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A SPECIAL CONGRUENCE LATTICE

OF A REGULAR SEMIGROUP

MARIO PETRICH

Abstract. Let S be a regular semigroup and C its lattice of congruences. We
consider the sublattice Λ of C generated by σ-the least group, τ -the greatest idem-
potent pure, µ-the greatest idempotent separating and β-the least band congruence
on S. To this end, we study the following special cases: (1) any three of these
congruences generate a distributive lattice, (2) Λ is distributive, (3) the restriction
of the K-relation to Λ is a congruence and (4) a further special case. In each of
these instances, we provide several characterizations. Our basic concept is that of
a c-triple which represents an abstraction of (Λ; K|Λ, T |Λ).

1. Introduction and summary

The most effective approach to congruences on regular semigroups is the kernel-
-trace approach. As a natural derivative, we have the kernel (respectively, trace)
relation K (respectively, T), which relates two congruences having the same kernel
(respectively, trace). Both these relations have their classes intervals, so one may
speak of the least and the greatest elements of K- and T -classes. For the equality
and the universal relations, these extremal congruences are just about omnipresent
in any study of congruences on regular semigroups. The lattice they generate
influences the structure of the semigroup in an essential way.

Let S be a regular semigroup and C its congruence lattice. We are concerned
here with the sublattice Λ of C generated by the set Γ = {σ, τ, µ, β}, where σ
is the least group congruence, τ the greatest idempotent pure congruence, µ the
greatest idempotent separating congruence and β the least band congruence on
S. There are four special cases of particular interest to us: (1) any three elements
of Γ generate a distributive lattice, (2) Λ is distributive, (3) the restriction of the
K-relation to Λ is a congruence, (4) a further special case.

In order to see that the four cited congruences are not arbitrarily chosen but
belong to a system, we outline the kernel-trace approach to congruences on a
regular semigroup. Continuing the above notation, let ρ ∈ C. Then ker ρ, the
kernel of ρ, is the union of all idempotent ρ-classes; tr ρ, the trace of ρ, equals ρ|E
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where E is the set of all idempotents of S. The relations K and T defined on C by

λK ρ⇐⇒ kerλ = ker ρ, λ T ρ⇐⇒ trλ = tr ρ,

are the kernel and trace relations on C (or of S), respectively. These are equivalence
relations whose classes are intervals and for ρ ∈ C, we can write the classes to which
it belongs as

ρK = [ρK , ρ
K ], ρT = [ρT , ρ

T ].

Now denoting by ǫ and ω the equality and the universal relations on S, respectively,
we get

σ = ωT , τ = ǫK , µ = ǫT , β = ωK .

For S/σ has only one idempotent so that σ has the greatest possible trace, and one
shows that σ is the least with this property. Idempotent pure congruences coincide
with congruences whose kernel consists of idempotents only, and τ is the greatest
such by definition. Similarly, idempotent separating congruences coincide with
congruences whose trace is the equality relation, and µ is the greatest by definition.
Finally, S/β is an idempotent semigroup so that its kernel is the greatest possible,
and β is evidently the least such.

In the case that K is a congruence on C, we have proved in [2] that Λ is a
homomorphic image of the free distributive lattice on Γ subject to relations τ ≤ σ
and µ ≤ β. In [3] we gave a classification of regular semigroups based on the
properties of the sublattice of C generated by the set {σ, τ, β}. Here our basic
concept is an abstraction of (Λ;K|Λ, T |Λ) which we call a c-triple.

After the needed concepts and symbolism in Section 2, we give in Section 3 a
list of relations that play a central role in our deliberations and establish some of
their elementary properties. The case when the lattice Λ described above has the
property that any three elements of Γ generate a distributive lattice is characterized
in Section 4 in several ways. A similar analysis can be found in Section 5 for the
case that Λ is distributive, in Section 6 for the case that K|Λ is a congruence and
in Section 7 for a further special case.

2. Terminology and Notation

For concepts and symbolism we generally follow the book [1]. We now list some
most frequent or special notation and terminology. The equality and the universal
relations on a set X are denoted by ǫX and ωX , respectively, with or without a
subscript. For a lattice L and λ, ρ ∈ L, λ ≤ ρ, let

[λ, ρ] = {θ ∈ L |λ ≤ θ ≤ ρ}.

