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A MEAN VALUE PROPERTY OF HARMONIC FUNCTIONS
ON PROLATE ELLIPSOIDS OF REVOLUTION

E. SYMEONIDIS

Abstract. We establish a mean value property for harmonic functions on the in-
terior of a prolate ellipsoid of revolution. This property connects their boundary

values with those on the interfocal segment.

1. Introduction

Let D be a bounded domain in Rn (n ≥ 2), let be f a continuous real-valued
function on its boundary ∂D. The classical Dirichlet problem consists in the
determination of a harmonic function Hf on D which can be continuously extended
into ∂D by f . If ∂D is sufficiently smooth, the Dirichlet solution Hf possesses an
integral representation of the form

Hf (z) =
1

µ(∂D)

∫
∂D

PD(z, x)f(x)dµ(x),

where PD is the so-called Poisson kernel of D and µ is an adequate measure on ∂D
(see [2, Theorem 21,VI]). The Poisson kernel can be explicitly given only in some
few cases. However, it often may be worth to try to find an explicit connection
between distinguished interior points z and the boundary values f(x). In the
case of a ball such a connection is given by the mean value property of harmonic
functions, when z is the centre of the ball. (Here, of course, the Poisson kernel is
easily written down). Generally, it is reasonable to expect that whenever similar
connections exist, they always have to do with the geometric properties of the
domain D.

In this work we study the domain class of prolate balls, that is, interiors of
prolate ellipsoids of revolution (the latter are also called “prolate spheroids”) in
Rn (n ≥ 3). The two-dimensional case of elliptic discs (i. e. interiors of ellipses)
has been studied in the context of complex analysis before. The Poisson kernel for
such discs can be explicitly given in terms of an infinite series, which takes a closed
form under the use of the Jacobi zeta function ([3]). In the course of the derivation
of this Poisson kernel it is observed that there exists a purely elementary “mean
value property” connecting the boundary values of the harmonic function with
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those on the interfocal segment of the ellipse. For the elliptic disc x2

a2 + y2

b2 ≤ 1
(a > b) with foci at (−c, 0) and (c, 0) (c =

√
a2 − b2) and a harmonic function h

on an open neighbourhood of it the property states (see [3]):

1
π

∫ c

−c

h(x, 0)√
c2 − x2

dx =
1
2π

∫ π

−π

h(a cos s, b sin s)ds .(1)

This property can be traced back at least up to the 1960’s.
The goal of this work is a generalization of (1) to higher dimensions. (This is

achieved at equation (11).) As already mentioned, we restrict ourselves to prolate
ellipsoids of revolution, because they still have well-defined foci. We are led to
the result by imposing the Dirichlet boundary condition on the generic solution of
Laplace’s equation obtained by separation of variables.

2. The Mean Value Property

Let ER ⊆ Rn (n ≥ 3) be the normalized prolate ball

x2
1

cosh2 R
+

x2
2 + . . . + x2

n

sinh2 R
< 1

with foci at (−1, 0, . . . , 0) and (1, 0, . . . , 0). A parametrization is given by the
mapping

α : (r, s1, . . . , sn−1) 7→(cosh r cos s1, sinh r sin s1 cos s2, sinh r sin s1 sin s2 cos s3, . . . ,

sinh r sin s1 . . . sin sn−2 cos sn−1, sinh r sin s1 . . . sin sn−2 sin sn−1)

for r ∈ [0, R[, s1, . . . , sn−2 ∈ [0, π] and sn−1 ∈ ] − π, π]. The computation of the
Laplacian in these elliptic coordinates requires the coefficients of the metric tensor

g11 =
∣∣∣∣∂α

∂r

∣∣∣∣2 , g1j =
〈

∂α

∂r
,

∂α

∂sj−1

〉
, gij =

〈
∂α

∂si−1
,

∂α

∂sj−1

〉
for 2 ≤ i, j ≤ n. We compute: g11 = sinh2 r+sin2 s1 = g22; gkk = sinh2 r sin2 s1 . . .
sin2 sk−2 for 3 ≤ k ≤ n; gij = 0 for i 6= j. The Laplacian of a function u is given
by

∆u =
1√
ḡ

n∑
k=1

∂k

 n∑
j=1

gjk√ḡ ∂ju

 ,(2)

where gjk are the coefficients of the inverse matrix (here equal to g−1
jk δjk),

ḡ = det(gij)i,j and ∂j denotes the partial derivative with respect to the j-th
coordinate. Thus,

