_{n+1}, q\right) a_{n}\left\|x_{n}-q\right\|+a_{n} b_{n} L^{2}(3+L)\left\|w_{n}\right\| \tag{3.4}\\
& +a_{n} L(3+L)\left\|v_{n}\right\|+(3+L)\left\|u_{n}\right\|
\end{align*}
$$

for $n \geq 0$, where $A(x, y)=\frac{\phi(\|x-y\|)}{1+\|x-y\|+\phi(\|x-y\|)} \in[0,1)$ for $x, y \in X$.
Proof. It follows from Lemma 2.2 that the equation $T x=f$ has a unique solution $q \in X$. Let L^{\prime} denote the Lipschitz constant of T. From the definition of S we know that q is a fixed point of S and S is also Lipschitz with constant $L=1+L^{\prime}$. Thus for any $x, y \in X$, there exists $j(x-y) \in J(x-y)$ such that

$$
\langle(I-S) x-(I-S) y, j(x-y)\rangle \geq A(x, y)\|x-y\|^{2}
$$

This implies that

$$
\langle(I-S-A(x, y)) x-(I-S-A(x, y)) y, j(x-y)\rangle \geq 0
$$

and it follows from Lemma 1.1 of Kato [8] that

$$
\begin{equation*}
\|x-y\| \leq\|x-y+r[(I-S-A(x, y)) x-(I-S-A(x, y)) y]\| \tag{3.5}
\end{equation*}
$$

for $x, y \in X$ and $r>0$. From (3.3) we conclude that for each $n \geq 0$

$$
\begin{aligned}
x_{n}= & x_{n+1}+a_{n} x_{n}-a_{n} S y_{n}-u_{n} \\
= & \left(1+a_{n}\right) x_{n+1}+a_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) x_{n+1}-\left(I-A\left(x_{n+1}, q\right)\right) a_{n} x_{n} \\
& +a_{n}\left(S x_{n+1}-S y_{n}\right)+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}^{2}\left(x_{n}-S y_{n}\right) \\
& -\left[1+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}\right] u_{n}
\end{aligned}
$$

and
(3.7) $q=\left(1+a_{n}\right) q+a_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) q-\left(I-A\left(x_{n+1}, q\right)\right) a_{n} q$.

It follows from (3.5)-(3.7) that

$$
\begin{aligned}
& \| x_{n}-q \| \\
&= \|\left(1+a_{n}\right) x_{n+1}+a_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) x_{n+1}-\left(I-A\left(x_{n+1}, q\right)\right) a_{n} x_{n} \\
& \quad+a_{n}\left(S x_{n+1}-S y_{n}\right)+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}^{2}\left(x_{n}-S y_{n}\right) \\
& \quad-\left[1+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}\right] u_{n}-\left(1+a_{n}\right) q-a_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) q \\
& \quad+\left(I-A\left(x_{n+1}, q\right)\right) a_{n} q \| \\
& \geq\left(1+a_{n}\right) \| x_{n+1}-q+\frac{a_{n}}{1+a_{n}}\left[\left(I-S-A\left(x_{n+1}, q\right)\right) x_{n+1}\right. \\
&-\left(I-S-A\left(x_{n+1}, q\right)\right) q\left\|-a_{n}\left(1-A\left(x_{n+1}, q\right)\right)\right\| x_{n}-q \| \\
&-\left(2-A\left(x_{n+1}, q\right)\right) a_{n}^{2}\left\|x_{n}-S y_{n}\right\|-a_{n}\left\|S x_{n+1}-S y_{n}\right\| \\
& \quad-\left[1+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}\right]\left\|u_{n}\right\| \\
& \geq\left(1+a_{n}\right)\left\|x_{n+1}-q\right\|-a_{n}\left(1-A\left(x_{n+1}, q\right)\right)\left\|x_{n}-q\right\| \\
& \quad-\left(2-A\left(x_{n+1}, q\right)\right) a_{n}^{2}\left\|x_{n}-S y_{n}\right\|-a_{n}\left\|S x_{n+1}-S y_{n}\right\| \\
& \quad-\left[1+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}\right]\left\|u_{n}\right\|,
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \left\|x_{n+1}-q\right\| \\
& \leq \frac{1+\left(1-A\left(x_{n+1}, q\right)\right) a_{n}}{1+a_{n}}\left\|x_{n}-q\right\|+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}^{2}\left\|x_{n}-S y_{n}\right\| \\
& \quad+a_{n}\left\|S x_{n+1}-S y_{n}\right\|+\left[1+\left(2-A\left(x_{n+1}, q\right)\right) a_{n}\right]\left\|u_{n}\right\| \tag{3.8}\\
& \leq \\
& \quad\left(1-A\left(x_{n+1}, q\right) a_{n}+a_{n}^{2}\right)\left\|x_{n}-q\right\|+2 a_{n}^{2}\left\|x_{n}-S y_{n}\right\| \\
& \quad+a_{n}\left\|S x_{n+1}-S y_{n}\right\|+\left(1+2 a_{n}\right)\left\|u_{n}\right\|
\end{align*}
$$

