UNIFORM APPROXIMATION BY POLYNOMIALS ON REAL NON-DEGENERATE WEIL POLYHEDRON

A. I. PETROSYAN

Abstract

It is proved, that on real non-degenerate polynomial Weil polyhedron G any function, holomorphic in G and continuous on its closure, can be uniformly approximated by polynomials.

1. Introduction

A bounded domain $G \subset \mathbb{C}^{n}$ is called analytic polyhedron if there are some functions $\chi_{1}, \ldots, \chi_{N}$ holomorphic in neighborhoods V of \bar{G}, such that

$$
\begin{equation*}
G=\left\{z \in V:\left|\chi_{i}(z)\right|<1, \quad i=1,2, \ldots, N\right\} . \tag{1}
\end{equation*}
$$

The boundary ∂G of G consists of the "edges"

$$
\sigma_{i}=\left\{z \in \partial G:\left|\chi_{i}(\zeta)\right|=1\right\}
$$

intersecting along the k-dimensional "ribs"

$$
\sigma_{i_{1}, \ldots, i_{k}}=\sigma_{i_{1}} \cap \cdots \cap \sigma_{i_{k}} .
$$

An analytic polyhedron is called Weil polyhedron if $N \geq n$, all edges σ_{i} are $(2 n-1)$-dimensional manifolds and the dimensions of all ribs $\sigma_{i_{1}, \ldots, i_{k}}(2 \leq k \leq n)$ are at most $2 n-k$. The union of all these n-dimensional ribs is the distinguished boundary of G. The domain G is called polynomial polyhedron if all determining functions χ_{i} are polynomials in (1).

The main result of this paper (Theorem 3.1) states that if G is a Weil polyhedron of "general position" in the sense of real analysis (see. Definition 2.1), then any function holomorphic in G and continuous in \bar{G} can be uniformly approximated by functions holomorphic in some neighborhoods of \bar{G}. In the particular case of polynomial polyhedrons, it is proved (Theorem 3.2) that such functions can be approximated by polynomials.

We use some improvement of a method, which is applied in [1] for strictly pseudoconvex domains, and is based on some uniform estimates of solutions of the $\bar{\partial}$-equation

$$
\begin{equation*}
\bar{\partial} u=g, \tag{2}
\end{equation*}
$$

[^0]where $g=\sum_{k=1}^{n} g_{k} d \bar{z}_{k}$ is a $\bar{\partial}$-closed in G differential form of $(0,1)$ type.
We use the following uniform estimate which for $n=2$ is obtained in [2] and for arbitrary n in [3]: in a real non-degenerate Weil polyhedron the equation (2) has a solution $u_{0}(z)$ such that
$$
\left\|u_{0}\right\|_{G} \leq \gamma\|g\|_{G}
$$
where $\gamma=\gamma(G)$ is a constant independent of g and $\|\cdot\|_{G}$ is the sup-norm:
$$
\|u\|_{G}=\sup _{z \in G} u(z), \quad\|g\|_{G}=\sum_{k=1}^{n}\left\|g_{k}\right\|_{G}
$$

Note that there is no theorem on approximation for arbitrary Weil polyhedrons. By a different method, the author [4] has proved an approximation theorem under the complex non-degeneracy condition (meaning that in the general position of complex analysis sense the appropriate edges intersect in the points of distinguished boundary). The class of real non-degenerate polyhedrons is wide enough to provide approximation of any domain of holomorphy by real non-degenerate polyhedrons, which is not true in the case, when the polyhedrons are complexly non-degenerate, i. e. if their edges intersect in a general position, (in the complex analysis sense).