∆u =
1√
ḡ

n∑
k=1

∂k

(
gkk√ḡ∂ku

)
= g11 ∂2u

∂r2
+

n∑
k=2

gkk ∂2u

∂s2
k−1

+
∂
∂r

(
g11√ḡ

)
√

ḡ
· ∂u

∂r
+

n∑
k=2

∂
∂sk−1

(
gkk√ḡ

)
√

ḡ
· ∂u

∂sk−1
.
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For the mean value property it suffices to restrict ourselves to functions u which
are invariant with respect to rotations about the x1-axis. Such functions do not
depend on s2, . . . , sn−1, so in this case we have

∆u = g11 ∂2u

∂r2
+ g22 ∂2u

∂s2
1

+
∂
∂r

(
g11√ḡ

)
√

ḡ
· ∂u

∂r
+

∂
∂s1

(
g22√ḡ

)
√

ḡ
· ∂

∂s1

=
1

sinh2 r + sin2 s1

(
∂2u

∂r2
+

∂2u

∂s2
1

)
+

(n− 2) coth r

sinh2 r + sin2 s1

· ∂u

∂r

+
(n− 2) cot s1

sinh2 r + sin2 s1

· ∂u

∂s1

after the computations, ḡ being equal to(
sinh2 r + sin2 s1

)2 (
sinh2 r sin2 s1

)n−2 (
sin2 s2

)n−3
. . .

(
sin2 sn−2

)1
.

Thus, the harmonic functions of r and s1 are characterized by the equation

∂2u

∂r2
+ (n− 2) coth r · ∂u

∂r
+

∂2u

∂s2
1

+ (n− 2) cot s1 ·
∂u

∂s1
= 0 .(3)

Now let f : ∂ER → R be a continuous function. First we assume that f is
invariant with respect to rotations about the x1-axis. For shortness we write f(s1)
instead of f (α(R, s1, . . . , sn−1)). We shall solve the Dirichlet problem for ER by
separation of variables, so it is necessary to determine all harmonic functions of
the form u(r, s1) = U(r)V (s1). Equation (3) implies:

U ′′

U
+ (n− 2) coth r · U ′

U
= −V ′′

V
− (n− 2) cot s1 ·

V ′

V
=: λ ∈ R .(4)

After substituting x = 1−cos s1
2 = sin2 s1

2 , the second equation becomes

x(1− x)Ṽ ′′ +
[
n− 1

2
− (n− 1)x

]
Ṽ ′ + λṼ = 0 , Ṽ (x) = V (s1).(5)

It can be shown that this equation has a bounded solution for 0 ≤ x ≤ 1 if and only
if λ is of the form k(k + n− 2) with k ∈ N ∪ {0} (see [4], [5, p.11] or, for another
way of solving, [1, Intro.3.1]). Then, (5) becomes a hypergeometric differential
equation

x(1− x)Ṽ ′′ + [c− (a + b + 1)x]Ṽ ′ − abṼ = 0
with a = −k, b = k + n− 2 and c = n−1

2 . The solution which is regular at x = 0
and takes there the value 1 is given by the function

F (a, b; c;x) :=
∞∑

j=0

(a)j(b)j

(c)j
· xj

j!
,

where (η)0 := 1, (η)j+1 := (η)j(η + j) for j ∈ N ∪ {0}, the so-called Pochhammer
symbol (classical notations). Thus, (5) implies

Ṽ = Ṽk(x) = F

(
−k, k + n− 2;

n− 1
2

;x
)

.



58 E. SYMEONIDIS

For solutions of the second part of (4) we choose the functions

V = Vk(s1) := Ṽk

(
1− cos s1

2

)
·
(

k + n− 3
k

)
= C

n−2
2

k (cos s1) ,

where C
n−2

2
k is the so-called Gegenbauer (or “ultraspherical”) polynomial of degree

k:

C
n−2

2
k (x) :=

(
k + n− 3

k

)
· F

(
−k, k + n− 2;

n− 1
2

;
1− x

2

)
.

