ON PSEUDO-SEQUENCE-COVERING π -IMAGES OF LOCALLY SEPARABLE METRIC SPACES

NGUYEN VAN DUNG

ABSTRACT. In this paper, we characterize pseudo-sequence-covering π -images of locally separable metric spaces by means of fcs-covers and point-star networks. We also investigate pseudo-sequence-covering π -s-images of locally separable metric spaces.

1. INTRODUCTION

Determining what spaces the images of "nice" spaces under "nice" mappings are is one of the central questions of general topology [3]. In the past, some noteworthy results on images of metric spaces have been obtained [9, 15]. Recently, π -images of metric spaces have attracted attention again [4, 5, 7, 11, 16]. It is known that a space is a pseudo-sequence-covering π -image of a metric space (resp. separable metric space) if and only if it has a point-star network of *fcs*-covers (resp. countable *fcs*-covers) [4, 5]. This leads us to investigate pseudo-sequencecovering π -images of locally separable metric spaces. That is, we have the following question.

Question 1.1. How are pseudo-sequence-covering π -images of locally sparable metric spaces characterized?

On the other hand, pseudo-sequence-covering π -s-images of metric spaces have been characterized by means of point-star networks of point-countable *fcs*-covers (see [11], for example). This leads us to consider the following question.

Question 1.2. How are pseudo-sequence-covering π -s-images of locally sparable metric spaces characterized?

Taking these questions into account, we characterize pseudo-sequence-covering π -images of locally separable metric spaces by means of fcs-covers and point-star networks. Then we give a complete answer to Question 1.1. As the application

Received May 20, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E40; Secondary 54C10, 54E99, 54D55, 54D65.

Key words and phrases. π -map; s-map; network; k-cover; cfp-cover; fcs-cover; cs*-cover; pseudo-sequence-covering; subsequence-covering; sequentially-quotient.

Supported in part by the National Natural Science Foundation of Viet Nam.

of this result, we get a characterization of pseudo-sequence-covering π -s-images of locally separable metric spaces to answer Question 1.2.

Throughout this paper, all spaces are assumed to be Hausdorff, all mappings are assumed continuous and onto, a convergent sequence includes its limit point, \mathbb{N} denotes the set of all natural numbers. Let $f: X \longrightarrow Y$ be a mapping, $x \in X$, and let \mathcal{P} be a collection of subsets of X, we denote st $(x, \mathcal{P}) = \bigcup \{P \in \mathcal{P} : x \in P\}$, $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, (\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$ and $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$ We say that a convergent sequence $\{x_n : n \in \mathbb{N}\}$ converging to x is *eventually* (resp. *frequently*) in A if $\{x_n : n \geq n_0\} \cup \{x\} \subset A$ for some $n_0 \in \mathbb{N}$ (resp. $\{x_{n_k} : k \in \mathbb{N}\} \cup \{x\} \subset A$ for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$). Note that some notions are different in different references, and some different notions in different references are coincident. Please, terms which are not defined here, see [2, 15].

2. Main results

Let \mathcal{P} be a collection of subsets of a space X and let K be a subset of X.

 \mathcal{P} is *point-countable* [15] if every point of X meets only countably many members of \mathcal{P} .

For each $x \in X$, \mathcal{P} is a *network at* x [8] if $x \in P$ for every $P \in \mathcal{P}$, and if $x \in U$ with U open in X, there exists $P \in \mathcal{P}$ such that $x \in P \subset U$.

 \mathcal{P} is a k-cover for K in X, if for each compact subset H of K, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \mathcal{F}$. When K = X, a k-cover for K in X is a k-cover for X.

 \mathcal{P} is a *cfp-cover for* K *in* X if for each compact subset H of K, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \{C_F : F \in \mathcal{F}\}$ where C_F is closed and $C_F \subset F$ for every $F \in \mathcal{F}$. Note that such \mathcal{F} is a *full cover* in the sense of [1], and if K is closed, \mathcal{F} is a *cfp-cover* for K in the sense of [8]. When K = X, a *cfp*-cover for K in X is a *cfp-cover for* X [16].

