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ON PSEUDO-SEQUENCE-COVERING π-IMAGES OF LOCALLY
SEPARABLE METRIC SPACES

NGUYEN VAN DUNG

Abstract. In this paper, we characterize pseudo-sequence-covering π-images of

locally separable metric spaces by means of fcs-covers and point-star networks.

We also investigate pseudo-sequence-covering π-s-images of locally separable metric
spaces.

1. Introduction

Determining what spaces the images of “nice” spaces under “nice” mappings are
is one of the central questions of general topology [3]. In the past, some note-
worthy results on images of metric spaces have been obtained [9, 15]. Recently,
π-images of metric spaces have attracted attention again [4, 5, 7, 11, 16]. It is
known that a space is a pseudo-sequence-covering π-image of a metric space (resp.
separable metric space) if and only if it has a point-star network of fcs-covers
(resp. countable fcs-covers) [4, 5]. This leads us to investigate pseudo-sequence-
covering π-images of locally separable metric spaces. That is, we have the following
question.

Question 1.1. How are pseudo-sequence-covering π-images of locally sparable
metric spaces characterized?

On the other hand, pseudo-sequence-covering π-s-images of metric spaces have
been characterized by means of point-star networks of point-countable fcs-covers
(see [11], for example). This leads us to consider the following question.

Question 1.2. How are pseudo-sequence-covering π-s-images of locally sparable
metric spaces characterized?

Taking these questions into account, we characterize pseudo-sequence-covering
π-images of locally separable metric spaces by means of fcs-covers and point-star
networks. Then we give a complete answer to Question 1.1. As the application
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of this result, we get a characterization of pseudo-sequence-covering π-s-images of
locally separable metric spaces to answer Question 1.2.

Throughout this paper, all spaces are assumed to be Hausdorff, all mappings
are assumed continuous and onto, a convergent sequence includes its limit point,
N denotes the set of all natural numbers. Let f : X −→ Y be a mapping, x ∈ X,
and let P be a collection of subsets of X, we denote st(x,P) =

⋃
{P ∈ P : x ∈ P},⋃

P =
⋃
{P : P ∈ P}, (P)x = {P ∈ P : x ∈ P} and f(P) = {f(P ) : P ∈ P}.

We say that a convergent sequence {xn : n ∈ N} converging to x is eventually
(resp. frequently) in A if {xn : n ≥ n0} ∪ {x} ⊂ A for some n0 ∈ N (resp.
{xnk

: k ∈ N} ∪ {x} ⊂ A for some subsequence {xnk
} of {xn}). Note that some

notions are different in different references, and some different notions in different
references are coincident. Please, terms which are not defined here, see [2, 15].

2. Main results

Let P be a collection of subsets of a space X and let K be a subset of X.
P is point-countable [15] if every point of X meets only countably many mem-

bers of P.
For each x ∈ X, P is a network at x [8] if x ∈ P for every P ∈ P, and if x ∈ U

with U open in X, there exists P ∈ P such that x ∈ P ⊂ U .
P is a k-cover for K in X, if for each compact subset H of K, there exists a

finite subfamily F of P such that H ⊂
⋃
F . When K = X, a k-cover for K in X

is a k-cover for X.
P is a cfp-cover for K in X if for each compact subset H of K, there exists a

finite subfamily F of P such that H ⊂
⋃
{CF : F ∈ F} where CF is closed and

CF ⊂ F for every F ∈ F . Note that such F is a full cover in the sense of [1],
and if K is closed, F is a cfp-cover for K in the sense of [8]. When K = X, a
cfp-cover for K in X is a cfp-cover for X [16].
P is an fcs-cover for K in X if for each convergent sequence S converging to

x in K, there exists a finite subfamily F of (P)x such that S is eventually in
⋃
F .

When K = X, an fcs-cover for K in X is an fcs-cover of X [4], or an sfp-cover
for X [11], or a wcs-cover [5].
P is a cs∗-cover for K in X, if for each convergent sequence S in K, S is

frequently in some P ∈ P. When K = X, a cs∗-cover for K in X is a cs∗-cover
for X [16].