for $n \geq 0$. By (3.3) we get that

$$
\begin{align*}
\left\|z_{n}-q\right\| & \leq\left(1-c_{n}\right)\left\|x_{n}-q\right\|+c_{n}\left\|S x_{n}-q\right\|+\left\|w_{n}\right\| \\
& \leq\left(1-c_{n}\right)\left\|x_{n}-q\right\|+L c_{n}\left\|x_{n}-q\right\|+\left\|w_{n}\right\| \tag{3.9}\\
& \leq L\left\|x_{n}-q\right\|+\left\|w_{n}\right\|, \\
\left\|y_{n}-q\right\| & \leq\left(1-b_{n}\right)\left\|x_{n}-q\right\|+b_{n}\left\|S z_{n}-q\right\|+\left\|v_{n}\right\| \\
& \leq\left(1-b_{n}\right)\left\|x_{n}-q\right\|+L b_{n}\left\|z_{n}-q\right\|+\left\|v_{n}\right\|, \tag{3.10}
\end{align*}
$$

(3.11) $\left\|x_{n}-S z_{n}\right\| \leq\left\|x_{n}-q\right\|+\left\|S z_{n}-q\right\| \leq\left\|x_{n}-q\right\|+L\left\|z_{n}-q\right\|$,

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq b_{n}\left\|x_{n}-S z_{n}\right\|+\left\|v_{n}\right\| \tag{3.12}
\end{equation*}
$$

and
(3.13) $\quad\left\|S y_{n}-y_{n}\right\| \leq\left\|S y_{n}-q\right\|+\left\|y_{n}-q\right\| \leq(1+L)\left\|y_{n}-q\right\|$
for $n \geq 0$. From (3.9)-(3.13) we obtain that

$$
\begin{equation*}
\left\|x_{n}-S y_{n}\right\| \leq\left(1+L^{3}\right)\left\|x_{n}-q\right\|+L^{2} b_{n}\left\|w_{n}\right\|+L\left\|v_{n}\right\| \tag{3.14}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|S x_{n+1}-S y_{n}\right\| \leq & \left(L b_{n}+L^{3} b_{n}-L a_{n} b_{n}-L^{3} a_{n} b_{n}+L^{3} a_{n}+L^{4} a_{n}\right)\left\|x_{n}-q\right\| \\
& +\left(L^{2} b_{n}+L^{3} a_{n} b_{n}\right)\left\|w_{n}\right\|+\left(L+L^{2} a_{n}\right)\left\|v_{n}\right\|+L\left\|u_{n}\right\| \tag{3.15}
\end{align*}
$$

for $n \geq 0$. It follows from (3.8), (3.14) and (3.15) that

$$
\begin{align*}
\left\|x_{n+1}-q\right\| \leq & {\left[1+\left(3+3 L^{3}+L^{4}\right) a_{n}^{2}+L\left(1+L^{2}\right) a_{n} b_{n}\right]\left\|x_{n}-q\right\| } \\
& -A\left(x_{n+1}, q\right) a_{n}\left\|x_{n}-q\right\|+a_{n} b_{n} L^{2}(3+L)\left\|w_{n}\right\| \tag{3.16}\\
& +(3+L) a_{n}\left\|v_{n}\right\|+(3+L)\left\|u_{n}\right\|
\end{align*}
$$

for $n \geq 0$. Set

$$
\begin{gathered}
r_{n}=\left\|x_{n}-q\right\|, \quad k_{n}=\left(3+3 L^{3}+L^{4}\right) a_{n}^{2}+L\left(1+L^{2}\right) a_{n} b_{n}, \quad s_{n}=a_{n} \\
t_{n}=a_{n} b_{n} L^{2}(3+L)\left\|w_{n}\right\|+a_{n} L(3+L)\left\|v_{n}\right\|+(3+L)\left\|u_{n}\right\| \quad \text { for } n \geq 0
\end{gathered}
$$

Then (3.16) yields that
(3.17) $r_{n+1} \leq\left(1+k_{n}\right) r_{n}-s_{n} r_{n} \frac{\phi\left(r_{n+1}\right)}{1+r_{n+1}+\phi\left(r_{n+1}\right)}+t_{n} \quad$ for $n \geq 0$.