 \mathcal{P} is an *fcs-cover for* K *in* X if for each convergent sequence S converging to x in K, there exists a finite subfamily \mathcal{F} of $(\mathcal{P})_x$ such that S is eventually in $\bigcup \mathcal{F}$. When K = X, an *fcs-cover* for K in X is an *fcs-cover of* X [4], or an *sfp-cover for* X [11], or a *wcs-cover* [5].

 \mathcal{P} is a cs^* -cover for K in X, if for each convergent sequence S in K, S is frequently in some $P \in \mathcal{P}$. When K = X, a cs^* -cover for K in X is a cs^* -cover for X [16].

A k-cover (resp. cfp-cover, fcs-cover, cs^* -cover) for K in X is also called a k-cover (resp. cfp-cover, fcs-cover, cs^* -cover) in X for K, and a k-cover (resp. cfp-cover, fcs-cover, cs^* -cover) for X is abbreviated to a k-cover (resp. cfp-cover, fcs-cover).

It is clear that if \mathcal{P} is a k-cover (resp. cfp-cover, fcs-cover, cs^* -cover), then \mathcal{P} is a k-cover (resp. cfp-cover, fcs-cover, cs^* -cover) for K in X.

Remark. The following statements hold.

1. closed k-cover for K in $X \Longrightarrow cfp$ -cover for K in $X \Longrightarrow k$ -cover for K in X,

256

ON PSEUDO-SEQUENCE-COVERING

2. *cfp*-cover for K in $X \Longrightarrow fcs$ -cover for K in $X \Longrightarrow cs^*$ -cover for K in X.

For each $n \in \mathbb{N}$, let \mathcal{P}_n be a cover for X. $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a refinement sequence for X, if \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n for each $n \in \mathbb{N}$. A refinement sequence for X is a refinement of X in the sense of [3].

Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is be refinement sequence for X. $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a *point-star* network for X, if $\{\operatorname{st}(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x for each $x \in X$. A point--star network for X is a σ -strong network for X in the sense of [16], and, without the assumption of a refinement sequence, a point-star network in the sense of [12]. It is easy to see that if each \mathcal{P}_n is countable, every members of \mathcal{P}_n can be chosen closed in X.

Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a point-star network for a space X. For every $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$, and A_n is endowed with discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space with a metric d described as follows.

Let $a = (\alpha_n), b = (\beta_n) \in M$. If a = b, then d(a, b) = 0. If $a \neq b$, then $d(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$.

Define $f : M \longrightarrow X$ by choosing $f(a) = x_a$, then f is a mapping, and $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev's system* [16], and without the assumption of a refinement sequence in the notion of point-star networks, $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev's system* in the sense of [12].

Let $f: X \longrightarrow Y$ be a mapping; Then,

f is a π -mapping [4] if for every $y \in Y$ and for every neighborhood U of y in $Y, d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

f is an s-mapping [11], if for each $y \in Y$, $f^{-1}(y)$ is a separable subset of X.

f is a π -s-mapping [11], if f is both π -mapping and s-mapping.

f is a pseudo-sequence-covering mapping [3], if every convergent sequence of Y is the image of some compact subset of X.

f is a subsequence-covering mapping [3], if for every convergent sequence S of Y, there is a compact subset K of X such that f(K) is a subsequence of S.

f is a sequentially-quotient mapping [3], if for every convergent sequence S of Y, there is a convergent sequence L of X such that f(L) is a subsequence of S.

f is a quotient mapping [14], if U is open in Y whenever $f^{-1}(U)$ is open in X.

f is a pseudo-open mapping [9], if $y \in int f(U)$ whenever $f^{-1}(y) \subset U$ with U open in X. A pseudo-open mapping is a hereditarily quotient mapping in the sense of [2].

Let X be a space and let A be a subset of X. A is sequential open [16], if for each $x \in A$ and each convergent sequence S converging to x, S is eventually in A. X is a sequential space [16], if every sequential open subset of X is open in X. X is a Fréchet space, if for each $x \in \overline{A}$, there exists a sequence in A converging to x.

For a mapping $f : X \longrightarrow Y$, f is a pseudo-sequence-covering or sequentiallyquotient \implies a f is subsequence-covering. Also, a f is quotient if and only if a fis subsequence-covering such that Y is sequential [17].

Lemma 2.1. Let \mathcal{P} be a countable cover for a convergent sequence S in a space X. Then the following propositions are equivalent.

