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COUNTING ALL EQUILATERAL TRIANGLES IN {0, 1, ..., n}3

E. J. IONASCU

Abstract. We describe a procedure of counting all equilateral triangles in the three

dimensional space whose coordinates are allowed only in the set {0, 1, ..., n}. This

sequence is denoted here by ET (n) and it has the entry A102698 in “The On-Line
Encyclopedia of Integer Sequences”. The procedure is implemented in Maple and

its main idea is based on the results in [3]. Using this we calculated the values

ET (n) for n = 1 . . . 55 extending previous calculations known for n ≤ 34. Some
facts and conjectures about this sequence are stated. The main conjecture raised

here is that lim
n→∞

ln ET (n)

ln n + 1
exists.

1. Introduction

If we restrict the vertices of an equilateral triangle to be in Z3 we obtain a typical
element in ET (Z). It is not that hard to see that there are no such triangles whose
vertices are contained in the coordinate planes or any other plane parallel to one
of them. Also, the sides of a triangle in ET (Z) cannot be of an arbitrary length.
If one such triangle is considered, a whole family in ET (Z) can be generated from
it with vertices in the same plane. Moreover, we have shown in [3] the following
theorems that we are going to use in our construction here.

Theorem 1.1. If the triangle 4OPQ ∈ ET (Z) with O the origin and l = ||
→

OP ||
then:

(i) the points P and Q are contained in a plane of the equation ax+by+cz = 0,
where

a2 + b2 + c2 = 3d2, a, b, c, d ∈ Z(1)

and l2 = 2q;
(ii) the side length l is of the form

√
2(m2 −mn + n2) with m,n ∈ Z.

It is important to be able to generate all primitive solutions of (1):
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Theorem 1.2. The following formulae give a three integer parameter solution
of (1): 

a = −x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3

b = x2
1 − x2

2 + x2
3 − 2x2x1 − 2x2x3

c = x2
1 + x2

2 − x2
3 − 2x3x1 − 2x3x2

d = x2
1 + x2

2 + x2
3, x1, x2, x3 ∈ Z.

(2)

Moreover, every solutions of (1), a, b, c, d can be found from (2) with x1, x2, x3 ∈
Z[ 1√

k
] and k = (3d− a− b− c)/2 ∈ N.

We include some general remarks about the solutions of (1) which are discussed
in [3]:

• if we assume that gcd(a, b, c) = 1 then all a, b, c, d must be odd integers
• for every d odd there exists at least one solution which is not trivial (i.e.

a = b = c = d)
• [Gauss] a positive integer n can be written as a sum of three squares iff n

is not of the form 4k(8l + 7) with k, l ∈ Z (see [1] for an elementary proof)
Our construction depends essentially on a particular solution, (r, s) ∈ Z2, of the

equation:
2(a2 + b2) = s2 + 3r2.(3)

It turns out that this Diophantine equation has always solutions if a, b, c and d
are integers satisfying (1). The family of equilateral triangles we have mentioned
can be described more precisely as another parametrization.

Theorem 1.3. Let a, b, c, d be odd positive integers such that a2+b2+c2 = 3d2,
with gcd (d, c) = 1. Then a triangle 4OPQ ∈ ET (Z) has its vertices in the plane
of the equation aα + bβ + cγ = 0 if and only if P (u, v, w) and Q(x, y, z) are given
by 

u = mum− nun,

v = mvm− nvn,

w = mwm− nwn,

and


x = mxm− nxn,

y = mym− nyn,

z = mzm− nzn,

(4)

with 
mx = − 1

2 [db(3r + s) + ac(r − s)]/q, nx = −(rac + dbs)/q

my = 1
2 [da(3r + s)− bc(r − s)]/q, ny = (das− bcr)/q

mz = (r − s)/2, nz = r

and
mu = −(rac + dbs)/q, nu = − 1

2 [db(s− 3r) + ac(r + s)]/q

mv = (das− rbc)/q, nv = 1
2 [da(s− 3r)− bc(r + s)]/q

mw = r, nw = (r + s)/2

(5)

where q = a2 + b2, (r, s) is a suitable solution of (3) and m,n ∈ Z.
Moreover, the side-lengths of such a triangle are equal to d

√
2(m2 −mn + n2).
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Let us observe that one can use Theorem 1.3 as long as min(gcd(q, c),
gcd(q, a), gcd(d, b)) = 1. However, we have calculated that this property holds
true for all solutions a, b, c, d of (1) such that gcd(a, b, c) = 1 and with all odd
d < 1105. In fact, 1105 is the first d for which the condition above fails with
certain choices of a, b, c. This allows us to calculate ET (n) for n = 1, . . . , 55 as
we will see later.