It follows from (3.1), (3.2), (3.17) and Lemma 2.1 that $r_{n} \rightarrow 0$ as $n \rightarrow \infty$. That is $x_{n} \rightarrow q$ as $n \rightarrow \infty$. This completes the proof.

Remark 3.2. Theorem 3.1 extends Theorem 5.2 of [3], Theorem 1 of [4], Theorem 2 of [5], Theorem 1 of [6], Theorem 3.1 of [$\mathbf{1 0}]$, Theorem 1 of [$\mathbf{1 2}]$, Theorem 1 of $[\mathbf{1 3}]$ and Theorem 4.1 of [15].

Theorem 3.3. Let $X,\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty},\left\{w_{n}\right\}_{n=0}^{\infty},\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{c_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 3.1 and $T: D(T) \subset X \rightarrow X$ be a Lipschitz ϕ-strongly accretive operator. Suppose that the equation $T x=f$ has a solution $q \in D(T)$ for some $f \in X$. Assume that the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ generated from an arbitrary $x_{0} \in D(T)$ by (3.3) are contained in $D(T)$. Then $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to q and satisfied (3.4).

The proof of Theorem 3.3 uses the same idea as that of Theorem 3.1. So we omit it.

Remark 3.4. Theorem 3.1 in $[\mathbf{7}]$ and Theorem 3.2 in [$\mathbf{1 0}]$ are special cases of our Theorem 3.3.

Theorem 3.5. Suppose that X is an arbitrary real Banach space and $T: X \rightarrow X$ is a uniformly continuous ϕ-strongly accretive operator, and the range of either $(I-T)$ or T is bounded. For any $f \in X$, define $S: X \rightarrow X$ by $S x=f+x-T x$ for all $x \in X$ and the three-step iteration sequence with errors $\left\{x_{n}\right\}_{n=0}^{\infty}$ by

$$
\begin{align*}
& x_{0}, u_{0}, v_{0}, w_{0} \in X \\
& z_{n}=a_{n}^{\prime \prime} x_{n}+b_{n}^{\prime \prime} S x_{n}+c_{n}^{\prime \prime} w_{n} \tag{3.18}\\
& y_{n}=a_{n}^{\prime} x_{n}+b_{n}^{\prime} S z_{n}+c_{n}^{\prime} v_{n} \\
& x_{n+1}=a_{n} x_{n}+b_{n} S y_{n}+c_{n} u_{n}, \quad n \geq 0
\end{align*}
$$

where $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ and $\left\{w_{n}\right\}_{n=0}^{\infty}$ are arbitrary bounded sequences in X and $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty},\left\{a_{n}^{\prime}\right\}_{n=0}^{\infty},\left\{b_{n}^{\prime}\right\}_{n=0}^{\infty},\left\{c_{n}^{\prime}\right\}_{n=0}^{\infty},\left\{a_{n}^{\prime \prime}\right\}_{n=0}^{\infty},\left\{b_{n}^{\prime \prime}\right\}_{n=0}^{\infty}$ and $\left\{c_{n}^{\prime \prime}\right\}_{n=0}^{\infty}$ are real sequences in $[0,1]$ satisfying the following conditions

$$
\begin{array}{ll}
a_{n}+b_{n}+c_{n}=1, & a_{n}^{\prime}+b_{n}^{\prime}+c_{n}^{\prime}=1 \\
a_{n}^{\prime \prime}+b_{n}^{\prime \prime}+c_{n}^{\prime \prime}=1, & b_{n}+c_{n} \in(0,1), \quad n \geq 0 \tag{3.19}
\end{array}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n}=+\infty, \quad \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} b_{n}^{\prime}=\lim _{n \rightarrow \infty} c_{n}^{\prime}=\lim _{n \rightarrow \infty} \frac{c_{n}}{b_{n}+c_{n}}=0 \tag{3.20}
\end{equation*}
$$

Then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to the unique solution of the equation $T x=f$.