2. Local approximation

Definition 2.1. We call a polyhedron (1) real non-degenerate if for any collection i_{1}, \ldots, i_{k} the matrix

$$
\left(\operatorname{grad}_{\mathbf{R}}\left|\chi_{i_{1}}(z)\right|, \ldots, \operatorname{grad}_{\mathbf{R}}\left|\chi_{i_{k}}(z)\right|\right)
$$

attains its maximal rank in all points $z \in \sigma_{i_{1}, \ldots, i_{k}}$.
Here

$$
\operatorname{grad}_{\mathbf{R}} f(z)={ }^{t}\left(D_{1} f(z), \ldots, D_{n} f(z), \bar{D}_{1} f(z), \ldots, \bar{D}_{n} f(z)\right)
$$

where t before the bracket means transposition and

$$
D_{k} f(z)=\frac{\partial f(z)}{\partial z_{k}}, \quad \bar{D}_{k} f(z)=\frac{\partial f(z)}{\partial \bar{z}_{k}}, \quad k=1, \ldots, n
$$

Geometrically, Definition 2.1 means that the edges $\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}$ intersect in a general position (in the real analysis sense).

We start by proving the following geometrical property of non-degenerate polyhedrons.

Proposition 2.2. Let G be a real non-degenerate polyhedron (1) and let $N \leq$ 2n. Then for any point $\zeta \in \partial G$ there exist a neighborhood B_{ζ} and a vector ν_{ζ}, such that $z+\delta \nu_{\zeta} \in G$ if $z \in \bar{B}_{\zeta} \cap \bar{G}$ for $\delta>0$ small enough.

Proof. Denote $\varphi_{i}=\left|\chi_{i}\right|-1$ and assume that $\zeta \in \partial G$ belongs to the edge $\sigma_{i_{1}, \ldots, i_{k}}$, i.e. $\varphi_{i_{1}}(\zeta)=0, \ldots, \varphi_{i_{k}}(\zeta)=0$ and

$$
\begin{equation*}
\varphi_{s}(\zeta)<0, \quad s \neq i_{1}, \ldots, i_{k} \tag{3}
\end{equation*}
$$

By $k \leq 2 n$ and our assumptions, the vectors $\operatorname{grad}_{\mathbf{R}} \varphi_{i_{1}}(\zeta), \ldots, \operatorname{grad}_{\mathbf{R}} \varphi_{i_{k}}(\zeta)$ are linearly independent. Hence there is a point w such that

$$
\sum_{m=1}^{n} D_{m} \varphi_{j}(\zeta)\left(w_{m}-\zeta_{m}\right)+\sum_{m=1}^{n} \bar{D}_{m} \varphi_{j}(\zeta)\left(\bar{w}_{m}-\bar{\zeta}_{m}\right)<0, \quad j=i_{1}, \ldots, i_{k}
$$

Due to the continuity of $D_{m} \varphi_{j}(\zeta)$ and $\bar{D}_{m} \varphi_{j}(\zeta)$, there is a neighborhood B_{ζ}, such that for all points $z \in \bar{B}_{\zeta}$ the inequalities
(4) $\sum_{m=1}^{n} D_{m} \varphi_{j}(z)\left(w_{m}-\zeta_{m}\right)+\sum_{m=1}^{n} \bar{D}_{m} \varphi_{j}(z)\left(\bar{w}_{m}-\bar{\zeta}_{m}\right)<0, \quad j=i_{1}, \ldots, i_{k}$.
are true. Let $z \in \bar{B}_{\zeta}, \delta>0$. Then

$$
\begin{equation*}
\varphi_{j}(z+\delta(w-\zeta))=\varphi_{j}(z)+2 \delta \operatorname{Re} \sum_{m=1}^{n} D_{m} \varphi_{j}(z)\left(w_{m}-\zeta_{m}\right)+o(\delta) \tag{5}
\end{equation*}
$$

Denoting $\nu_{\zeta}=w-\zeta$ and taking in account that $\varphi_{j}(z) \leq 0$ for $z \in \bar{G}$, from (4) and (5) we conclude that there exists some $\delta_{0}>0$ such that for $\delta<\delta_{0}$

$$
\begin{equation*}
\varphi_{j}\left(z+\delta \nu_{\zeta}\right)<0, \quad j=i_{1}, \ldots, i_{k}, \quad z \in \bar{B}_{\zeta} \cap \bar{G} \tag{6}
\end{equation*}
$$

By continuity of φ_{j}, it follows from (3) that one can choose a neighborhood B_{ζ} and a number δ_{0} such that for $\delta<\delta_{0}$

$$
\varphi_{s}\left(z+\delta \nu_{\zeta}\right)<0, \quad s \neq i_{1}, \ldots, i_{k}, \quad z \in \bar{B}_{\zeta} \cap \bar{G}
$$