2. Description of the procedure and some ingredients

The idea is based on the facts above and a few other results. One would like
first to find the side lengths of the triangles in ET (Z) ∩ Cn, where Cn is the cube
[0, n]3. This will partition these triangles into clear classes. For this purpose we
will use the Proposition 1.2. Then for a given side-length l we need to find all
the possible planes that contain triangles of sides l. This gives another criteria
of sub-partition even further these triangles. Using the parametrizations given in
Theorem 1.3 then one finds such smallest triangle within a given plane that can
fit in Cn after a translation and rotation. Once that is obtained we rotate and
translate it remaining in Cn in all possible ways, but in a pairwise disjoint manner.
A formula for the number of all these equilateral triangles will be given. Finally
all these numbers are added up to obtain ET (n).

The first fact that we will use is the following geometric observation.

Proposition 2.1. The largest side length of an equilateral triangle whose ver-
tices are contained in a cube of side lengths r is r

√
2.

Proof. If an equilateral triangle of side length l, has its vertices in the cube
[0, r]3, we denote by A1, A2, and A3 the areas of the three projections of this
triangle on the three coordinate planes. It is easy to see that A2 = A2

1 + A2
2 + A2

3

where A is the area of the given equilateral triangle. It is easy to see that the
maximum of the area of an arbitrary triangle inscribed in a square of side length r
is r2/2. Hence A2 = 3l4/16 ≤ 3r4/4. This gives l ≤ r

√
2. Certainly this maximum

is attained when the vertices of the triangle are at the corners of the cube such
that every two are diagonally opposite on the face they belong. �

Let us work out a concrete example (n = 4) to exemplify our counting. Using
Proposition 2.1 and the part (ii) of Theorem 1.1, the side lengths of the triangles
in ET (Z) ∩ C4 can only be

√
2,
√

6, 2
√

2,
√

14, 3
√

2, 2
√

6,
√

26 or 4
√

2. The d
values here are 1 or 3. Since 3(12) = 12 + 12 + 12 and 3(32) = 12 + 12 + 52 are the
only solutions of (1) for d = 1 or d = 3, the parametrizations we need in this case
are, as shown in [3]:

T1,1,1 = {[(0, 0, 0), (m,−n, n−m), (m− n,−m,n)] : m,n ∈ Z,m2 + n2 6= 0}

and

T1,1,5 = {[(0, 0, 0), (4m− 3n, m + 3n,−m), (3m + n,− 3m + 4n,−n)] :

m,n ∈ Z,m2 + n2 6= 0}.
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Here we used the notation Ta,b,c for all triangles in ET (Z) having the origin as one
its vertices and the other two contained in the plane {(α, β, γ) : aα+ bβ + cγ = 0}.

Using the first parametrization we find the m,n such that the triangle obtained
after a translation fits in C4 and the side lengths are

√
2: T1 = {(1, 0, 0), (0, 1, 0),

(0, 0, 1)}. This triangle can be translated in various ways inside of C4, and together
with all its cube symmetries and their translations contribute with a total of 512 in
ET (4). We will prove formula (6) that gives in particular the total of all different
triangles generated by T1 inside of Cn under translations and rotations. The first
parametrization needs to be used also for all the side lengths

√
6, 2

√
2,
√

14,
3
√

2, 2
√

6,
√

26 and 4
√

2. The corresponding triangles obtained respectively are:
T2 := {(1, 0, 2), (2, 1, 0), (0, 2, 1)}, 2T1, T3 := {(2, 0, 3), (0, 3, 2), (3, 2, 0)}, 3T1, 2T2,
T4 := {(1, 4, 0), (4, 0, 1), (0, 1, 4), } and 4T1. Using formula (6) one can check that
the contribution of each of these triangles to ET (4) is (respectively): 216, 216,
128, 64, 8, 16 and 8.