Proof. It follows from Lemma 2.2 that the equation $T x=f$ has a unique solution $q \in X$. By (1.2) we have

$$
\langle T x-T y, j(x-y)\rangle=\langle(I-S) x-(I-S) y, j(x-y)\rangle \geq A(x, y)\|x-y\|^{2}
$$

where $A(x, y)=\frac{\phi(\|x-y\|)}{1+\|x-y\|+\phi(\|x-y\|)} \in[0,1)$ for $x, y \in X$. This implies that

$$
\langle(I-S-A(x, y)) x-(I-S-A(x, y)) y, j(x-y)\rangle \geq 0
$$

for $x, y \in X$. It follows from Lemma 1.1 of Kato [8] that
(3.21) $\|x-y\| \leq\|x-y+r[(I-S-A(x, y)) x-(I-S-A(x, y)) y]\|$
for $x, y \in X$ and $r>0$. Now we show that $R(S)$ is bounded. If $R(I-T)$ is bounded, then

$$
\|S x-S y\|=\|(I-T) x-(I-T) y\| \leq \delta(R(I-T))
$$

for $x, y \in X$. If $R(T)$ is bounded, we get that

$$
\begin{aligned}
\|S x-S y\| & =\|(x-y)-(T x-T y)\| \\
& \leq \phi^{-1}(\|T x-T y\|)+\|T x-T y\| \\
& \leq \phi^{-1}(\delta(R(T)))+\delta(R(T))
\end{aligned}
$$

for $x, y \in X$. Hence $R(S)$ is bounded. Put

$$
d_{n}=b_{n}+c_{n}, \quad d_{n}^{\prime}=b_{n}^{\prime}+c_{n}^{\prime}, \quad d_{n}^{\prime \prime}=b_{n}^{\prime \prime}+c_{n}^{\prime \prime} \quad \text { for } n \geq 0
$$

and

$$
\begin{align*}
& D=\max \left\{\left\|x_{0}-q\right\|,\right. \tag{3.22}\\
& \left.\quad \sup \left\{\|x-q\|: x \in\left\{u_{n}, v_{n}, w_{n}, S x_{n}, S y_{n}, S z_{n}: n \geq 0\right\}\right\}\right\}
\end{align*}
$$

By (3.18) and (3.22) we conclude that

$$
\begin{equation*}
\max \left\{\left\|x_{n}-q\right\|,\left\|y_{n}-q\right\|,\left\|z_{n}-q\right\|\right\} \leq D \quad \text { for } n \geq 0 \tag{3.23}
\end{equation*}
$$

Using (3.18) we obtain that

$$
\begin{align*}
= & {\left[1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}\right] x_{n+1}+d_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) x_{n+1} } \tag{3.24}\\
& +d_{n}\left(S x_{n+1}-S y_{n}\right)-c_{n}\left(u_{n}-S y_{n}\right) .
\end{align*}
$$

Note that

$$
\begin{equation*}
\left(1-d_{n}\right) q=\left[1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}\right] q+d_{n}\left(I-S-A\left(x_{n+1}, q\right)\right) q . \tag{3.25}
\end{equation*}
$$

It follows from (3.21) and (3.23)-(3.25) that

$$
\begin{aligned}
& \left(1-d_{n}\right)\left\|x_{n}-q\right\| \\
& \geq\left[1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}\right] \| x_{n+1}-q \\
& \quad+\frac{d_{n}}{1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}}\left[\left(I-S-A\left(x_{n+1}, q\right)\right) x_{n+1}\right. \\
& \left.\quad-\left(I-S-A\left(x_{n+1}, q\right)\right) q\right]\left\|-d_{n}\right\| S x_{n+1}-S y_{n}\left\|-c_{n}\right\| u_{n}-S y_{n} \| \\
& \geq\left[1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}\right]\left\|x_{n+1}-q\right\|-d_{n}\left\|S x_{n+1}-S y_{n}\right\|-2 D c_{n} .
\end{aligned}
$$