Hence, by (6) we conclude that $z+\delta \nu_{\zeta} \in G$.
The following lemma relates to local approximation.
Lemma 2.3. There exists a finite covering $\left\{U_{k}: k=0,1, \ldots, p\right\}$ of \bar{G} by open sets, such that for any $\varepsilon>0$ and any $f \in A(G)$ there are holomorphic in $\overline{U_{k}} \cap \bar{G}$ functions f_{k} for which

$$
\begin{equation*}
\sup _{z \in \bar{U}_{k} \cap \bar{G}}\left|f(z)-f_{k}(z)\right|<\varepsilon . \tag{7}
\end{equation*}
$$

Proof. Let $f \in A(G), \zeta \in \partial G$ and let B_{ζ} be a neighborhood satisfying the conditions of Proposition 2.2. Then the family of open sets $\left\{B_{\zeta}: \zeta \in \partial G\right\}$ covers the compact ∂G, and a a finite subcovering $\left\{B_{\zeta_{k}}, k=1, \ldots, p\right\}$ can be chosen. By Proposition 2.2, the functions $f\left(z+\delta \nu_{\zeta_{k}}\right)$ are holomorphic in $\bar{B}_{\zeta_{k}} \cap \bar{G}$ for any $\delta>0$ small enough. By uniform continuity of f in \bar{G},

$$
\sup _{z \in \bar{B}_{\zeta_{k}} \cap \bar{G}}\left|f\left(z+\delta \nu_{\zeta_{k}}\right)-f(z)\right| \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0 .
$$

Now, choosing a small enough $\delta>0$ and denoting $U_{k}=B_{\zeta_{k}}, f_{k}(z)=f\left(z+\delta \nu_{\zeta_{k}}\right)$, we get (7) for $k=1, \ldots, p$. Further, we take a compact subdomain $U_{0} \subset G$
such that the system $\left\{U_{k}: k=0,1, \ldots, p\right\}$ is an open covering of \bar{G} and put $f_{0}(z)=f(z)$. Then obviously (7) is true also for $k=0$.

3. Global approximation

Recalling that a function is said to be holomorphic in a compact set K if it is holomorphic in some neighborhood of K, we prove

Theorem 3.1. Let G be a real non-degenerate Weil polyhedron (1) and let $N \leq 2 n$. Then any function $f \in A(G)$ can be uniformly approximated in \bar{G} by functions holomorphic in \bar{G}.

Proof. Let $\varepsilon>0$, let $f \in A(G)$ and let $\left\{U_{k}: k=0,1, \ldots, p\right\}$ that of Lemma 2.3. Then by Lemma 2.3, there are functions f_{k} holomorphic in $\bar{U}_{k} \cap \bar{G}$, such that

$$
\begin{equation*}
\left\|f_{k}-f\right\|_{U_{k} \cap G}<\varepsilon, \quad k=0,1, \ldots, p \tag{8}
\end{equation*}
$$

Let $\left\{e_{k}(z), k=0,1, \ldots, p\right\}$ be a partition of unity, i.e. a system of infinitely differentiable, nonnegative, finite functions such that
(a) Supp $e_{k} \subset U_{k}, \quad k=0,1, \ldots, p$,
(b) $\sum_{k=0}^{p} g_{k}(z) \equiv 1$ in some neighborhood of \bar{G}.

Choose some number $\eta(\varepsilon)>0$ small enough to provide the holomorphy of f_{k} in the sets

$$
V_{k}=U_{k} \cap G^{\varepsilon}, \quad k=0,1, \ldots, p
$$

where

$$
G^{\varepsilon}=\left\{z \in V:\left|\chi_{i}(z)\right|<1+\eta(\varepsilon), \quad i=1,2, \ldots, N\right\} .
$$