- 1. \mathcal{P} is a cfp-cover for S in X,
- 2. \mathcal{P} is an fcs-cover for S in X,
- 3. \mathcal{P} is a cs^* -cover for S in X.
- *Proof.* $(1) \Longrightarrow (2) \Longrightarrow (3)$. Obviously.

(3) \Longrightarrow (1). Let H be a compact subset of S. We can assume that H is a subsequence of S. Since \mathcal{P} is countable, put $(\mathcal{P})_x = \{P_n : n \in \mathbb{N}\}$ where x is the limit point of S. Then H is eventually in $\bigcup_{n \leq k} P_n$ for some $k \in \mathbb{N}$. If not, then for any $k \in \mathbb{N}$, H is not eventually in $\bigcup_{n \leq k} P_n$. So, for every $k \in \mathbb{N}$, there exists $x_{n_k} \in S - \bigcup_{n \leq k} P_n$. We may assume $n_1 < n_2 < \ldots < n_{k-1} < n_k < n_{k+1} < \ldots$ Put $H' = \{x_{n_k} : k \in \mathbb{N}\} \cup \{x\}$, then H' is a subsequence of S. Since \mathcal{P} is a cs^* -cover for S in X, there exists $m \in \mathbb{N}$ such that H' is frequently in P_m . This contradicts the construction of H'. So H is eventually in $\bigcup_{n \leq k} P_n$ for some $k \in \mathbb{N}$. It implies that \mathcal{P} is a cfp-cover for S in X.

Lemma 2.2. Let $f: X \longrightarrow Y$ be a mapping.

- 1. If \mathcal{P} is a k-cover in X for a compact set K, then $f(\mathcal{P})$ is a k-cover for f(K) in Y.
- 2. If \mathcal{P} is a cfp-cover in X for a compact set K, then $f(\mathcal{P})$ is a cfp-cover for f(K) in Y.

Proof. (1). Let H be a compact subset of f(K). Then $G = f^{-1}(H) \cap K$ is a compact subset of K and f(G) = H. Since \mathcal{P} is a k-cover for K in X, there is a finite subfamily \mathcal{F} of \mathcal{P} such that $G \subset \bigcup \mathcal{F}$. Hence $f(\mathcal{F})$ is a finite subfamily of $f(\mathcal{P})$ such that $H \subset \bigcup f(\mathcal{F})$. It implies that $f(\mathcal{P})$ is a k-cover for f(K) in Y.

(2). Let H be a compact subset of f(K). Then $L = f^{-1}(H) \cap K$ is a compact subset of K satisfying f(L) = H. Since \mathcal{P} is a cfp-cover for K in X, there is a finite subfamily \mathcal{F} of \mathcal{P} such that $L \subset \bigcup \{C_F : F \in \mathcal{F}\}$ where $C_F \subset F$, and C_F is closed for every $F \in \mathcal{F}$. Because L is compact, every C_F can be chosen compact. It implies that every $f(C_F)$ is closed (in fact, every $f(C_F)$) is compact), and $f(C_F) \subset f(F)$. We get that $H = f(L) \subset \bigcup \{f(C_F) : F \in \mathcal{F}\}$, and $f(\mathcal{F})$ is a finite subfamily of \mathcal{P} . Then \mathcal{P} is a cfp-cover for f(K) in Y. \Box

Theorem 2.3. The following propositions are equivalent for a space X

- 1. X is a pseudo-sequence-covering π -image of a locally separable metric space,
- 2. X has a cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ of countable covers for X_{λ} satisfying the following conditions:
 - (a) For each $x \in U$ with U open in X, there is $n \in \mathbb{N}$ such that

$$\{ st(x, \mathcal{P}_{\lambda, n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda} \} \subset U_{\lambda}$$

258

ON PSEUDO-SEQUENCE-COVERING

(b) For each convergent sequence S of X, there is a finite subset Λ_S of Λ such that S has a finite compact cover {S_λ : λ ∈ Λ_S}, and, for each λ ∈ Λ_S and n ∈ N, P_{λ,n} is an fcs-cover for S_λ in X_λ.

