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ON SOME ORDINARY AND FUZZY HOMOGENITY TYPES

S. AL GHOUR and K. AL-ZOUBI

Abstract. Finite SLH topological spaces are characterized as partition topological

spaces. As a consequence, two partial answers for a question raised in [3] are ob-

tained. Closed-homogeneous topological spaces are characterized. Having a minimal
open set is proved to be a sufficient condition for a homogeneous topological space to

be closed-homogeneous. Closed-homogeneity is extended to include fuzzy topologi-

cal spaces as a “good extension” according to Lowen’s sense of closed-homogeneity in
ordinary topological spaces. It is proved that homogeneity and closed-homogeneity

in fuzzy topological spaces are equivalent under some conditions. Various open

questions are also given.

1. Introduction

Throughout this paper, we follow the notions and terminologies of [7]. Let X be
a nonempty set, A be a nonempty subset of X, λ be a fuzzy set in X, and (X, τ),
(X,=) be two ordinary and fuzzy topological spaces, respectively. We denote the
relative topology on A by τA, the discrete topology on X by τdisc, the group of
all homeomorphisms from (X, τ) into itself by H(X, τ), and the group of all fuzzy
homeomorphisms from (X,=) into itself by FH(X,=). A fuzzy set p defined by

p(x) =
{

t if x = xp

0 if x 6= xp

where 0 < t < 1 is called a fuzzy point in X, xp ∈ X is called the support of p and
p(xp) = t the value (level) of p [12]. Two fuzzy points p and q in X are said to
be distinct iff their supports are distinct, i.e., xp 6= xq. For a bijection h : X → Y
and any fuzzy points p, q of X and Y respectively, it is easy to see that h(p) = q
iff p(xp) = q(xq) and h(xp) = xq.

Definition 1.1 ([11]). Associated with a given fuzzy topological space (X,=)
and arbitrary ordinary subset M of X, we define the induced topology on M or
the relative topology on M by:

=M =
{
λ|M : λ ∈ =

}
The corresponding pair (M,=M ) is called a fuzzy open (closed) subspace iff the

fuzzy set χM is fuzzy open (closed) in (X,=).

Received March 6, 2007; revised April 22, 2008.

2000 Mathematics Subject Classification. Primary 54A40.
Key words and phrases. Homogeneity; strong local homogeneity; local homogeneity; closed

homogeneity; generated topologies.



200 S. AL GHOUR and K. AL-ZOUBI

Definition 1.2 ([4]). Let (X, τ) be a topological space and let τ̃ be the equiva-
lence relation on X defined by x τ̃ y if there exists h ∈ H(X, τ) such that h(x) = y.
Then the equivalence class Cτ

x = {y ∈ X : x τ̃y} is called the homogeneous com-
ponent of (X, τ) determined by x.

It is known that homogeneous components are invariant under homeomor-
phisms.

Definition 1.3 ([8]). Let (X, τ) be a topological space and let β be a base for τ .
Then we say that β is a representable base for τ if for any nonempty U ∈ β and
for any x, y ∈ U , there exists h ∈ H(X, τ) such that h(x) = y and h(t) = t for all
t ∈ X −U . A topological space (X, τ) is SLH (strongly locally homogeneous) if it
has a representable base.

Definition 1.4 ([6]). A topological space (X, τ) is called LH (locally homoge-
neous) at x in X provided that there exists an open set U in X containing x such
that for any y ∈ U there is h ∈ H(X, τ) such that h(x) = y. A topological space
(X, τ) is called LH if it is LH at each x ∈ X.

Definition 1.5 ([13]). Let (X,=) be a fuzzy topological space. A family β of
fuzzy open sets is called a base for = if each nonzero member of = can be written
as a union of members of β.

Definition 1.6 ([3]). Let (X,=) be a fuzzy topological space and let β be a
base for =. Then we say that β is a representable base for = if for any nonzero
λ ∈ β and for any x, y ∈ S(λ), there exists h ∈ FH(X,=) such that h(x) = y and
h(t) = t for all t /∈ S(λ).