There is a need to use the second parametrization since one can take d = 3 to
obtain the side length 3

√
2. This gives still a new triangle: T5 := {(0, 0, 1), (1, 4, 0),

(4, 1, 0)}. This triangle and all the ones generated inside of C4 by its transforma-
tions described before are different of the ones above because they are contained in
planes having different normals. The contribution of T5 to ET (4) is 96. If tallying
all these classes one gets that ET (4) = 1264.

As we can see from this example, one has to derive a way of finding how many
other triangles can generate from a given one, say T , inside of Cn under all possible
translations, cube symmetries and their translations. We are going to call these
transformations of a triangle allowed transformations since we have to make this a
little more precise. We are going to assume that the given triangle T that is inside
Ct is minimal in the sense that at least one of the coordinates of the vertices in T
is zero and t is the smallest dimension k of the cube Ck containing T or one of its
images given by an allowed transformations on it.

Let us denote by O(T ) the orbit generated by T within Ct under all allowed
transformations. We also need to introduce the standard unit vectors e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1).

It is actually surprising that in order to compute the number f , of all distinct
triangles generated by T (union of all translations of O(T )) within Cn (n ≥ t) one
just needs the following five variables that depend only on T :

(i) n – the dimension of the cube,
(ii) t – the maximum of all the coordinates in T ,
(iii) α(T ) – the cardinality of O(T ),
(iv) β(T ) – the cardinality of O(T ) ∩ [O(T ) + e1],
(v) γ(T ) – the cardinality of [O(T ) + e1] ∩ [O(T ) + e2].

Theorem 2.1. The function f(T, n) described above is given by

f(T, n) = (n + 1− t)3α− 3(n + 1− t)2(n− t)β

+ 3(n + 1− t)(n− t)2γ,
(6)

for all n ≥ t.
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Proof. Let us consider the cube Cs = {0, 1, . . . , s}3 where s = n− t. Clearly the
number of points in this set is (s + 1)3. Each point p in the set Cs is considered
here as a vector. So, f = | ∪

p∈Cs

O(T ) + p|. One essential observation here is such

that |[O(T ) + p] ∩ [O(T ) + q]| = 0 for every p, q such that ||p − q|| ≥ 1, where
||p− q|| = min

i=1,2,3
(|pi − qi|). This is due to the minimality of T .

Let us write the elements of Cs in lexicographical order: p1, p2, . . . , pk where
k = (s + 1)3. We look now at Cs as the three dimensional grid graph. Faces in
this graph are simply unit squares formed by vertices from Cs. One can look at
the cardinality of ∪

i=1..j
O(T ) + pi and show by induction on j that this is equal to

jα− (#edges(Cs(j))β + (#faces(Cs(j))γ

where Cs(j) is the graph induced in Cs by the vertices p1, p2, . . . , pj . Hence we just
need to compute the number of edges and faces in Cs. There are eight vertices in
this graph that have degree 3 (the corners), there are (s− 1)3 vertices of degree 6,
also 6(s − 1)2 vertices with degree 5 and finally 12(s − 1) of degree 4. This gives
a total of

1
2

[
24 + 6(s− 1)3 + 30(s− 1)2 + 48(s− 1)

]
= 3s(s + 1)2

edges. The number of faces is equal to 1
2

[
6s3 + 6s2

]
= 3s2(s + 1). �

Example. Suppose we take T = T5. Then clearly t = 4. One can use a sym-
bolic calculator to find α(T ) = 96, β(T ) = 24 and γ(T ) = 0. So, the contribution of
T5 to an arbitrary cube Cn is f(T5, n) = 96(n−3)3−72(n−3)2(n−4) = 24n(n−3)2.

Remark. These facts give a way to find lower bounds for ET (n). For in-
stance, if we put the contribution of T1 and T2 together we obtain that ET (n) ≥
8(2n− 1)(n2 − n + 1) for all n ≥ 2.

To generate the side lengths we would like to use a well-known result due to
Euler (see [4, pp. 568] and [2, pp. 56]).

Proposition 2.3 (Euler’s 6k+1). An integer t can be written as m2−mn+n2

for some m,n ∈ Z if and only if in the prime factorization of t, 2 and the primes
of the form 6k − 1 appear to an even exponent.