A k-cover (resp. cfp-cover, fcs-cover, cs∗-cover) for K in X is also called a
k-cover (resp. cfp-cover, fcs-cover, cs∗-cover) in X for K, and a k-cover (resp.
cfp-cover, fcs-cover, cs∗-cover) for X is abbreviated to a k-cover (resp. cfp-cover,
fcs-cover, cs∗-cover).

It is clear that if P is a k-cover (resp. cfp-cover, fcs-cover, cs∗-cover), then P
is a k-cover (resp. cfp-cover, fcs-cover, cs∗-cover) for K in X.

Remark. The following statements hold.

1. closed k-cover for K in X =⇒ cfp-cover for K in X =⇒ k-cover for K in
X,
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2. cfp-cover for K in X =⇒ fcs-cover for K in X =⇒ cs∗-cover for K in X.

For each n ∈ N, let Pn be a cover for X. {Pn : n ∈ N} is a refinement sequence
for X, if Pn+1 is a refinement of Pn for each n ∈ N. A refinement sequence for X
is a refinement of X in the sense of [3].

Let {Pn : n ∈ N} is be refinement sequence for X. {Pn : n ∈ N} is a point-star
network for X, if {st (x,Pn) : n ∈ N} is a network at x for each x ∈ X. A point-
-star network for X is a σ-strong network for X in the sense of [16], and, without
the assumption of a refinement sequence, a point-star network in the sense of [12].
It is easy to see that if each Pn is countable, every members of Pn can be chosen
closed in X.

Let {Pn : n ∈ N} be a point-star network for a space X. For every n ∈ N, put
Pn = {Pα : α ∈ An}, and An is endowed with discrete topology. Put

M =
{
a = (αn) ∈

∏
n∈N

An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric space
with a metric d described as follows.

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then
d(a, b) = 1/(min{n ∈ N : αn 6= βn}).

Define f : M −→ X by choosing f(a) = xa, then f is a mapping, and
(f,M,X, {Pn}) is a Ponomarev’s system [16], and without the assumption of
a refinement sequence in the notion of point-star networks, (f,M,X, {Pn}) is a
Ponomarev’s system in the sense of [12].

Let f : X −→ Y be a mapping; Then,
f is a π-mapping [4] if for every y ∈ Y and for every neighborhood U of y in

Y , d(f−1(y), X − f−1(U)) > 0, where X is a metric space with a metric d.
f is an s-mapping [11], if for each y ∈ Y , f−1(y) is a separable subset of X.
f is a π-s-mapping [11], if f is both π-mapping and s-mapping.
f is a pseudo-sequence-covering mapping [3], if every convergent sequence of Y

is the image of some compact subset of X.
f is a subsequence-covering mapping [3], if for every convergent sequence S of

Y , there is a compact subset K of X such that f(K) is a subsequence of S.
f is a sequentially-quotient mapping [3], if for every convergent sequence S of

Y , there is a convergent sequence L of X such that f(L) is a subsequence of S.
f is a quotient mapping [14], if U is open in Y whenever f−1(U) is open in X.
f is a pseudo-open mapping [9], if y ∈ intf(U) whenever f−1(y) ⊂ U with U

open in X. A pseudo-open mapping is a hereditarily quotient mapping in the sense
of [2].

Let X be a space and let A be a subset of X. A is sequential open [16], if for
each x ∈ A and each convergent sequence S converging to x, S is eventually in A.
X is a sequential space [16], if every sequential open subset of X is open in X. X
is a Fréchet space, if for each x ∈ A, there exists a sequence in A converging to x.
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For a mapping f : X −→ Y , f is a pseudo-sequence-covering or sequentially-
quotient =⇒ a f is subsequence-covering. Also, a f is quotient if and only if a f
is subsequence-covering such that Y is sequential [17].

Lemma 2.1. Let P be a countable cover for a convergent sequence S in a space
X. Then the following propositions are equivalent.