Obviously
(9) $\left\|f_{k}-f_{i}\right\|_{U_{k} \cap U_{i} \cap G} \leq\left\|f_{k}-f\right\|_{U_{k} \cap G}+\left\|f_{i}-f\right\|_{U_{i} \cap G}<2 \varepsilon, i, k=0,1, \ldots, p$, and, if necessary, taking smaller $\eta(\varepsilon)>0$, by continuity we can get

$$
\begin{equation*}
\left\|f_{k}-f_{i}\right\|_{V_{k} \cap V_{i}}<3 \varepsilon, \quad k, i=0,1, \ldots, p \tag{10}
\end{equation*}
$$

Now consider the functions

$$
\begin{align*}
h_{i k}(z) & =\left\{\begin{aligned}
{\left[f_{i}(z)-f_{k}(z)\right] e_{k}(z) } & \text { if } z \in V_{i} \cap V_{k} \\
0 & \text { if } z \in V_{i} \backslash V_{k}
\end{aligned}\right. \tag{11}\\
h_{i}(z) & =\sum_{k=0}^{p} h_{i k}(z) .
\end{align*}
$$

The support of $g_{k}(z)$ belongs to the set B_{k} (by the assumption (a)), and the set $V_{i}^{\varepsilon} \bigcap \partial V_{k}^{\varepsilon}$ does not intersect with that support. Therefore, the functions $h_{i k}^{\varepsilon}$ and h_{i}^{ε} are infinitely differentiable in V_{i}^{ε}, and by (10)

$$
\begin{equation*}
\left|h_{i}(z)\right| \leq \sum_{k=0}^{p}\left|f_{i}(z)-f_{k}(z)\right| e_{k}(z)<3 \varepsilon \sum_{k=0}^{p} g_{k}(z)=3 \varepsilon . \tag{12}
\end{equation*}
$$

for all $z \in V_{i}^{\varepsilon} \bigcap \overline{G^{\varepsilon}}$. Further, for $z \in V_{i} \cap V_{j}$

$$
\begin{aligned}
h_{i}(z)-h_{j}(z) & =\sum_{k=0}^{p}\left[f_{i}(z)-f_{k}(z)\right] e_{k}(z)-\sum_{k=0}^{p}\left[f_{j}(z)-f_{k}(z)\right] e_{k}(z) \\
& =\sum_{k=0}^{p}\left[f_{i}(z)-f_{j}(z)\right] e_{k}(z)=f_{i}(z)-f_{j}(z)
\end{aligned}
$$

i. e.

$$
f_{i}(z)-h_{i}(z)=f_{j}(z)-h_{j}(z), \quad i, j=0,1, \ldots, p
$$

This means that the function

$$
\begin{equation*}
\psi(z)=f_{i}(z)-h_{i}(z) \quad z \in V_{i} \tag{13}
\end{equation*}
$$

is globally given in G^{ε} and moreover, $h \in C^{\infty}\left(G^{\varepsilon}\right)$. Using the inequalities (12) and (8), from (13) we obtain

$$
|\psi(z)-f(z)| \leq\left|h_{i}(z)\right|+\left|f_{i}(z)-f(z)\right|<4 \varepsilon, \quad z \in U_{i} \cap \bar{G}
$$

Consequently,

$$
\begin{equation*}
\|\psi-f\|_{G}<4 \varepsilon \tag{14}
\end{equation*}
$$

Considering the differential form $g=\bar{\partial} \psi$ in the domain G^{ε}, we see that obviously $\bar{\partial} g=0$. Besides, using (11) and taking in account that f_{i} is holomorphic in V_{i}, we get

$$
\begin{equation*}
g=\bar{\partial} \psi(z)=\bar{\partial} h_{i}(z)=\sum_{k=0}^{p} \bar{\partial} h_{i k}(z)=\sum_{k=0}^{p}\left(f_{i}(z)-f_{k}(z)\right) \bar{\partial} e_{k}(z) \tag{15}
\end{equation*}
$$

for $z \in V_{i} \cap \overline{G^{\varepsilon}}$. In addition, denoting $\gamma_{0}=\gamma_{0}(G)=\max _{0 \leq k \leq p}\left\|\bar{\partial} e_{k}\right\|_{U_{k}}$, by (15) and (10) we obtain

$$
\begin{equation*}
\|g\|_{G^{\varepsilon}} \leq \sum_{k=0}^{p}\left\|f_{i}-f_{k}\right\|_{G^{\varepsilon}}\left\|\bar{\partial} e_{k}\right\|_{U_{k}} \leq 3 \gamma_{0} \varepsilon \tag{16}
\end{equation*}
$$