Definition 1.7 ([3]). A fuzzy topological space (X,=) is said to be SLH
(strongly locally homogeneous) if = has a representable base.

Definition 1.8 ([6]). A topological space (X, τ) is called closed-homogeneous
provided that for any x, y in X and for any K closed subset of X − {x, y} there
exists h ∈ H(X, τ) such that h(x) = y and h(t) = t for all t ∈ K.

Definition 1.9 ([10]). Let (X, τ) be a topological space. A nonempty open set
A of X is called a minimal open set in X if any open set in X which is contained
in A is ∅ or A, i.e., τA is the indiscrete topology on A.

It is known that the homeomorphic image of a minimal open set is a minimal
open set.

Mathematicians extended many notions of general topology to the fuzzy set
theory. Some of these notions are separation and countability axioms, compact-
ness, connectedness, paracompactness, metric space. Recently some homogeneity
types have been extended to include fuzzy topological spaces. In [1], the author
extended homogeneity, n-homogeneity, weakly n-homogeneity, countable dense ho-
mogeneity, densely homogeneity and strong local homogeneity as known ordinary
topological concepts to include fuzzy topological spaces. Results concerning ho-
mogeneity, n-homogeneity and weakly n-homogeneity appeared in [7], in which the
authors introduced some open questions, Al Ghour in [2] solved two of them. The
results in [1] concerning homogeneous components and strong local homogeneity
appeared in [3].
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In this paper, we characterize finite SLH topological spaces, which will be useful
to introduce two partial answers for the question which raised in [3], and we extend
closed-homogeneity to include fuzzy topological spaces as a “good extension” for
closed-homogeneity in ordinary topological spaces. Closed-homogeneity in both
ordinary and fuzzy topological spaces will be characterized. We give a sufficient
condition for homogeneous ordinary topological spaces to be closed-homogeneous.
Finally, in one of the main results, we provide conditions to insure that homogene-
ity implies closed-homogeneity in the fuzzy case.

The following lemmas will be needed in the sequel.
Lemma 1.1 ([10]). Let (X, τ) be a topological space and let A be a minimal

open set in X. Then

A =
⋂
{O : O is open in X with x ∈ O}

for any element x of A.
Lemma 1.2 ([9]). Let (X, τ) be a topological space and let f : (X, τ) → (X, τ)

be a function. Then the following are equivalent.
(i) f : (X, τ) → (X, τ) is continuous.
(ii) f : (X, ω(τ)) → (X, ω(τ)) is fuzzy continuous.
Lemma 1.3 ([6]). Every closed-homogeneous topological space is SLH, but not

conversely.
Lemma 1.4 ([6]). Every closed-homogeneous topological space is homogeneous,

but not conversely.
Lemma 1.5 ([3]). The SLH property in fuzzy topological spaces is a “good

extension” of SLH property in ordinary topological spaces.
Lemma 1.6 ([7]). The homogeneity property in fuzzy topological spaces is a

“good extension” of homogeneity property in ordinary topological spaces.
Lemma 1.7 ([5]). Let (X, τ) be a topological space which contains a minimal

open set. Then the following are equivalent.
(i) (X, τ) is a homogeneous topological space.
(ii) (X, τ) has a partition base consisting of minimal open sets all of which is

homeomorphic to one another.
The following result follows easily.
Lemma 1.8. Let (X,=) be a fuzzy topological space. Then for each a ∈ [0, 1),

FH(X,=) ⊆ H(X,=a).

2. Finite SLH ordinary and fuzzy topological spaces

Let (X, τ) be a topological space. Denote by m(X, τ) the set of all minimal open
subsets of (X, τ). For each x ∈ X, denote the intersection of all open sets in X
containing x, by Ux i.e.,

Ux =
⋂
{O : O is open in X with x ∈ O}
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Theorem 2.1. Let (X, τ) be a topological space and x ∈ X. Then the following
are equivalent.

(i) Ux ∈ m(X, τ).
(ii) Ux ⊆ Cτ

x and Cτ
x is a union of minimal open sets of (X, τ) all of which are

homeomorphic to one another.