3. The code

Using Proposition 2.3 and Proposition 2.1 we have the following procedure in
Maple to compute the side lengths modulo a factor of two and the square root:

> sides:=proc(n)

local i,j,k,L,a,m,p,q,r,ms;

> L:={1}; ms:=n^2;

> for i from 2 to ms do

a:=ifactors(i); k:=nops(a[2]); r:=0;

> for j from 1 to k do m:=a[2][j][1]; p:=m mod 6;

q:=a[2][j][2] mod 2; if r=0 and (m=2 or p=5) and q=1

then r:=1 fi;
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> if r=0 then L:=L union {i}; fi;

> od; L:=convert(L,list); end:

This procedure gives for n = 10: [1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31,
36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100].
This gives the corresponding side-lengths

[
√

2,
√

6,2
√

2,
√

14, 3
√

2, 2
√

6,
√

26, 4
√

2,
√

38,
√

42, 5
√

2, 3
√

6, 2
√

14,
√

62,
6
√

2,
√

74,
√

78,
√

86, 4
√

6, 7
√

2, 2
√

26,
√

114,
√

122, 3
√

14, 8
√

2,
√

134,
√

146,
5
√

6, 2
√

38,
√

158, 9
√

2, 2
√

42,
√

182,
√

186,
√

194, 10
√

2]
We need a procedure that will give the odd values of d that “divide” a certain

side length in the sense it is possible to write it as d
√

m2 −mn + n2 with m,n ∈ Z:
> dkl:=proc(side)

> local i,x,noft,div,y,y1,z;

> x:=convert(divisors(side),list); noft:=nops(x); div:={ };

> for i from 1 to noft do z:=x[i] mod 2;

> if z=1 then y:=side/x[i]^2;y1:=floor(y); if y=y1

then div:=div union {x[i]}; fi; fi;

> od;

> convert(div,list); end:

For instance, if the side =
√

882 this procedure gives [1, 3, 7, 21] which means
we have at least four possible parametrizations that we can use to find minimal
equilateral triangles.

Next we need to find all the nontrivial solutions [a, b, c] of (1), given and odd
positive integer d, with the property gcd(a, b, c) = 1, 0 < a ≤ b ≤ c which is based
on an internal procedure to solve Diophantine equation A = X2 + Y 2:

> abcsol:=proc(q) local i,j,k,u,x,y,sol,cd; sol:={};

> for i from 1 to q do

u:=[isolve(3*d^2-i^2=x^2+y^2)]; k:=nops(u);

> for j from 1 to k do

if rhs(u[j][1])>=i and rhs(u[j][2])>=i then

cd:=gcd(gcd(i,rhs(u[j][1])),rhs(u[j][2]));

if cd=1 then sol:=sol union

{sort([i,rhs(u[j][1]),rhs(u[j][2])])}; fi; fi;

> od; od; convert(sol,list); end:

For d = 17, abcsol finds four different solutions, [[11, 11, 25], [13, 13, 23], [1, 5, 29],
[7, 17, 23]], and in a few seconds sends out 333 solutions for d = 2007. One
interesting solution in this last case is

19372 + 19732 + 21072 = 3(2007)2.

Now based on the Theorem 1.3 we take a solution of (1) as given by the proce-
dure above and calculate the general parametrization:

> findpar:=proc(a,b,c,m,n)

> local i,j,r,s,sol,mx,nx,my,ny,mu,nu,mv,nv,mz,nz,mw,nw,q,d,u,v,

w,x,y,z,ef,ns,om,l,t;

> q:=a^2+b^2; sol:=convert({isolve(2*q=x^2+3*y^2)},list);

ns:=nops(sol); d:=sqrt((a^2+b^2+c^2)/3); ef:=0;

> for i from 1 to ns do
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if ef=0 then r:=rhs(sol[i][1]); s:=rhs(sol[i][2]);

> uu:=(s^2+3*r^2-2*q)^2; if uu>0 then t:=s;

> s:=r; r:=t; fi;

> mz:=(r-s)/2; nz:=r; mw:=r; nw:=(r+s)/2;

mx:=-(d*b(3*r+s)+a*c(r-s))/(2*q);

nx:=-(r*a*c+d*b*s)/q; my:=(d*a(3*r+s)-b*c(r-s))/(2*q);

ny:=-(r*b*c-d*a*s)/q;

mu:=-(r*a*c+d*b*s)/q; nu:=-(d*b(s-3r)+a*c(r+s))/(2*q);

mv:=(d*a*s-r*b*c)/q; nv:=-(d*a(3r-s)+b*c(r+s))/(2*q);