1. P is a cfp-cover for S in X,
2. P is an fcs-cover for S in X,
3. P is a cs∗-cover for S in X.

Proof. (1) =⇒ (2) =⇒ (3). Obviously.
(3) =⇒ (1). Let H be a compact subset of S. We can assume that H is a

subsequence of S. Since P is countable, put (P)x = {Pn : n ∈ N} where x is the
limit point of S. Then H is eventually in

⋃
n≤k Pn for some k ∈ N. If not, then

for any k ∈ N, H is not eventually in
⋃

n≤k Pn. So, for every k ∈ N, there exists
xnk

∈ S −
⋃

n≤k Pn. We may assume n1 < n2 < . . . < nk−1 < nk < nk+1 < . . ..
Put H ′ = {xnk

: k ∈ N} ∪ {x}, then H ′ is a subsequence of S. Since P is a
cs∗-cover for S in X, there exists m ∈ N such that H ′ is frequently in Pm. This
contradicts the construction of H ′. So H is eventually in

⋃
n≤k Pn for some k ∈ N.

It implies that P is a cfp-cover for S in X. �

Lemma 2.2. Let f : X −→ Y be a mapping.
1. If P is a k-cover in X for a compact set K, then f(P) is a k-cover for

f(K) in Y .
2. If P is a cfp-cover in X for a compact set K, then f(P) is a cfp-cover for

f(K) in Y .

Proof. (1). Let H be a compact subset of f(K). Then G = f−1(H) ∩K is a
compact subset of K and f(G) = H. Since P is a k-cover for K in X, there is a
finite subfamily F of P such that G ⊂

⋃
F . Hence f(F) is a finite subfamily of

f(P) such that H ⊂
⋃

f(F). It implies that f(P) is a k-cover for f(K) in Y .
(2). Let H be a compact subset of f(K). Then L = f−1(H) ∩K is a compact

subset of K satisfying f(L) = H. Since P is a cfp-cover for K in X, there is
a finite subfamily F of P such that L ⊂

⋃
{CF : F ∈ F} where CF ⊂ F , and

CF is closed for every F ∈ F . Because L is compact, every CF can be chosen
compact. It implies that every f(CF ) is closed (in fact, every f(CF ) is compact),
and f(CF ) ⊂ f(F ). We get that H = f(L) ⊂

⋃
{f(CF ) : F ∈ F}, and f(F) is a

finite subfamily of P. Then P is a cfp-cover for f(K) in Y . �

Theorem 2.3. The following propositions are equivalent for a space X

1. X is a pseudo-sequence-covering π-image of a locally separable metric space,
2. X has a cover {Xλ : λ ∈ Λ}, where each Xλ has a refinement sequence
{Pλ,n : n ∈ N} of countable covers for Xλ satisfying the following condi-
tions:
(a) For each x ∈ U with U open in X, there is n ∈ N such that⋃

{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U,
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(b) For each convergent sequence S of X, there is a finite subset ΛS of Λ
such that S has a finite compact cover {Sλ : λ ∈ ΛS}, and, for each
λ ∈ ΛS and n ∈ N, Pλ,n is an fcs-cover for Sλ in Xλ.

Proof. (1) =⇒ (2). Let f : M −→ X be a pseudo-sequence-covering π-mapping
from a locally separable metric space M with a metric d onto X. Since M is
a locally separable metric space, M =

⊕
λ∈Λ Mλ where each Mλ is a separable

metric space by [2, 4.4.F]. For each λ ∈ Λ, let Dλ be a countable dense subset
of Mλ, and put fλ = f |Mλ

and Xλ = fλ(Mλ). For each a ∈ Mλ and n ∈ N,
put B(a, 1/n) = {b ∈ Mλ : d(a, b) < 1/n}, Bλ,n = {B(a, 1/n) : a ∈ Dλ}, and
Pλ,n = fλ(Bλ,n). It is clear that {Pλ,n : n ∈ N} is a cover sequence of countable
covers for Xλ and Pλ,n+1 is a refinement of Pλ,n for every n ∈ N. We only need
to prove that conditions (a) and (b) are satisfied.