The first part of (4) being equal to λ = k(k + n − 2) leads after the substitution
z = − sinh2 r

2 , Q(z) = U(r) to the hypergeometric differential equation

z(1− z)Q′′ +
[
n− 1

2
− (n− 1)z

]
Q′ + k(k + n− 2)Q = 0 ,(6)

the same one as in (5). For solutions we take the functions

Q = Qk(z) =
(

k + n− 3
k

)
F

(
−k, k + n− 2;

n− 1
2

; z
)

= C
n−2

2
k (1− 2z) ,

which lead to
U = Uk(r) = C

n−2
2

k (cosh r) .

For the functions

u = uk(r, s1) = Uk(r)Vk(s1) = C
n−2

2
k (cosh r)C

n−2
2

k (cos s1) , k ∈ N ∪ {0},
to be harmonic, it remains to show that they are everywhere smooth, since the
parametrization α is not diffeomorphic on the interfocal segment. To this end we
recall that the Gegenbauer polynomial C

n−2
2

k (x) has the parity of xk.1 Therefore,
there are polynomials Pk and Qk such that

C
n−2

2
2k (cosh r)C

n−2
2

2k (cos s1) = Pk(cosh2 r)Pk(cos2 s1) ,

C
n−2

2
2k+1(cosh r)C

n−2
2

2k+1(cos s1) = cosh r cos s1 ·Qk(cosh2 r)Qk(cos2 s1) .

According to the fundamental theorem on symmetric polynomials, the right sides
can be written as polynomials in cosh r cos s1 and cosh2 r + cos2 s1. Since these
expressions are recognized as the smooth functions x1 and 1 + x2

1 + . . . + x2
n,

everything is established.
The Dirichlet solution Hf is now assumed of the form

Hf (r, s1) =
∞∑

k=0

akC
n−2

2
k (cosh r)C

n−2
2

k (cos s1)(7)

(the left side is an abbreviation for Hf (α(r, s1, . . . , sn−1)). For r = R it should
hold:

∞∑
k=0

akC
n−2

2
k (coshR)C

n−2
2

k (cos s1) = f(s1) .(8)

1For the basic facts about Gegenbauer polynomials see for instance [7].
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The Gegenbauer polynomials C
n−2

2
k (x) form an orthogonal system in

L2
(
[−1, 1] ; (1− x2)

n−3
2

)
. In fact,∫ 1

−1

C
n−2

2
k (x)C

n−2
2

l (x)(1− x2)
n−3

2 dx =
23−nπΓ(k + n− 2)

k!
(
k + n−2

2

)
Γ

(
n−2

2

)2 δkl(9)

([7, p. 179]). Since C
n−2

2
k has degree k, it follows from the approximation theorem

of Weierstraß that the system
(
C

n−2
2

k

)
k

is complete. For (8) being the Fourier
expansion of f it must therefore hold:

ak =
1

C
n−2

2
k (coshR)

·
k!

(
k + n−2

2

)
Γ

(
n−2

2

)2

23−nπΓ(k + n− 2)
·
∫ π

0

f(s1)C
n−2

2
k (cos s1) sinn−2 s1 ds1

for k ∈ N ∪ {0}. For the moment we assume that f is a polynomial in cos s1. In
this case, only finite number of the ak are nonzero and the right side of (7) is a
finite sum which presents the solution to the Dirichlet problem for ER. From (7)
and (9) it follows:∫ π

0

Hf (0, s1) sinn−2 s1ds1 = a0C
n−2

2
0 (1) · 23−nπΓ(n− 2)

n−2
2 Γ

(
n−2

2

)2 =
∫ π

0

f(s1) sinn−2 s1ds1

⇐⇒
∫ 1

−1

Hf (x, 0, . . . , 0)(1− x2)
n−3

2 dx =
∫ π

0

f(s1) sinn−2 s1ds1(10)

(the latter equation without the abbreviation in Hf ). If f is an arbitrary continu-
ous boundary function only depending on s1, then an approximation argument on
the basis of Weierstraß’ approximation theorem and the maximum principle show
that (10) still holds.