Proof. (1) \Longrightarrow (2). Let $f: M \longrightarrow X$ be a pseudo-sequence-covering π -mapping from a locally separable metric space M with a metric d onto X. Since M is a locally separable metric space, $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ where each M_{λ} is a separable metric space by [2, 4.4.F]. For each $\lambda \in \Lambda$, let D_{λ} be a countable dense subset of M_{λ} , and put $f_{\lambda} = f|_{M_{\lambda}}$ and $X_{\lambda} = f_{\lambda}(M_{\lambda})$. For each $a \in M_{\lambda}$ and $n \in \mathbb{N}$, put $B(a, 1/n) = \{b \in M_{\lambda} : d(a, b) < 1/n\}, \mathcal{B}_{\lambda,n} = \{B(a, 1/n) : a \in D_{\lambda}\}$, and $\mathcal{P}_{\lambda,n} = f_{\lambda}(\mathcal{B}_{\lambda,n})$. It is clear that $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a cover sequence of countable covers for X_{λ} and $\mathcal{P}_{\lambda,n+1}$ is a refinement of $\mathcal{P}_{\lambda,n}$ for every $n \in \mathbb{N}$. We only need to prove that conditions (a) and (b) are satisfied.

Condition (a): For each $x \in U$ with U open in X. Since f is a π -mapping, $d(f^{-1}(x), M - f^{-1}(U)) > 2/(n-1)$ for some $n \in \mathbb{N}$. Then, for each $\lambda \in \Lambda$ with $x \in X_{\lambda}$, we get

$$d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) > 2/(n-1)$$

where $U_{\lambda} = U \cap X_{\lambda}$. Let $a \in D_{\lambda}$ and $x \in f_{\lambda}(B(a, 1/n)) \in \mathcal{P}_{\lambda,n}$. We shall prove that $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$. In fact, if $B(a, 1/n) \not\subset f_{\lambda}^{-1}(U_{\lambda})$, then pick $b \in B(a, 1/n) - f_{\lambda}^{-1}(U_{\lambda})$. Note that $f_{\lambda}^{-1}(x) \cap B(a, 1/n) \neq \emptyset$, pick $c \in f_{\lambda}^{-1}(x) \cap B(a, 1/n)$, then

$$d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \le d(c, b) \le d(c, a) + d(a, b) < 2/n < 2/(n-1).$$

It is a contradiction. So $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$, thus $f_{\lambda}(B(a, 1/n)) \subset U_{\lambda}$. Then st $(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. It implies that

$$\bigcup \{ \operatorname{st}(x, \mathcal{P}_{\lambda, n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda} \} \subset U.$$

Condition (b): For each convergent sequence S of X, since a f is pseudosequence-covering, S = f(K) for some compact subset K of M. By compactness of K, $K_{\lambda} = K \cap M_{\lambda}$ is compact and $\Lambda_S = \{\lambda \in \Lambda : K_{\lambda} \neq \emptyset\}$ is finite. For each $\lambda \in \Lambda_S$, put $S_{\lambda} = f(K_{\lambda})$, then $\{S_{\lambda} : \lambda \in \Lambda_S\}$ is a finite compact cover for S. For each $n \in \mathbb{N}$, since $\mathcal{B}_{\lambda,n}$ is a cfp-cover for K_{λ} in M_{λ} , $\mathcal{P}_{\lambda,n}$ is a cfp-cover for S_{λ} in X_{λ} by Lemma 2.2. It follows from Lemma 2.1 that $\mathcal{P}_{\lambda,n}$ is an fcs-cover for S_{λ} in X_{λ}

(2) \Longrightarrow (1). For each $\lambda \in \Lambda$, let $x \in U_{\lambda}$ with U_{λ} open in X_{λ} . We get that $U_{\lambda} = U \cap X_{\lambda}$ with some U open in X. Since $\bigcup \{ \operatorname{st} (x, \mathcal{P}_{\lambda,n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda} \} \subset U$ for some $n \in \mathbb{N}$, $\operatorname{st} (x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. It implies $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a point-star network for X_{λ} . Then the Ponomarev's system $(f_{\lambda}, M_{\lambda}, X_{\lambda}, \{\mathcal{P}_{\lambda,n}\})$ exists. Since each $\mathcal{P}_{\lambda,n}$ is countable, M_{λ} is a separable metric space with a metric d_{λ} described as follows.

Let $a = (\alpha_n), b = (\beta_n) \in M_{\lambda}$. If a = b, then $d_{\lambda}(a, b) = 0$. If $a \neq b$, then $d_{\lambda}(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$.