Condition (a): For each x ∈ U with U open in X. Since f is a π-mapping,
d(f−1(x),M − f−1(U)) > 2/(n − 1) for some n ∈ N. Then, for each λ ∈ Λ with
x ∈ Xλ, we get

d(f−1
λ (x),Mλ − f−1

λ (Uλ)) > 2/(n− 1)

where Uλ = U∩Xλ. Let a ∈ Dλ and x ∈ fλ(B(a, 1/n)) ∈ Pλ,n. We shall prove that
B(a, 1/n) ⊂ f−1

λ (Uλ). In fact, if B(a, 1/n) 6⊂ f−1
λ (Uλ), then pick b ∈ B(a, 1/n)−

f−1
λ (Uλ). Note that f−1

λ (x) ∩B(a, 1/n) 6= ∅, pick c ∈ f−1
λ (x) ∩B(a, 1/n), then

d(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≤ d(c, b) ≤ d(c, a) + d(a, b) < 2/n < 2/(n− 1).

It is a contradiction. So B(a, 1/n) ⊂ f−1
λ (Uλ), thus fλ(B(a, 1/n)) ⊂ Uλ. Then

st (x,Pλ,n) ⊂ Uλ. It implies that⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U.

Condition (b): For each convergent sequence S of X, since a f is pseudo-
sequence-covering, S = f(K) for some compact subset K of M . By compactness
of K, Kλ = K ∩Mλ is compact and ΛS = {λ ∈ Λ : Kλ 6= ∅} is finite. For each
λ ∈ ΛS , put Sλ = f(Kλ), then {Sλ : λ ∈ ΛS} is a finite compact cover for S. For
each n ∈ N, since Bλ,n is a cfp-cover for Kλ in Mλ, Pλ,n is a cfp-cover for Sλ in
Xλ by Lemma 2.2. It follows from Lemma 2.1 that Pλ,n is an fcs-cover for Sλ in
Xλ

(2) =⇒ (1). For each λ ∈ Λ, let x ∈ Uλ with Uλ open in Xλ. We get that Uλ =
U ∩Xλ with some U open in X. Since

⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U

for some n ∈ N, st (x,Pλ,n) ⊂ Uλ. It implies {Pλ,n : n ∈ N} is a point-star
network for Xλ. Then the Ponomarev’s system (fλ,Mλ, Xλ, {Pλ,n}) exists. Since
each Pλ,n is countable, Mλ is a separable metric space with a metric dλ described
as follows.

Let a = (αn), b = (βn) ∈ Mλ. If a = b, then dλ(a, b) = 0. If a 6= b, then
dλ(a, b) = 1/(min{n ∈ N : αn 6= βn}).

Put M = ⊕λ∈ΛMλ and define f : M −→ X by choosing f(a) = fλ(a) for every
a ∈ Mλ with some λ ∈ Λ. Then f is a mapping and M is a locally separable
metric space with a metric d as follows.
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Let a, b ∈ M . If a, b ∈ Mλ for some λ ∈ Λ, then d(a, b) = dλ(a, b). Other-
wise, d(a, b) = 1. We only need to prove that f is a pseudo-sequence-covering
π-mapping.

(a) f is a π-mapping. Let x ∈ U with U open in X, then⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U

for some n ∈ N. So, for each λ ∈ Λ with x ∈ Xλ, we get

st (x,Pλ,n) ⊂ Uλ

where Uλ = U ∩Xλ. It implies that

dλ(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≥ 1/n.

In fact, if a = (αk) ∈ Mλ such that dλ(f−1
λ (x), a) < 1/n, then there is b =

(βk) ∈ f−1
λ (x) such that dλ(a, b) < 1/n. So αk = βk if k ≤ n. Note that

x ∈ Pβn ⊂ st (x,Pλ,n) ⊂ Uλ. Then

fλ(a) ∈ Pαn
= Pβn

⊂ st (x,Pλ,n) ⊂ Uλ.

Hence a ∈ f−1
λ (Uλ). It implies that dλ(f−1

λ (x), a) ≥ 1/n if a ∈ Mλ − f−1
λ (Uλ). So

dλ(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≥ 1/n.