Proof. (i) =⇒(ii) Suppose that Ux ∈ m(X, τ). To see that Ux ⊆ Cτ
x , let y ∈ Ux

and f : (X, τ) → (X, τ) defined by f(x) = y, f(y) = x, and f(t) = t elsewhere.
Let V ∈ τ . Then by Lemma 1.1, it follows that either {x, y} ⊆ V or {x, y}∩V = ∅.
Therefore, f(V ) = V and f−1(V ) = V . Hence f is continuous and open. Since f is
clearly bijective, it follows that f ∈ H(X, τ). Thus y ∈ Cτ

x and hence Ux ⊆ Cτ
x . To

complete the proof of this implication, let y ∈ Cτ
x , then there exists f ∈ H(X, τ)

such that f(x) = y and so y ∈ f(Ux) ⊆ f(Cτ
x ) = Cτ

x . Since f(Ux) ∈ m(X, τ) and
Ux

∼= f(Ux), the proof of this implication is completed.
(ii) =⇒(i) Since Cτ

x is a union of minimal open sets of (X, τ), there exists
A ∈ m(X, τ) such that x ∈ A. Therefore by Lemma 1.1, it follows that A = Ux

and hence Ux ∈ m(X, τ). �

Corollary 2.1. Let (X, τ) be a topological space. If for some x ∈ X, Ux ∈
m(X, τ) then (X, τ) is LH at x.

Lemma 2.1. Let (X, τ) be a topological space such that |τ | < ∞. Then for any
nonempty U ∈ τ , there exists a minimal open set contained in U .

Proof. If possible, choose A1 ∈ τ − {∅} such that A1 ⊂ U , otherwise, U ∈
m(X, τ). Since |τ | < ∞, inductively, we can find a sequence An ⊂ An−1 ⊂ · · · ⊂
A1 ⊂ U such that Ai ∈ τ −{∅} for i = 1, 2, . . . , n and there is no A ∈ τ −{∅} such
that A ⊂ An. Therefore, An is a minimal open set contained in U . �

Theorem 2.2. Let (X, τ) be an LH topological space at x for which |τ | < ∞.
Then Ux ∈ m(X, τ).

Proof. Since |τ | < ∞, then Ux ∈ τ . Since (X, τ) is LH at x, there exists an
open set U in X such that x ∈ U ⊆ Cτ

x , hence Ux ⊆ Cτ
x . Now by Lemma 2.1,

there exists A ∈ m(X, τ) such that A ⊆ Ux. Choose y ∈ A, then y ∈ Cτ
x and

hence there exists h ∈ H(X, τ) such that h(y) = x. Therefore, x ∈ h(A) and
hence Ux ⊆ h(A). But h(A) ∈ m(X, τ), thus, Ux = h(A) ∈ m(X, τ). �

Recall that a topological space (X, τ) is called a partition topological space if
it has a partition base.

Theorem 2.3. Let (X, τ) be a topological space such that |τ | < ∞. Then the
following are equivalent.

(i) (X, τ) is SLH.
(ii) (X, τ) is LH.
(iii) For every x ∈ X, Ux ∈ m(X, τ).
(iv) (X, τ) is a partition topological space.
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Proof. (i) =⇒(ii) Obvious.
(ii) =⇒ (iii) Theorem 2.2.
(iii) =⇒(iv) By (iii), it follows that there exists a subset X1 ⊆ X such that

β = {Ux : x ∈ X1} is a partition on X. It is not difficult to see that β is a base
for τ .

(iv) =⇒(i) Let β be a partition base for τ . To see that β is representable, let
B ∈ β and let x, y ∈ B. Define h : (X, τ) → (X, τ) by h(x) = y, h(y) = x, and
h(t) = t elsewhere. Then h ∈ H(X, τ), h(x) = y, and h(t) = t for every t ∈ X−B.
Therefore, β is a representable base for τ and hence (X, τ) is SLH. �

Corollary 2.2. Let (X, τ) be a topological space such that |X| < ∞. Then the
following are equivalent.