Let S be a semigroup. Then E(S) denotes its set of idempotents and C(S) its
congruence lattice. For ρ ∈ C(S), its kernel and trace, as well as relations K and
T , and also σ, τ, µ, β for S were defined in Section 1. We now write the last four
symbols with subscript S and let

ΓS = {σS , τS , µS , βS},

ΛS be the sublattice of C(S) generated by ΓS ,KS = K|ΛS
and TS = T |ΛS

.
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Next we abstract certain properties of these symbols. The following represents
our principal concept.

Definition 2.1. We call (Λ;K,T ) a c-triple if

(i) Λ is a lattice generated by ΓΛ = {σ, τ, µ, β},
(ii) K is a ∧-congruence on Λ,
(iii) T is a congruence on Λ,
(iv) K ∩ T = ǫΛ,
(v) Λ has a least element ǫ and a greatest element ω,
(vi) [ǫ, τ ] and [β, ω] are K-classes,
(vii) [ǫ, µ] and [σ, ω] are T -classes,
(viii) if β ∧ (σ ∨ µ) = µ ∨ (σ ∧ β), then (σ ∨ µ) ∧ (τ ∨ β) = τ ∨ (σ ∧ β) ∨ µ.

We can think of c-triples (c for congruence) as objects of a category. For them
we shall also need morphisms.

Definition 2.2. Let (Λ;K,T ) and (Λ′;K ′, T ′) be c-triples with ΓΛ ={σ, τ, µ, β}
and ΓΛ′ = {σ′, τ ′, µ′, β′}. Define a mapping γΛ,Λ′ by

γΛ,Λ′ : α −→ α′ (α ∈ ΓΛ).

A mapping ϕ : Λ −→ Λ′ is K-preserving if

λK ρ =⇒ λϕ K ′ ρϕ (λ, ρ ∈ Λ).

Then ϕ : (Λ;K,T ) −→ (Λ′;K ′, T ′) is a morphism if ϕ is a K-preserving
homomorphism of Λ onto Λ′ which extends γΛ,Λ′ ; if also ϕ is injective and
ϕ−1 : (Λ′;K ′, T ′) −→ (Λ;K,T ) is a morphism, then ϕ is an isomorphism.

We shall also need a generalization of the concept of modularity.

Definition 2.3. Let (Λ;K,T ) be a c-triple. A sublattice Σ of Λ is T -modular if

λ ≤ ρ, λ ∧ θ = ρ ∧ θ, λ ∨ θ = ρ ∨ θ, λ T ρ =⇒ λ = ρ (λ, ρ, θ ∈ Σ).

We now show that a c-triple is indeed an abstraction of (ΛS ;KS, TS) for any
regular semigroup S.

Lemma 2.4. Let S be a regular semigroup. Then (ΛS ;KS, TS) is a c-triple.

Proof. In Definition 2.1, items (i)–(vii) are well known. For item (viii), we
assume that β ∧ (σ ∨ µ) = µ ∨ (σ ∧ β) and let λ = (σ ∨ µ) ∧ (τ ∧ β) and
ρ = τ ∨ (σ ∧ β) ∨ µ. One shows easily that τ ≤ σ, µ ≤ β so that λ ≥ ρ and also
that λ T ρ. Further,

ker λ = ker (σ ∨ µ) ∩ ker (τ ∨ β) = ker (σ ∨ µ) ∩ ker β

= ker [(σ ∨ µ) ∧ β] = ker [µ ∨ (σ ∧ β)]

≤ ker [τ ∨ µ ∨ (σ ∧ β)] = ker ρ.

Since λ ≥ ρ, we get ker λ ⊇ ker ρ and thus λ K ρ. This together with λ T ρ
yields λ = ρ, as required. �
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Throughout the paper, we let

Γ = {σ, τ, µ, β}.

In all diagrams, the K-relation is depicted by full lines, the T -relation by dash-
dot lines, the inclusion by broken lines.

3. Relations

We list first the relevant relations and then establish some of their properties and
mutual relationships. We conclude the section with a special case.

We shall consider the following relations on the lattice Λ of a c-triple (Λ;K,T )
where ΓΛ = {σ, τ, µ, β}.