Therefore

d(f−1(x),M − f−1(U)) = inf{d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)}
= min

{
1, inf{dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1(Uλ), λ ∈ Λ}
}
≥ 1/n > 0.

It implies that f is a π-mapping.
(b) f is pseudo-sequence-covering. For each convergent sequence S of X, there

is a finite subset ΛS of Λ such that S has a finite compact cover {Sλ : λ ∈ ΛS} and
for each λ ∈ ΛS and n ∈ N, Pλ,n is an fcs-cover for Sλ in Xλ. By Lemma 2.1 Pλ,n

is a cfp-cover for Sλ in Xλ. It follows from Lemma 13 in [12] that Sλ = fλ(Kλ)
with some compact subset Kλ of Mλ. Put K =

⋃
{Kλ : λ ∈ ΛS}, then K is

a compact subset of M and f(K) = S. It implies that f is a pseudo-sequence-
covering. �

Remark. 1. For each λ ∈ Λ, {Pλ,n : n ∈ N} is a point-star network for Xλ.
2. Since each Pλ,n is countable, every member of Pλ,n can be chosen closed

in Xλ. Hence, it is possible to replace the prefix “fcs-” in (b) of Theo-
rem 2.3.(2) by “k-”, “cfp-”, or “cs∗-”

By [2, 2.4.F, 2.4.G], [3, Proposition 2.1], and Theorem 2.3, we get a charac-
terization of pseudo-sequence-covering quotient (resp. pseudo-open) π-images of
locally separable metric spaces as follows.

Corollary 2.4. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open)

π-image of a locally separable metric space,
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2. a space X is a sequential (resp. Fréchet) space having a cover {Xλ : λ ∈ Λ},
where each Xλ has a refinement sequence {Pλ,n : n ∈ N} of countable covers
for Xλ satisfying conditions (a) and (b) in Theorem 2.3.(2).

In the next, we investigate pseudo-sequence-covering π-s-images of locally sep-
arable metric spaces.

Corollary 2.5. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering π-s-image of a locally separable

metric space,
2. a space X has a point-countable cover {Xλ : λ ∈ Λ}, where each Xλ has a

refinement sequence {Pλ,n : n ∈ N} of countable covers for Xλ satisfying
conditions (a) and (b) in Theorem 2.3.(2).

Proof. (1) =⇒ (2). By using notations and arguments in proof (1) =⇒ (2) of
Theorem 2.3 again, X has a cover {Xλ : λ ∈ Λ}, where each Xλ has a refinement
sequence {Pλ,n : n ∈ N} of countable covers for Xλ satisfying conditions (a) and
(b) in Theorem 2.3.(2). It suffices to prove that {Xλ : λ ∈ Λ} is point-countable.
For each x ∈ X, since f is an s-mapping, f−1(x) is separable in M . Then f−1(x)
meets only countably many Mλ’s. It implies that x meets only coutably many
Xλ’s, i.e., {Xλ : λ ∈ Λ} is point-countable.

(2) =⇒ (1). By using notations and arguments in proof (2) =⇒ (1) of The-
orem 2.3 again, X is a pseudo-sequence-covering π-image of a locally separable
metric space under the mapping f . We shall prove that f is also an s-mapping.
For each x ∈ X, since {Xλ : λ ∈ Λ} is point-countable, Λx = {λ ∈ Λ : x ∈ Xλ} is
countable. Note that each Mλ is separable metric, f−1

λ (x) is separable. It implies
that f−1(x) =

⋃
{f−1

λ (x) : λ ∈ Λx} is separable, i.e., f is an s-mapping. �

Similar to Corollary 2.4, we get the following.

Corollary 2.6. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open)

π-s-image of a locally separable metric space,
2. a space X is a sequential (resp. Fréchet) space having a point-countable

cover {Xλ :λ ∈ Λ}, where each Xλ has a refinement sequence {Pλ,n : n ∈ N}
of countable covers for Xλ satisfying conditions (a) and (b) in Theo-
rem 2.3.(2).
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