Now, let u_{0} be a solution of the equation

$$
\bar{\partial} u=g
$$

in the domain G^{ε}, satisfying the uniform estimate

$$
\begin{equation*}
\left\|u_{0}\right\|_{G^{\varepsilon}} \leq \gamma\left(G^{\varepsilon}\right)\|g\|_{G^{\varepsilon}} \tag{17}
\end{equation*}
$$

Then it follows from the proof of the estimate (17) in $[\mathbf{2}, \mathbf{3}]$ that the constants $\gamma\left(G^{\varepsilon}\right)$ are bounded, i.e.

$$
\begin{equation*}
\gamma\left(G^{\varepsilon}\right) \leq \gamma=\gamma(G) \tag{18}
\end{equation*}
$$

Besides, (17), (16) and (18) imply

$$
\begin{equation*}
\left\|u_{0}\right\|_{G^{\varepsilon}} \leq 3 \gamma_{0} \gamma \varepsilon \tag{19}
\end{equation*}
$$

Further, the function $F(z)=\psi(z)-u_{0}(z)$ is holomorphic in the domain G^{ε} since $\bar{\partial} \psi-\bar{\partial} u_{0}=g-\bar{\partial} u_{0}=0$. Besides, by (14) and (19)

$$
\begin{equation*}
\|f-F\|_{G} \leq\|\psi-f\|_{G}+\left\|u_{0}\right\|_{G}<4 \varepsilon+3 \gamma_{0} \gamma \varepsilon=\gamma_{1} \varepsilon \tag{20}
\end{equation*}
$$

where the constant γ_{1} depends only on G.
A stronger assertion than Theorem 3.1 is true for polynomial polyhedrons. Before proving that assertion, recall that a compact set K is said to be polynomially convex if for any point $\zeta \notin K$ there is a polynomial P_{ζ} such that $\left|P_{\zeta}(\zeta)\right|>\max _{z \in K}\left|P_{\zeta}(z)\right|$. Besides, Oka-Weil's theorem (see., e.g. [5]), states that any function holomorphic in a neighborhood of a polynomially convex compact set K can be uniformly approximated on K by polynomials.

Theorem 3.2. Let G be a real non-degenerate polynomial polyhedron (1) and let $N \leq 2 n$. Then any function $f \in A(G)$ can be uniformly approximated on \bar{G} by polynomials.

Proof. Let $\zeta \notin \bar{G}$. By the definition of the polyhedron $G,\left|\chi_{i}(\zeta)\right|>1$ for some i, which means that \bar{G} is polynomially convex compact set. It suffices to see that the desired assertion follows from Theorem 3.1 and Oka-Weil's theorem.

References

1. Lieb J., Ein Approximationssatz auf streng pseudoconvexen Gebieten, Math. Ann. 184(1) (1969), 56-60.
2. Petrosyan A. I., Henkin G. M., Solution with the uniform estimate of the $\bar{\partial}$-equation in a real non-degenerate Weil polyhedron (Russian), Izv. Akad. Nauk Arm. SSR Ser. Mat. 13(5-6) (1978), 428-441.
3. Sergeev A. G., Henkin G. M., Uniform estimates for solutions of the $\bar{\partial}$-equation in pseudoconvex polyhedra, Math. USSR-Sb. 40 (1981), 469-507.
4. Petrosyan A. I., Uniform approximation of functions by polynomials on Weil polyhedra, Math. USSR Izv. 34(6) (1970), 1250-1271.
5. Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Inc. 1965.
A. I. Petrosyan, Faculty of Mathematics, Yerevan State University, 1 Aleck Manoogian street, 375049 Yerevan, Armenia, e-mail: albpet@xter.net

[^0]: Received October 27, 2005.
 2000 Mathematics Subject Classification. Primary 30E05, 41A30, 41A10.
 Key words and phrases. Holomorphic, polyhedron, approximation, $\bar{\partial}$-equation.