(i) (X, τ) is SLH.
(ii) (X, τ) is LH.
(iii) For every x ∈ X, Ux ∈ m(X, τ)
(iv) (X, τ) is a partition topological space.

The following two Lemmas are useful in the proof of our next main result.

Lemma 2.2. Let (X,=) be a fuzzy topological space and let β be a base for =.
Then for each a ∈ [0, 1), βa =

{
λ−1 (a, 1] : λ ∈ β

}
is a base for =a.

Proof. Let ∅ 6= U ∈ =a and let x ∈ U . Choose λ ∈ = such that U = λ−1 (a, 1].
Then λ(x) > a. Consider the fuzzy point p with support xp = x and level p(xp) =
(a + λ(x))/2. Then p ∈ λ. Since β is a base for =, then there exists µ ∈ β such
that p ∈ µ ⊆ λ. Therefore, we have µ−1 (a, 1] ∈ βa and x ∈ µ−1 (a, 1] ⊆ λ−1 (a, 1].
Hence, βa is a base for =a. �

Lemma 2.3. Let (X, τ) be a topological space and let β be a base for τ . If for
some x ∈ X, Ux ∈ τ then Ux ∈ β.

Proof. Since β is a base for τ and x ∈ Ux ∈ τ , there exists B ∈ β such that
x ∈ B ⊆ Ux. Therefore, by the definition of Ux we must have B = Ux. �

Theorem 2.4. Let (X,=) be an SLH fuzzy topological space. If for some a ∈
[0, 1), |=a| < ∞ then (X,=a) is SLH.

Proof. For each x ∈ X, let

Ux =
⋂
{O : O ∈ =a and x ∈ O} .

Then by Theorem 2.3, it is sufficient to show that Ux ∈ m(X,=a) for each x ∈ X.
Let x ∈ X. Since |=a| < ∞ then Ux ∈ =a. Thus by Lemma 2.1, it follows that
there exists A ∈ m(X,=a) such that A ⊆ Ux. Let β be a representable base for
=, then by Lemma 2.2, it follows that βa =

{
λ−1 (a, 1] : λ ∈ β

}
is a base for =a.

Since Ux ∈ =a, then by Lemma 2.3, it follows that there exists λ ∈ β such that
Ux = λ−1 (a, 1]. Choose y ∈ A, then x, y ∈ S(λ) and so there exists h ∈ FH(X,=)
such that h(y) = x. Now by Lemma 1.8, we have h ∈ H(X,=a). Since x ∈ h(A)
and h(A) ∈ m(X,=a), it follows that Ux = h(A). Thus, Ux ∈ m(X,=a). �
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Corollary 2.3. Let (X,=) be an SLH fuzzy topological space for which |X| < ∞
or |=| < ∞. Then for every a ∈ [0, 1), (X,=a) is SLH.

Corollary 2.3 gives two partial answers to the following question, which raised
by Al Ghour [3].

Question 2.1. Let X be a set with |X| > 2 and let (X,=) be an SLH fuzzy
space. Is it true that (X,=a) is SLH for all a ∈ [0, 1)?

This will leads us to propose the following question.
Question 2.2. Let (X,=) be an SLH fuzzy topological space such that both X

and = are infinite sets. Is it true that (X,=a) is SLH for all a ∈ [0, 1)?

3. Closed homogeneous fuzzy topological spaces

We start this section by the following proposition which characterizes the closed-
homogeneous topological spaces.

Proposition 3.1. Let (X, τ) be a topological space. Then the following are
equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) τ is a representable base for τ .
(iii) Every base for τ is representable.

Proof. (i) =⇒(ii) Suppose that (X, τ) is a closed-homogeneous topological space.
It is clear that τ is a base for τ . To see that τ is representable, let ∅ 6= U ∈ τ and
let x, y ∈ U . Let K = X − U . Then K is a closed subset of X − {x, y}, hence
there exists h ∈ H(X, τ) such that h(x) = y and h(t) = t for all t ∈ K = X − U .
Therefore, τ is a representable base for τ .