> if mx=floor(mx) and nx=floor(nx) and my=floor(my) and

ny=floor(ny) and mu=floor(mu) and nu=floor(nu) and

mv=floor(mv) and nv=floor(nv) then

u:=(mu)m-(nu)n; v:=(mv)m-(nv)n; w:=(mw)m-(nw)n;

x:=(mx)m-(nx)n; y:=(my)m-(ny)n; z:=(mz)m-(nz)n;

om:=[[u,v,w],[x,y,z]];

> ef:=1; fi; fi; od; om; end:

For the solution, [1, 5, 29], found earlier for the case d = 17, findpar gives

[[−11m− 13n,−21m + 20n, 4m− 3n], [−24m + 11n,−m + 21n, m− 4n]].

Next, using this parametrization we would like to find if there is any equilateral
triangle in ET (Z) which after a translation fits inside Cstopp.

1: minimaltr:=proc(s,a,b,c,stopp)

2: local i,z,u,nt,d,m,n,T,alpha,beta,gamma,tr,out,L,tri,noft,

tria,orb,avb,length,lengthn;

3: d:=sqrt((a^2+b^2+c^2)/3); $z:=s/d^2;

u:=convert({isolve(z=q^2-qr+r^2)},list); nt:=nops(u);

4: for i from 1 to nt do

5: T:=findpar(a,b,c,rhs(u[i][1]),rhs(u[i][2]));

6: alpha:=min(T[1][1],T[2][1],0); beta:=min(T[1][2],T[2][2],0);

gamma:=min(T[1][3],T[2][3],0);

7: tr[i]:={[T[1][1]-alpha,T[1][2]-beta,T[1][3]-gamma],

[T[2][1]-alpha,T[2][2]\beta,T[2][3]-gamma],

[-alpha,-beta,-gamma]};

8: out[i]:=max(tr[i][1][1],tr[i][1][2],tr[i][1][3],tr[i][2][1],

tr[i][2][2],tr[i][2][3],tr[i][3][1],tr[i][3][2],tr[i][3][3]);

9: od; L:=sort([seq(out[i],i=1..nt)]); tri:={};

10: for i from 1 to nt do if out[i]<= stopp then

tri:=tri union {tr[i]}; fi; od;

11: tri:=convert(tri,list); tria:={};

12: if nops(tri)>0 then noft:=nops(tri); tria:={tri[1]};

orb:=transl(tri[1]);

13: for i from 1 to noft do avb:=evalb(tri[i] in orb);

14: if avb=false then orb:=orb union transl(tri[i]);

tria:=tria union {tri[i]};

15: fi; od; fi; tria; end:

The minimal triangle given by this procedure for s = 17
√

2, a = 1, b = 5,
c = 29, stopp = 30: {[11, 21, 0], [24, 1, 3], [0, 0, 4]}. The last part of the procedure is
actually searching for a set of triangles that generate all the triangles in ET (Z) that
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lay in planes of normal (a, b, c) or all other 23 possibilities obtained by permuting
the coordinates and changing signs. The next procedure is used above and later
in order to compute the parameters α(T ), β(T ) and γ(T ).

> transl:=proc(T)

> local S,Q,i,j,k,a2,b2,c2,a,b,c,d;

> Q:=convert(T,list); a:=max(Q[1][1],Q[2][1],Q[3][1]);

b:=max(Q[1][2],Q[2][2],Q[3][2]);

c:=max(Q[1][3],Q[2][3],Q[3][3]); d:=max(a,b,c); a2:=d-a;

b2:=d-b; c2:=d-c; S:=orbit(T);

> for i from 0 to a2 do

for j from 0 to b2 do

for k from 0 to c2 do

S:=S union orbit(addvect(T,[i,j,k]));

> od; od; od; S; end:

Here the procedure addvect and orbit are:
1: addvect:=proc(T,v) local Q,a,b,c;

2: Q:=convert(T,list); a:=v[1]; b:=v[2]; c:=v[3];