Put $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and define $f : M \longrightarrow X$ by choosing $f(a) = f_{\lambda}(a)$ for every $a \in M_{\lambda}$ with some $\lambda \in \Lambda$. Then f is a mapping and M is a locally separable metric space with a metric d as follows.

Let $a, b \in M$. If $a, b \in M_{\lambda}$ for some $\lambda \in \Lambda$, then $d(a, b) = d_{\lambda}(a, b)$. Otherwise, d(a, b) = 1. We only need to prove that f is a pseudo-sequence-covering π -mapping.

(a) f is a π -mapping. Let $x \in U$ with U open in X, then

$$\bigcup \{ \operatorname{st} (x, \mathcal{P}_{\lambda, n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda} \} \subset U$$

for some $n \in \mathbb{N}$. So, for each $\lambda \in \Lambda$ with $x \in X_{\lambda}$, we get

$$\operatorname{st}(x, \mathcal{P}_{\lambda, n}) \subset U_{\lambda}$$

where $U_{\lambda} = U \cap X_{\lambda}$. It implies that

$$d_{\lambda}(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \ge 1/n.$$

In fact, if $a = (\alpha_k) \in M_{\lambda}$ such that $d_{\lambda}(f_{\lambda}^{-1}(x), a) < 1/n$, then there is $b = (\beta_k) \in f_{\lambda}^{-1}(x)$ such that $d_{\lambda}(a, b) < 1/n$. So $\alpha_k = \beta_k$ if $k \leq n$. Note that $x \in P_{\beta_n} \subset \operatorname{st}(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. Then

$$f_{\lambda}(a) \in P_{\alpha_n} = P_{\beta_n} \subset \operatorname{st}(x, \mathcal{P}_{\lambda, n}) \subset U_{\lambda}.$$

Hence $a \in f_{\lambda}^{-1}(U_{\lambda})$. It implies that $d_{\lambda}(f_{\lambda}^{-1}(x), a) \ge 1/n$ if $a \in M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})$. So

$$d_{\lambda}(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \ge 1/n.$$

Therefore

$$d(f^{-1}(x), M - f^{-1}(U)) = \inf\{d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U)\}$$

= min {1, inf{ $d_{\lambda}(a, b) : a \in f_{\lambda}^{-1}(x), b \in M_{\lambda} - f^{-1}(U_{\lambda}), \lambda \in \Lambda\}} \ge 1/n > 0.$

It implies that f is a π -mapping.

(b) f is pseudo-sequence-covering. For each convergent sequence S of X, there is a finite subset Λ_S of Λ such that S has a finite compact cover $\{S_{\lambda} : \lambda \in \Lambda_S\}$ and for each $\lambda \in \Lambda_S$ and $n \in \mathbb{N}$, $\mathcal{P}_{\lambda,n}$ is an fcs-cover for S_{λ} in X_{λ} . By Lemma 2.1 $\mathcal{P}_{\lambda,n}$ is a cfp-cover for S_{λ} in X_{λ} . It follows from Lemma 13 in [12] that $S_{\lambda} = f_{\lambda}(K_{\lambda})$ with some compact subset K_{λ} of M_{λ} . Put $K = \bigcup \{K_{\lambda} : \lambda \in \Lambda_S\}$, then K is a compact subset of M and f(K) = S. It implies that f is a pseudo-sequencecovering.

Remark. 1. For each λ ∈ Λ, {P_{λ,n} : n ∈ N} is a point-star network for X_λ.
2. Since each P_{λ,n} is countable, every member of P_{λ,n} can be chosen closed in X_λ. Hence, it is possible to replace the prefix "fcs-" in (b) of Theorem 2.3.(2) by "k-", "cfp-", or "cs*-"

By [2, 2.4.F, 2.4.G], [3, Proposition 2.1], and Theorem 2.3, we get a characterization of pseudo-sequence-covering quotient (resp. pseudo-open) π -images of locally separable metric spaces as follows.

Corollary 2.4. The following propositions are equivalent:

1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) π -image of a locally separable metric space,

260

2. a space X is a sequential (resp. Fréchet) space having a cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ of countable covers for X_{λ} satisfying conditions (a) and (b) in Theorem 2.3.(2).