(A) τ ≤ σ.
(B) µ ≤ β.
(C) σ ∧ (τ ∨ β) = τ ∨ (σ ∧ β).
(D) β ∧ (σ ∨ µ) = µ ∨ (σ ∧ β).
(E) σ ∧ (τ ∨ µ) = τ ∨ (σ ∧ µ).
(F ) β ∧ (τ ∨ µ) = µ ∨ (τ ∧ β).
(G) σ ∧ (τ ∨ µ) ∧ β = (σ ∧ µ) ∨ (τ ∧ β).
(H) (σ ∨ µ) ∧ (τ ∨ β) = τ ∨ (σ ∧ β) ∨ µ.
(I) σ ∨ µ K µ.
(J) σ ∧ µ K σ.
(K) τ ∨ µ K µ.
(L) τ ∨ β T τ .

(M) τ ∧ β T β.

Note the symmetries in the above relations. By the interchanges σ ↔ β and
τ ↔ µ, we get the interchanges

(C)←→ (D), (E)←→ (F ).

By the interchanges σ ↔ µ, τ ↔ β, ∧ ↔ ∨, we obtain the interchanges

(C)←→ (F ), (D)←→ (E), (G)←→ (H).

In the first lemma, we establish some simple but fundamental properties of
c-triples.

Lemma 3.1. Let (Λ;K,T ) be a c-triple. Then relations (A)−(C) hold. Letting
X and Y stand for the left and the right side, respectively, of the relations (D)−(G),
we have X T Y ≤ X .

Proof. That conditions (A) and (C) hold is the content of [3, Lemma 3.2]. Since
µ ∧ β K µ ∧ ω = µ and µ ∧ β T ǫ ∧ β = ǫ T µ, we get µ ∧ β = µ and (B)
holds. Taking into account that T is a congruence and σ T ω, µ T ǫ, the assertions
concerning T follow in a straightforward manner. The inclusions follow easily from
conditions (A) and (B). �
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The next lemma exhibits some useful implications among our relations.

Lemma 3.2. The following implications hold for c-triples.

(H) ⇐= (D) ⇐= (I) =⇒ (K) =⇒ (G) =⇒ (E)
⇓ ⇓

(J) (F )

Proof. By Definition 2.1(viii), (D) implies (H).
Assume that (I) holds. Then

β ∧ (σ ∨ µ)K ω ∧ µ = µ = µ ∧ [µ ∨ (σ ∧ β)]

K (σ ∨ µ) ∧ [µ ∨ (σ ∧ β)] = µ ∨ (σ ∧ β)

which together with Lemma 3.1 implies (D). Also using (A), we obtain

τ ∨ µ = (τ ∨ µ) ∧ (σ ∨ µ) K (τ ∨ µ) ∧ µ = µ

and (K) holds. Clearly (J) holds as well.
Assume that (K) holds. First let λ = β ∧ (τ ∨ µ) and ρ = µ ∨ (τ ∧ β). Hence

by (K),

λ ∧ ρ K ω ∧ µ ∧ [µ ∨ (τ ∧ β)] = ω ∧ µ K β ∧ (τ ∨ µ) = λ

and by Lemma 3.1, we get λ ∧ ρ T λ so that λ ∧ ρ = λ. But then λ ≤ ρ
which together with Lemma 3.1 yields that λ = ρ. Therefore (F ) holds. Next let
λ = σ ∧ (τ ∨ µ) ∧ β and ρ = (σ ∧ µ) ∨ (τ ∧ β). Then

λ ∧ ρ = σ ∧ (τ ∨ µ) ∧ β ∧ [(σ ∧ µ) ∨ (τ ∧ β)]

K σ ∧ µ ∧ ω ∧ [(σ ∧ µ) ∨ (τ ∧ β)] = σ ∧ µ ∧ ω by (K)

K σ ∧ (τ ∨ µ) ∧ β = ρ by (K)

and by Lemma 3.1, we get λ ∧ ρ T λ so that λ ∧ ρ = λ. But then λ ≤ ρ which
together with Lemma 3.1 yields that λ = ρ. Therefore also (G) holds.

Assume that (G) holds. Let λ = σ ∧ (τ ∨ µ) and ρ = τ ∨ (σ ∧ µ). Then

λ ∧ ρ = [σ ∧ (τ ∨ µ) ∧ ω] ∧ ρ K [σ ∧ (τ ∨ µ) ∧ β] ∧ ρ

= [(σ ∧ µ) ∨ (τ ∧ β)] ∧ [τ ∨ (σ ∧ µ)] by (G)

= (σ ∧ µ) ∨ (τ ∧ β)

= σ ∧ (τ ∨ µ) ∧ β K σ ∧ (τ ∨ µ) ∧ ω by (G)

= σ ∧ (τ ∨ µ) = λ.