(ii) =⇒(iii) Obvious.
(iii) =⇒(ii) The proof of this direction is similar to that used in (i) =⇒(ii). �

Definition 3.1. A fuzzy topological space (X,=) is called closed-homogeneous
provided that for any x, y in X and for any C closed subset of (X,=0) with
C ⊆ X − {x, y}, there exists h ∈ FH(X,=) such that h(x) = y and h(t) = t for
all t ∈ C.

Theorem 3.1. Let (X,=) be a fuzzy topological space. Then the following are
equivalent.

(i) (X,=) is closed-homogeneous.
(ii) = is a representable base for =.
(iii) Every base for = is representable.
(iv) For any non zero λ ∈ = and any two fuzzy points p, q ∈ λ with p(xp) =

q(xq), there exists h ∈ FH(X,=) such that h(p) = q and h(t) = t for all
t ∈ X − S(λ).

Proof. (i) =⇒(ii) Suppose that (X,=) is a closed-homogeneous fuzzy topological
space. It is obvious that = is a base for =. To show that = is representable, let
0 6= λ ∈ = and x, y ∈ S(λ). Since S(λ) ∈ =0, then C = X − S(λ) is a closed
subset of (X,=0) and C ⊆ X − {x, y}. Since (X,=) is closed-homogeneous, it
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follows that there exists h ∈ FH(X,=) such that h(x) = y and h(t) = t for all
t ∈ C = X − S(λ). Therefore, = is a representable base for =.

(ii) =⇒(iii) Obvious.
(iii) =⇒(iv) Similar to that used in [3, Theorem 3.4].
(iv) =⇒(i) Let C be any closed subset of (X,=0) with C ⊆ X − {x, y}. Then

X − C is open in (X,=0) and so there exists λ ∈ = such that X − C = S(λ).
Let p, q be the fuzzy points such that xp = x, xq = y and p(xp) = q(xq) =
min {λ(x), λ(y)} /2. Then p, q ∈ λ and so by (iv), it follows that there exists
h ∈ FH(X,=) such that h(p) = q and h(t) = t for all t ∈ X − S(λ) = C.
Therefore, h(x) = y. Hence, (X,=) is closed-homogeneous. �

Corollary 3.1. Every closed-homogeneous fuzzy topological space is SLH.
Corollary 3.2. Every closed-homogeneous fuzzy topological space is homoge-

neous.

Proof. Let (X,=) be a closed-homogeneous fuzzy topological space and let
x, y ∈ X. Since x, y ∈ S(1) and by Theorem 3.1 = is representable, it follows
that there exists h ∈ FH(X,=) such that h(x) = y. Hence (X,=) is homoge-
neous. �

Theorem 3.2. Let (X, τ) be a topological space. Then (X, τ) is closed-homoge-
neous iff (X, ω(τ)) is closed-homogeneous.

Proof. Suppose that (X, τ) is a closed-homogeneous topological space. Let 0 6=
λ ∈ ω(τ) and x, y ∈ S(λ). Since S(λ) ∈ τ , then by Proposition 3.1, it follows that
there exists h ∈ H(X, τ) such that h(x) = y and h(t) = t for all t ∈ X−S(λ). Using
Lemma 1.2 we conclude that h ∈ FH(X, ω(τ)). Therefore, by Theorem 3.1, it
follows that (X, ω(τ)) is closed-homogeneous. Conversely, suppose that (X, ω(τ))
is a closed-homogeneous fuzzy topological space, and ∅ 6= U ∈ τ , then χU ∈
ω(τ). Since (X, ω(τ)) is closed-homogeneous and x, y ∈ S(χU ) = U , then by
Theorem 3.1, it follows that there exists h ∈ FH(X, ω(τ)) such h(x) = y and
h(t) = t for all t ∈ X − U . Again, by Lemma 1.2 we conclude that h ∈ H(X, τ).
Now, Proposition 3.1 completes the proof of this direction. �

Corollary 3.3. The closed-homogeneity property in fuzzy topological spaces is
a “good extension” of closed homogeneity property in ordinary topological spaces.