3: {[Q[1][1]+a,Q[1][2]+b,Q[1][3]+c],[Q[2][1]+a,Q[2][2]+b,

Q[2][3]+c],[Q[3][1]+a,Q[3][2]+b,Q[3][3]+c]};

4: end:

and
> orbit:=proc(T)local S,Q,T1;

> Q:=convert(T,list);

> T1:={[Q[1][3],Q[1][2],Q[1][1]],[Q[2][3],Q[2][2],Q[2][1]],

[Q[3][3],Q[3][2],Q[3][1]]};

> S:=orbit1(T) union orbit1(T1); S;

> end:

The orbit1 takes care of the cube symmetries:
> orbit1:=proc(T) local

i,k,T1,a,b,c,x,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,

T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,S,Q,d,a1,b1,c1;

> Q:=convert(T,list);

> a:=max(Q[1][1],Q[2][1],Q[3][1]);

a1:=min(Q[1][1],Q[2][1],Q[3][1]);

> b:=max(Q[1][2],Q[2][2],Q[3][2]);

b1:=min(Q[1][2],Q[2][2],Q[3][2]);

> c:=max(Q[1][3],Q[2][3],Q[3][3]);

c1:=min(Q[1][3],Q[2][3],Q[3][3]);

> d:=max(a,b,c); T1:=T;

> T2:={[Q[1][2],Q[1][3],Q[1][1]],[Q[2][2],Q[2][3],Q[2][1]],

[Q[3][2],Q[3][3],Q[3][1]]};

> T3:={[Q[1][1],Q[1][3],Q[1][2]],[Q[2][1],Q[2][3],Q[2][2]],

[Q[3][1],Q[3][3],Q[3][2]]};

> T4:={[Q[1][1],Q[1][2],d-Q[1][3]],[Q[2][1],Q[2][2],d-Q[2][3]],

[Q[3][1],Q[3][2],d-Q[3][3]]};

> T5:={[Q[1][2],Q[1][3],d-Q[1][1]],[Q[2][2],Q[2][3],d-Q[2][1]],

[Q[3][2],Q[3][3],d-Q[3][1]]};
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> T6:={[Q[1][1],Q[1][3],d-Q[1][2]],[Q[2][1],Q[2][3],d-Q[2][2]],

[Q[3][1],Q[3][3],d-Q[3][2]]};

> T7:={[Q[1][1],d-Q[1][2],Q[1][3]],[Q[2][1],d-Q[2][2],Q[2][3]],

[Q[3][1],d-Q[3][2],Q[3][3]]};

> T8:={[Q[1][2],d-Q[1][3],Q[1][1]],[Q[2][2],d-Q[2][3],Q[2][1]],

[Q[3][2],d-Q[3][3],Q[3][1]]};

> T9:={[Q[1][1],d-Q[1][3],Q[1][2]],[Q[2][1],d-Q[2][3],Q[2][2]],

[Q[3][1],d-Q[3][3],Q[3][2]]};

> T10:={[d-Q[1][1],Q[1][2],Q[1][3]],[d-Q[2][1],Q[2][2],Q[2][3]],

[d-Q[3][1],Q[3][2],Q[3][3]]};

> T11:={[d-Q[1][2],Q[1][3],Q[1][1]],[d-Q[2][2],Q[2][3],Q[2][1]],

[d-Q[3][2],Q[3][3],Q[3][1]]};

> T12:={[d-Q[1][1],Q[1][3],Q[1][2]],[d-Q[2][1],Q[2][3],Q[2][2]],

[d-Q[3][1],Q[3][3],Q[3][2]]};

> T13:={[Q[1][1],d-Q[1][2],d-Q[1][3]],[Q[2][1],d-Q[2][2],

d-Q[2][3]],[Q[3][1],d-Q[3][2],d-Q[3][3]]};

> T14:={[Q[1][2],d-Q[1][3],d-Q[1][1]],[Q[2][2],d-Q[2][3],

d-Q[2][1]],[Q[3][2],d-Q[3][3],d-Q[3][1]]};

> T15:={[Q[1][1],d-Q[1][3],d-Q[1][2]],[Q[2][1],d-Q[2][3],

d-Q[2][2]],[Q[3][1],d-Q[3][3],d-Q[3][2]]};

> T16:={[d-Q[1][1],d-Q[1][2],Q[1][3]],[d-Q[2][1],d-Q[2][2],

Q[2][3]],[d-Q[3][1],d-Q[3][2],Q[3][3]]};