In the next, we investigate pseudo-sequence-covering π -s-images of locally separable metric spaces.

Corollary 2.5. The following propositions are equivalent:

- 1. a space X is a pseudo-sequence-covering π -s-image of a locally separable metric space,
- 2. a space X has a point-countable cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ of countable covers for X_{λ} satisfying conditions (a) and (b) in Theorem 2.3.(2).

Proof. (1) \implies (2). By using notations and arguments in proof (1) \implies (2) of Theorem 2.3 again, X has a cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ of countable covers for X_{λ} satisfying conditions (a) and (b) in Theorem 2.3.(2). It suffices to prove that $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable. For each $x \in X$, since f is an s-mapping, $f^{-1}(x)$ is separable in M. Then $f^{-1}(x)$ meets only countably many M_{λ} 's. It implies that x meets only coutably many X_{λ} 's, i.e., $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable.

(2) \implies (1). By using notations and arguments in proof (2) \implies (1) of Theorem 2.3 again, X is a pseudo-sequence-covering π -image of a locally separable metric space under the mapping f. We shall prove that f is also an s-mapping. For each $x \in X$, since $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable, $\Lambda_x = \{\lambda \in \Lambda : x \in X_{\lambda}\}$ is countable. Note that each M_{λ} is separable metric, $f_{\lambda}^{-1}(x)$ is separable. It implies that $f^{-1}(x) = \bigcup \{f_{\lambda}^{-1}(x) : \lambda \in \Lambda_x\}$ is separable, i.e., f is an s-mapping.

Similar to Corollary 2.4, we get the following.

Corollary 2.6. The following propositions are equivalent:

- 1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) π -s-image of a locally separable metric space,
- 2. a space X is a sequential (resp. Fréchet) space having a point-countable cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ of countable covers for X_{λ} satisfying conditions (a) and (b) in Theorem 2.3.(2).

Acknowledgment. We would like to thank Professor Y. Ge for helpful comment on this article.

References

- 1. Chen H., Compact-covering maps and k-networks, Proc. Amer. Math. Soc., 131 (2002), 2623–2632.
- 2. Engelking R., General topology, PWN-Polish Scientific Publishers, Warszawa 1977.
- **3.** Ge Y., On compact images of locally separable metric spaces, Topology Proc., **27** (1) (2003), 351–360.
- 4. _____, On π -images of metric spaces, APN Acta Math., 22 (2006), 209–215.

- 5. _____, On pseudo-sequence-covering π -images of metric spaces, Matematicki Vesnik, 57 (2005), 113–120.
- 6. ____, Spaces with countable sn-networks, Comment. Math. Univ. Carolinae, 45 (1) (2004), 169–176.
- 7. Ge Y., and Gu J. S., On π -images of separable metricspaces, Math. Sci., 10 (2004), 65–71.
- 8. Ge Y., and Shen J., Networks in Ponomarev-systems, Math. Sci., 11 (2005), 25–29.
- Gruenhage G., Michael E. and Tanaka Y., Spaces determined by point-countable covers, Pacific J. Math., 113 (2) (1984), 303–332.
- Ikeda Y., Liu C. and Tanaka Y., Quotient compact images of metric spaces, and related matters, Topology Appl., 122 (2002), 237–252.
- 11. Li Z., On π-s-images of metric spaces, Int. J. Math. Sci., 7 (2005), 1101-1107.
- Lin S. and Yan P., Notes on cfp-covers, Comment. Math. Univ. Carolinae, 44 (2) (2003), 295–306.
- 13. _____, Sequence-covering maps of metric spaces, Topology Appl., 109 (2001), 301–314.
- 14. Michael E., $\aleph_0\text{-spaces},$ J. Math. Mech., 15 (1966), 983–1002.
- 15. Tanaka Y., Theory of k-network II, Q & A in General Top., 19 (2001), 27–46.
- Tanaka Y. and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32 (1) (2006), 99–117.
- Tanaka Y. and Z. Li, Certain covering-maps and k-networks, and related matters, Topology Proc., 27 (2003), 317–334.

Nguyen Van Dung, Department of Mathematics, Pedagogical University of Dong Thap, Viet Nam, *current address*: 85 Nguyen Phong Sac, Hung Dung street, Vinh city, Nghe An province, *e-mail*: nguyendungtc@yahoo.com