Remark 3.1. Lemmas 1.3, 1.6, and Corollary 3.3 show that the converse of
Corollary 3.1 is not true in general.

Question 3.1. Is there a sufficient condition for which SLH fuzzy topological
spaces are closed-homogeneous?

Question 3.2. Is there a sufficient condition for which SLH topological spaces
are closed-homogeneous?

Remark 3.2. Lemmas 1.4, 1.6, and Corollary 3.3 show that the converse of
Corollary 3.2 is not true in general.

Question 3.3. Is there a sufficient condition for which homogeneous fuzzy
topological spaces are closed-homogeneous?
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Question 3.4. Is there a sufficient condition for which homogeneous topological
spaces are closed-homogeneous?

Concerning Question 3.4, the author in [6] has the following result.

Proposition 3.2. Every zero-dimensional homogeneous space that is T0 is a
closed-homogeneous.

The following theorem gives another answer to Question 3.4.

Theorem 3.3. Let (X, τ) be a topological space which contains a minimal open
set. Then the following are equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) (X, τ) is homogeneous.

Proof. (i) =⇒(ii) Corollary 3.2.
(ii) =⇒(i) Suppose that (X, τ) is a homogeneous topological space which con-

tains a minimal open set. Then by Lemma 1.7, it follows that (X, τ) has a partition
base β consisting of minimal open sets all of which are homeomorphic to one an-
other. Let ∅ 6= U ∈ τ and x, y ∈ U , then there exist B1, B2 ∈ β such that
x ∈ B1 ⊆ U and y ∈ B2 ⊆ U . If B1 = B2, we define h : (X, τ) → (X, τ) by
h(x) = y, h(y) = x, and h(t) = t elsewhere to be the required homeomorphism. If
B1 ∩ B2 = ∅, choose a homeomorphism f : (B1, τB1) → (B2, τB2). Let z = f(x)
and define g : (B2, τB2) → (B2, τB2) by g(y) = z, g(z) = y, and g(t) = t elsewhere.
Then g ∈ H(B2, τB2). Define h : (X, τ) → (X, τ) by

h(t) =

 (g ◦ f)(t) if t ∈ B1

(g ◦ f)−1(t) if t ∈ B2

t if t ∈ X − (B1 ∪B2)

Then h ∈ H(X, τ), h(x) = y, and h(t) = t for all t ∈ X − U . Therefore, by
Proposition 3.1, it follows that (X, τ) is closed-homogeneous. �

The following result is a direct consequence of Lemma 2.1 and Theorem 3.3.

Corollary 3.4. Let (X, τ) be a topological space such that |τ | < ∞. Then the
following are equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) (X, τ) is homogeneous.

Corollary 3.5. Let (X, τ) be a topological space such that |X| < ∞. Then the
following are equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) (X, τ) is homogeneous.

Theorem 3.4. Let (X,=) be a closed-homogeneous fuzzy topological space. If
for some a ∈ [0, 1), |=a| < ∞ then (X,=a) is closed-homogeneous.

Proof. Since (X,=) is closed-homogeneous, then by Corollary 3.2, (X,=) is
homogeneous, hence by Lemma 1.8, it follows that (X,=a) is homogeneous. Since
|=a| < ∞, then by Corollary 3.4 it follows that (X,=a) is a closed-homogeneous.

�
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Corollary 3.6. Let (X,=) be a closed-homogeneous fuzzy topological space
for which |X| < ∞ or |=| < ∞. Then for every a ∈ [0, 1), (X,=a) is closed-
-homogeneous.

Question 3.5. Let (X,=) be a closed-homogeneous fuzzy topological space
with both X and = are infinite sets. Is it true that (X,=a) is closed-homogeneous
for all a ∈ [0, 1)?

One may raise the following question.
Suppose (X,=) is a fuzzy topological space such that for every a ∈ [0, 1), (X,=a)

is closed-homogeneous. Is it true that (X,=) is closed-homogeneous?
The following is a counter example for the above question.