> T17:={[d-Q[1][2],d-Q[1][3],Q[1][1]],[d-Q[2][2],d-Q[2][3],

Q[2][1]],[d-Q[3][2],d-Q[3][3],Q[3][1]]};

> T18:={[d-Q[1][1],d-Q[1][3],Q[1][2]],[d-Q[2][1],d-Q[2][3],

Q[2][2]],[d-Q[3][1],d-Q[3][3],Q[3][2]]};

> T19:={[d-Q[1][1],Q[1][2],d-Q[1][3]],[d-Q[2][1],Q[2][2],

d-Q[2][3]],[d-Q[3][1],Q[3][2],d-Q[3][3]]};

> T20:={[d-Q[1][2],Q[1][3],d-Q[1][1]],[d-Q[2][2],Q[2][3],

d-Q[2][1]],[d-Q[3][2],Q[3][3],d-Q[3][1]]};

> T21:={[d-Q[1][1],Q[1][3],d-Q[1][2]],[d-Q[2][1],Q[2][3],

d-Q[2][2]],[d-Q[3][1],Q[3][3],d-Q[3][2]]};

> T22:={[d-Q[1][1],d-Q[1][2],d-Q[1][3]],[d-Q[2][1],d-Q[2][2],

d-Q[2][3]],[d-Q[3][1],d-Q[3][2],d-Q[3][3]]};

> T23:={[d-Q[1][2],d-Q[1][3],d-Q[1][1]],[d-Q[2][2],d-Q[2][3],

d-Q[2][1]],[d-Q[3][2],d-Q[3][3],d-Q[3][1]]};

> T24:={[d-Q[1][1],d-Q[1][3],d-Q[1][2]],[d-Q[2][1],d-Q[2][3],

d-Q[2][2]],[d-Q[3][1],d-Q[3][3],d-Q[3][2]]};

> S:={T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,

T16,T17,T18,T19,T20,\break T21,T22,T23,T24};

> S; end:

Finally, we are ready to calculate the parameters in Theorem 2.1. We have
α(T ) = transl(T ), β(T ) = inters(T ) where

> inters:=proc(T) local a,b,c,Q,d,S,m,i,S1,S2;

Q:=convert(T,list);

> a:=max(Q[1][1],Q[2][1],Q[3][1]);

> b:=max(Q[1][2],Q[2][2],Q[3][2]);

> c:=max(Q[1][3],Q[2][3],Q[3][3]);
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> d:=max(a,b,c); S2:=transl(T); S:=convert(S2,list);

m:=nops(S); S1:={};

> for i from 1 to m do S1:=S1 union {addvect(S[i],[0,0,1])};

od;

> S2 intersect S1; end:

and γ(T ) = intersch(T ) where

> intersch:=proc(T) local a,b,c,Q,d,S,m,i,S1,S2,S3,S4;

> Q:=convert(T,list);

> S2:=transl(T); S:=convert(S2,list); m:=nops(S); S1:={};

> for i from 1 to m do

S1:=S1 union {addvect(S[i],[0,0,1])}; od; S3:={};

> for i from 1 m do S3:=S3 union {addvect(S[i],[0,1,0])}; od;

> nops(S1 intersect S3); end:

The Theorem 2.1 is then implemented in
f := (n, d, α, β, γ) → (n−d+1)3α−3(n−d+1)2(n−d)β+3(n−d+1)(n−d)2γ

> notrincn:=proc(T,n) local Q,a,b,c,x,a2,b2,c2,d,y,z,w;

> Q:=convert(T,list);

> a2:=max(Q[1][1],Q[2][1],Q[3][1]);

> b2:=max(Q[1][2],Q[2][2],Q[3][2]);

> c2:=max(Q[1][3],Q[2][3],Q[3][3]);

> d:=max(a2,b2,c2);

> x:=nops(transl(T)); y:=nops(inters(T)); w:=intersch(T);

> z:=f(n,d,x,y,w); end:

In the end one has to put all these procedures together and add the number of
triangles together.