Next, we drop the assumption that f is rotationally invariant with respect to
the x1-axis. We denote by f̃ the “symmetrization” of f , that is,

f̃(x) :=
∫

SO(n−1)

f(Ax) dA for x ∈ ∂ER ,

where SO(n − 1) stands for the group of rotations about the x1-axis and dA for
its normalized Haar integral. Since rotations preserve harmonicity and because of
the relation Hf ◦A = Hf◦A for A ∈ SO(n− 1), the function

z 7−→
∫

SO(n−1)

Hf (Az) dA

is harmonic and has boundary values equal to f̃ . Therefore,∫
SO(n−1)

Hf (Az) dA = Hf̃ (z) ,
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which implies that Hf (x, 0, . . . , 0) ≡ Hf̃ (x, 0, . . . , 0). Now (10) gives:∫ 1

−1

Hf (x, 0, . . . , 0)(1− x2)
n−3

2 dx =
∫ π

0

f̃(s1) sinn−2 s1 ds1

=
∫ π

0

∫
SO(n−1)

f
(
A(coshR cos s1, sinhR sin s1, 0, . . . , 0)T

)
sinn−2 s1 dA ds1

=
1

Ωn−1

∫ π

0

. . .

∫ π

0

∫ 2π

0

f(coshR cos s1, sinhR sin s1 cos s2, . . . ,

sinhR sin s1 . . . sin sn−1) · sinn−2s1 sinn−3s2 . . . sin sn−2dsn−1dsn−2 . . .ds2ds1,

since the Haar integral induces the rotation invariant measure (= surface area
measure) on the sphere (Ωn−1 stands for the area of the unit sphere in Rn−1).

For an arbitrary prolate ball x2
1

a2 + x2
2+...+x2

n

b2 < 1 (a > b) with foci at (−c, 0, . . . , 0)
and (c, 0, . . . , 0) (c =

√
a2 − b2) the similarity x 7→ cx has to be employed. So, if

h is a harmonic function on an open neighbourhood of the closed prolate ball, it
holds:

Γ
(

n
2

)
Γ

(
n−1

2

)√
πcn−2

∫ c

−c

h(x, 0, . . . , 0)(c2 − x2)
n−3

2 dx

=
Γ

(
n
2

)
2π

n
2

∫ π

0

. . .

∫ π

0

∫ 2π

0

h(a cos s1, b sin s1 cos s2, . . . , b sin s1 . . . sin sn−1)

sinn−2 s1 sinn−3 s2 . . . sin sn−2 dsn−1dsn−2 . . .ds1

(11)

(the constants have been introduced according to Ωk = 2π
k
2

Γ( k
2 ) for each k and so

that each side equals one for h = 1). This equation generalizes (1) and presents
the mean value property in all dimensions.

It is important to find out the geometric meaning of the multiple integral on
the right side of (11). Let E denote the above prolate ball. The vector(x1

a2
,
x2

b2
, . . . ,

xn

b2

)
is orthogonal to the boundary ellipsoid at its point (x1, . . . , xn). Thus, the distance
from the centre to the tangent plane at (x1, . . . , xn) is equal to

x2
1

a2
+

x2
2 + . . . + x2

n

b2√
x2

1

a4
+

x2
2 + . . . + x2

n

b4

=
1√

x2
1

a4
+

1
b2

(
1− x2

1

a2

) =
1√

1
b2
− c2x2

1

a4b2

=
b√

1− c2x2
1

a4

=
b√

1− c2 cos2 s1

a2

=
ab√

b2 + c2 sin2 s1

.
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The surface element of ∂E is given by√
b2 + c2 sin2 s1 bn−2 sinn−2 s1 sinn−3 s2 . . . sin sn−2 ds1 . . .dsn−1

(in the normalized situation at the beginning of this section it is equal to
det (gij)

1/2
2≤i,j≤n ds1 . . .dsn−1). Therefore, the integral on ∂E that measures the

volume to the centre is given by
1
n

abn−1 sinn−2 s1 sinn−3 s2 . . . sin sn−2 ds1 . . .dsn−1

for s1, . . . , sn−2 ∈ [0, π] and sn−1 ∈ [−π, π]. Up to a constant factor, this is exactly
the integral in (11). The same observation can be made in the two-dimensional
case (1), where the integral ds is proportional to the area that the segment from the
origin to the point (a cos s, b sin s) traces. Is this phenomenon the key to discover
mean value properties for other centrally symmetric domains?
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6. Szegö G., Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc. (Colloquium Publica-

tions 23), 1975.
7. Tricomi F. G., Vorlesungen über Orthogonalreihen, Second Edition, Springer, Heidelberg,

1970.

E. Symeonidis, Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt-Ingol-

stadt, Ostenstr. 26-28, 85072 Eichstätt, Germany, e-mail : e.symeonidis@ku-eichstaett.de