Example 3.1. Let X = {a, b} and let = = {0, 1, λ1, λ2, λ3, λ4, 0.5} where
λ1(a) = 0.5, λ1(b) = 1,
λ2(a) = 1, λ2(b) = 0.5,
λ3(a) = 0.7, λ3(b) = 0.5,
λ4(a) = 0.7, λ4(b) = 1,

then = is a fuzzy topology on X, =a = {∅, X} if 0 ≤ a < 0.5 and =a = τdisc if
a ≥ 0.5. Therefore, for each a ∈ [0, 1), (X,=a) is a closed-homogeneous. Now if
(X,=) is closed-homogeneous, then there exists h ∈ FH(X,=) such that h(a) = b,
but (h(λ3))(a) = 0.5 and (h(λ3))(b) = 0.7 which show that h(λ3) /∈ =.

A fuzzy topological space (X,=) is called T2 if for any two distinct fuzzy points
p, q in X, there exist λ1, λ2 ∈ = such that p ∈ λ1, q ∈ λ2 and λ1 ∩ λ2 = 0.

A fuzzy topological space (X,=) is called zero-dimensional if = has a base
consisting of clopen fuzzy sets.

Definition 3.2. A fuzzy topological space (X,=) is called a crisp zero-dimensio-
nal if it is zero-dimensional and the support of each clopen fuzzy set in X is an
open subspace of (X,=).

For Question 3.3, we give the following theorem.

Theorem 3.5. Every crisp zero-dimensional homogeneous T2 fuzzy topological
space is closed-homogeneous.

Proof. Let (X,=) be a crisp zero-dimensional homogeneous T2 fuzzy topological
space. Let β be a base for = which consists of clopen fuzzy sets. Let 0 6= λ ∈ = and
let p, q be any two fuzzy points in X such that p, q ∈ λ and p(xp) = q(xq). If p, q
are not distinct, then p = q and so the identity function on X is the required fuzzy
homeomorphism. If p, q are distinct, then since (X,=) is T2, there exist µ1, µ2 ∈ β
such that p ∈ µ1, q ∈ µ2 and µ1 ∩ µ2 = 0. Choose υ1, υ2 ∈ β such that p ∈ υ1 ⊆ λ
and q ∈ υ2 ⊆ λ. Let υ = υ1 ∪ υ2, γ1 = µ1 ∩ υ, and γ2 = µ2 ∩ υ. Since (X,=)
is homogeneous, there exists f ∈ FH(X,=) such that f(xp) = xq and hence,
f(p) = q. Let λ1 = γ1 ∩ f−1(γ2) and λ2 = f(λ1). Define h : (X,=) → (X,=) by

h(t) =

 f(t) if t ∈ S(λ1)
f−1(t) if t ∈ S(λ2)
t if t ∈ X − (S(λ1) ∪ S(λ2))
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Let µ ∈ =. Then µ = µ ∩ (χS(λ1) ∪ χS(λ2) ∪ χ(X−S(λ1)∪S(λ2))), and so

h−1(µ) = h−1(µ ∩ χS(λ1)) ∪ h−1(µ ∩ χS(λ2)) ∪ h−1(µ ∩ χχ(X−S(λ1)∪S(λ2)))

= f(µ ∩ χS(λ1)) ∪ f−1(µ ∩ χS(λ2)) ∪ (µ ∩ χχ(X−S(λ1)∪S(λ2))).

Therefore, h−1(µ) ∈ = and hence h is fuzzy continuous. Similarly we can show
that h−1 is a fuzzy continuous. It is not difficult to see that h is a bijection, hence
h ∈ FH(X,=). Now since xp ∈ S(λ1) and f(p) = q, hence h(xp) = xq. Since
p(xp) = q(xq), it follows that h(p) = q. Since λ1 ∪λ2 ⊆ λ, then S(λ1 ∪λ2) ⊆ S(λ)
and so for every t ∈ X − S(λ), h(t) = t. Thus, by Theorem 3.1(iv) it follows that
(X,=) is a closed-homogeneous. �

Question 3.6. Is it true that every T2 zero-dimensional homogeneous fuzzy
topological space is closed-homogeneous?
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