> main:=proc(p,lastside,nuptols)

> local i,j,k,s,nos,div,nod,nop,sol,x,netr,noft,l,z;

netr:=nuptols;

> s:=sides(p); nos:=nops(s); print(s);

> for i from lastside to nos do

div:=dkl(s[i]); nod:=nops(div);

> for j from 1 to nod do

sol:=abcsol(div[j]); nop:=nops(sol);

> for k from 1 to nop do

> x:=minimaltr(s[i],sol[k][1],sol[k][2],sol[k][3],p);

> noft:=nops(x); if $noft>=1$ then

for l from 1 to noft do

z:=notrincn(x[l],p);

> netr:=netr+z; print(s[i],div,sol[k],x[l],checkeq(x[l]),

z,netr,i);

> od; fi; od; od; od; netr; end:

The values ET (n) for n = 1 . . . 55 computed with main are given next:
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8 80 368 1264 3448 7792
16176 30696 54216 90104 143576 220328

326680 471232 664648 916344 1241856 1655208
2172584 2812664 3598664 4553800 5702776 7075264
8705088 10628928 12880056 15496616 18523472 22003808

26000584 30567400 35756776 41631672 48278136 55753272
64134536 73495760 83924408 95513248 108379264 122607856

138315720 155613408 174622488 195478424 218279240 243169352
270288064 299786440 331832248 366610560 404253120 444911712
488902856

4. Some facts and conjectures

If we look at the sequence an = ln ET (n)
ln(n+1) , n ∈ N it seems to be increasing.

This sequence is clearly bounded from above since the number of all triangles
in {0, . . . , n}3 is not more than (n + 1)9 and so an ≤ 9. Numerically, the best
upper-bound for an seems to be a value slightly bigger than 5.

From what we have seen before, each class of triangles determined by a, b, c, d,
solutions of (1), brings as a contribution i.e., a polynomial in terms of n. If we
add these polynomials together, we get a polynomial which can be expressed of
the variable ζ = n− 1 (n = ζ + 1) as follows:

n = 1: p1(ζ) = 8ζ3 + 24ζ2 + 24ζ + 8,
ET (1) = p1(0) = 8;

n = 2: p2(ζ) = p1(ζ) + 16 + 48(ζ − 1) + 16(ζ − 1)3 + 48(ζ − 1)2,
ET (2) = p2(1) = 80;

n = 3: p3(ζ) = p2(ζ) + 24 + 72(ζ − 2) + 24(ζ − 2)3 + 72(ζ − 2)2,
ET (3) = p3(2) = 368;

n = 4: p4(ζ) = p3(ζ) + 128 + 312(ζ − 3) + 56(ζ − 3)3 + 240(ζ − 3)2,
ET (4) = p4(3) = 1264;

n = 5: p5(ζ) = p4(ζ) + 40 + 120(ζ − 4) + 40(ζ − 4)3 + 120(ζ − 4)2,
ET (5) = p5(4) = 3448;

n = 6: p6(ζ) = p5(ζ) + 48 + 144(ζ − 5) + 48(ζ − 5)3 + 144(ζ − 5)2,
ET (6) = p6(5) = 7792;

n = 7: p7(ζ) = p6(ζ) + 776 + 1392(ζ − 6) + 128(ζ − 6)3 + 744(ζ − 6)2,
ET (7) = p7(6) = 16176;

n = 8: p8(ζ) = p7(ζ) + 232 + 552(ζ − 7) + 88(ζ − 7)3 + 408(ζ − 7)2,
ET (8) = p8(7) = 30696;

n = 9: p9(ζ) = p8(ζ) + 360 + 840(ζ − 8) + 120(ζ − 8)3 + 600(ζ − 8)2,
ET (9) = p9(8) = 54216;

n = 10: p10(ζ) = p9(ζ) + 80 + 80(ζ − 9)3 + 240(ζ − 9)2 + 240(ζ − 9),
ET (10) = p10(9) = 90104;

. . .
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We conjecture that in general

pn(ζ) = pn−1(ζ) + un(ζ − n + 1)3 + vn(ζ − n + 1)2

+ wn(ζ − n + 1) + sn, n ∈ N,
(7)

with un,vn,wn, and sn non-negative integers.

3

5040302010

4.5

5

0

3.5

4

As the graph above of n → ln ET (n)
ln(n+1) suggests, the second conjecture is that the

following limit exists

lim
n→∞

lnET (n)
ln(n + 1)

= C.(8)
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