That is

$$
\begin{align*}
& \left\|x_{n+1}-q\right\| \\
& \leq \frac{1-d_{n}}{1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}}\left\|x_{n}-q\right\| \tag{3.26}\\
& \quad+\frac{d_{n}}{1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}}\left\|S x_{n+1}-S y_{n}\right\|+\frac{2 D c_{n}}{1-\left(1-A\left(x_{n+1}, q\right)\right) d_{n}} \\
& \leq
\end{align*}
$$

for $n \geq 0$, where M is some constant. In view of (3.18)-(3.20) we infer that

$$
\begin{aligned}
\left\|x_{n+1}-y_{n}\right\| \leq & \left\|x_{n+1}-x_{n}\right\|+\left\|y_{n}-x_{n}\right\| \\
\leq & b_{n}\left\|S y_{n}-x_{n}\right\|+c_{n}\left\|u_{n}-x_{n}\right\|+b_{n}^{\prime}\left\|S z_{n}-x_{n}\right\|+c_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
\leq & b_{n}\left\|S y_{n}-x_{n}\right\|+c_{n}\left\|u_{n}-x_{n}\right\|+b_{n}^{\prime}\left\|S z_{n}-z_{n}\right\|+c_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
& +b_{n}^{\prime}\left(b_{n}^{\prime \prime}\left\|S x_{n}-x_{n}\right\|+c_{n}^{\prime \prime}\left\|w_{n}-x_{n}\right\|\right) \\
\leq & 2 D\left(d_{n}+d_{n}^{\prime}+b_{n}^{\prime} d_{n}^{\prime \prime}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Since S is uniformly continuous, we have

$$
\begin{equation*}
\left\|S x_{n+1}-S y_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.27}
\end{equation*}
$$

Set $\inf \left\{A\left(x_{n+1}, q\right): n \geq 0\right\}=r$. We claim that $r=0$. If not, then $r>0$. It is easy to check that

$$
\left\|x_{n+1}-q\right\| \leq\left(1-r d_{n}\right)\left\|x_{n}-q\right\|+M d_{n}\left\|S x_{n+1}-S y_{n}\right\|+M c_{n} \quad \text { for } n \geq 0
$$

Put

$$
\begin{aligned}
& c_{n}=t_{n} d_{n}, \quad \alpha_{n}=\left\|x_{n}-q\right\|, \quad \omega_{n}=r d_{n}, \\
& \beta_{n}=M r^{-1}\left(\left\|S x_{n+1}-S y_{n}\right\|+t_{n}\right), \quad \gamma_{n}=0 \quad \text { for } n \geq 0 .
\end{aligned}
$$

(3.2) ensures that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows from (3.20), (3.27) and Lemma 2.3 that $\omega_{n} \in(0,1]$ with $\sum_{n=0}^{\infty} \omega_{n}=\infty, \lim _{n \rightarrow \infty} \beta_{n}=0, \sum_{n=0}^{\infty} \gamma_{n}<\infty$. So $\left\|x_{n}-q\right\| \rightarrow 0$ as $n \rightarrow \infty$, which means that $r=0$. This is a contradiction. Thus $r=0$ and there exists a subsequence $\left\{\left\|x_{n_{i}+1}-q\right\|\right\}_{i=0}^{\infty}$ of $\left\{\left\|x_{n+1}-q\right\|\right\}_{n=0}^{\infty}$ satisfying

$$
\begin{equation*}
\left\|x_{n_{i}+1}-q\right\| \rightarrow 0 \quad \text { as } i \rightarrow \infty . \tag{3.28}
\end{equation*}
$$

From (3.28) and (3.29) we conclude that for given $\varepsilon>0$ there exists a positive integer m such that for $n \geq m$,

$$
\begin{equation*}
\left\|x_{n_{m}+1}-q\right\|<\varepsilon \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left\|S x_{n+1}-S y_{n}\right\|+M \frac{c_{n}}{d_{n}}<\min \left\{\frac{1}{2} \varepsilon, \frac{\phi(\varepsilon) \varepsilon}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon}\right\} \tag{3.30}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\left\|x_{n_{m}+j}-q\right\|<\varepsilon \quad \text { for } j \geq 1 \tag{3.31}
\end{equation*}
$$

In fact (3.29) means that (3.31) holds for $j=1$. Assume that (3.31) holds for $j=k$. If $\left\|x_{n_{m}+k+1}-q\right\|>\varepsilon$, we get that

$$
\begin{align*}
& \left\|x_{n_{m}+k+1}-q\right\| \\
& \leq\left\|x_{n_{m}+k}-q\right\|+M d_{n_{m}+k}\left\|S x_{n_{m}+k+1}-S y_{n_{m}+k}\right\|+M c_{n_{m}+k} \\
& \leq \varepsilon+\min \left\{\frac{1}{2} \varepsilon, \frac{\phi(\varepsilon) \varepsilon}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon}\right\} d_{n_{m}+k} \tag{3.32}\\
& \leq \frac{3}{2} \varepsilon
\end{align*}
$$

Note that $\phi\left(\left\|x_{n_{m}+k+1}-q\right\|\right)>\phi(\varepsilon)$. From (3.32) we get that

$$
\begin{equation*}
A\left(x_{n_{m}+k+1}, q\right) \geq \frac{\phi(\varepsilon)}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon} \tag{3.33}
\end{equation*}
$$

By virtue of (3.26) (3.30) and (3.33) we obtain that

$$
\begin{aligned}
& \left\|x_{n_{m}+k+1}-q\right\| \\
& \leq\left(1-\frac{\phi(\varepsilon) \varepsilon}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon} d_{n_{m}+k}\right)\left\|x_{n_{m}+k}-q\right\| \\
& \quad+M d_{n_{m}+k}\left\|S x_{n_{m}+k+1}-S y_{n_{m}+k}\right\|+M c_{n_{m}+k} \\
& \leq \\
& \leq\left(1-\frac{\phi(\varepsilon) \varepsilon}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon} d_{n_{m}+k}\right) \varepsilon+\min \left\{\frac{1}{2} \varepsilon, \frac{\phi(\varepsilon) \varepsilon}{1+\phi\left(\frac{3}{2} \varepsilon\right)+\frac{3}{2} \varepsilon}\right\} d_{n_{m}+k} \\
& \leq \varepsilon
\end{aligned}
$$

That is

$$
\varepsilon<\left\|x_{n_{m}+k+1}-q\right\| \leq \varepsilon
$$

which is a contradiction. Hence $\left\|x_{n_{m}+k+1}-q\right\| \leq \varepsilon$. By induction (3.29) holds for $j \geq 1$. Thus (3.31) yields that $x_{n} \rightarrow q$ as $n \rightarrow \infty$. This completes the proof.

Remark 3.6. Theorem 3.5 extends and improves Theorem 3.4 in [2] and Theorem 3.1 in [16].

Acknowledgement. This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (20060467).

References

1. Browder F. E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
2. Chang S. S., Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (1997), 4197-4208.
3. Chang S. S., ChoY. J., Lee B. S. and S. M. Kang, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl. 224 (1998) 149-165.
4. Chidume C. E., An iterative process for nonlinear Lipschitzian strongly accretive mapping in L_{p} spaces, J. Math. Anal. Appl. 151 (1990), 453-461.
5. , Iterative solution of nonlinear equations with strongly accretive operators, J. Math. Anal. Appl. 192 (1995), 502-518.
6. Deng L., On Chidume's open questions, J. Math. Anal. Appl. 174 (1993), 441-449.
7. Ding X. P., Iterative process with errors to nonlinear ϕ-strongly accretive operator equations in arbitrary Banach spaces, Computers Math. Applic. 33 (1997), 75-82.
8. Kato T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
9. Liu L. S., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mapping in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125.
10. Liu Z. and Kang S. M. Convergence theorems for ϕ-strongly accretive and ϕ-hemicontractive operators, J. Math. Anal. Appl. 253 (2001), 35-49.
11. Martin R. H., Jr. A global existence theorem for autonomous differential equations in Banach spaces, Proc. Amer. Math. Soc. 26 (1970), 307-314.
12. Osilike M. O., Iterative solution of nonlinear equations of the ϕ-strongly accretive type, J. Math. Anal. Appl. 200 (1996), 259-271.
13. __, Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type, J. Math. Anal. Appl. 213 (1997), 91-105.
14._, Iterative solution of nonlinear ϕ-strongly accretive operator equations in arbitrary Banach spaces, Nonlinear Anal. TMA 36 (1999), 1-9.
14. Tan K. K. and Xu H. K., Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9-21.
15. Yin Q., Liu Z. and Lee B. S., Iterative solutions of nonlinear equations with ϕ-strongly accretive operators, Nonlinear Anal. Forum 5 (2000), 87-89.

Shin Min Kang, Department of Mathematics and the Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea, e-mail: smkang@nongae.gsnu.ac.kr

Chi Feng, Department of Science, Dalian Fisheries College, Dalian, Liaoning, 116023, People's Republic of China, e-mail: windmill-1129@163.com

Zeqing Liu, Department of Mathematics, Liaoning Normal University, P.O. Box 200, Dalian, Liaoning, 116029, People's Republic of China, e-mail: zeqingliu@sina.com.cn