By Lemma 3.1, we also have λ ∧ ρ T λ and thus λ ∧ ρ = λ. But then λ ≤ ρ
which together with Lemma 3.1 yields that λ = ρ and (E) holds. �
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4. Any three elements of Γ generate a distributive lattice

We start with a lemma that provides for the lattice Λ1 a representation by gener-
ators and relations. The main result is supplemented by several diagrams eliciting
a property of relation (C) and independence of relations (E), (D) and (F ).

Lemma 4.1. The lattice Λ1 in Diagram 1 is a free lattice on Γ subject to
relations (C), (D), (E), (F ).

Proof. This can be established by applying an unpublished result of Barry Wolk
of the University of Manitoba. Its application requires a lengthy verification which
is omitted. �

We are now ready for the main result of this section.

Theorem 4.2. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) Any three elements of ΓΛ generate a distributive lattice.
(ii) Any three elements of ΓΛ generate a T -modular lattice.
(iii) Λ satisfies relations (D), (E) and (F ).
(iv) The map γΛ1,Λ extends uniquely to a morphism δ1 : (Λ1;K1, T1)−→(Λ;K,T )

(see Diagram 1).

Proof. (i) implies (ii). It suffices to observe that T -modularity is a weakening
of modularity which is in turn a weakening of distributivity.

(ii) implies (iii). For each of the relations (D), (E), (F ), we must set up the
hypothesis of T -modularity.

(D) Let λ = µ ∨ (σ ∧ β) and ρ = β ∧ (σ ∨ µ). By Lemma 3.1, we have λ ≤ ρ
and λT ρ. Further,

λ ∧ σ = [µ ∨ (σ ∧ β)] ∧ σ ≤ (µ ∨ β) ∧ σ = β ∧ σ

= [µ ∨ (σ ∧ β)] ∧ (σ ∧ β) ≤ [µ ∨ (σ ∧ β)] ∧ σ = λ ∧ σ

and equality prevails;

ρ ∧ σ = [β ∧ (σ ∨ µ)] ∧ σ = β ∧ σ

and thus λ ∧ σ = β ∧ σ = ρ ∧ σ. Also

λ ∨ σ = [µ ∨ (σ ∧ β)] ∨ σ = µ ∨ σ,

ρ ∨ σ = [β ∧ (σ ∨ µ)] ∨ σ ≤ [β ∧ (σ ∨ µ)] ∨ (σ ∨ µ) = µ ∨ σ

= (β ∧ µ) ∨ σ ≤ [β ∧ (σ ∨ µ)] ∨ σ = ρ ∨ σ

and equality prevails; thus λ ∨ σ = µ ∨ σ = ρ ∨ σ. The hypothesis implies that
λ = ρ and thus (D) holds.

(E) Let λ = τ ∨ (σ ∧ µ) and ρ = σ ∧ (τ ∨ µ). An argument closely similar to
the one above, using Lemma 3.1, shows that

λ ≤ ρ, λ ∧ µ = ρ ∧ µ, λ ∨ µ = ρ ∨ µ, λT ρ

and the hypothesis implies that λ = ρ so that (E) holds.
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Diagram 1. (Λ1;K1, T1).

(F ) Let λ = µ ∨ (τ ∧ β) and ρ = β ∧ (τ ∨ µ). Again an argument analogous
to the one above, using Lemma 3.1, shows that

λ ≤ ρ, λ ∧ τ = ρ ∧ τ, λ ∨ τ = ρ ∨ τ, λ T ρ

and the hypothesis implies that λ = ρ, that is (F ) holds.
(iii) implies (iv). According to Lemma 3.1, relation (C) holds. By Lemma 4.1,

Λ1 is the free lattice on ΓΛ1
subject to relations (C), (D), (E) and (F ). Hence the

mapping γΛ1,Λ extends uniquely to a homomorphism δ1 of Λ1 onto Λ. It is easy to
check that the K-relation on the lattice Λ1 is the least ∧-congruence on Λ1 having
[ǫ, τ ] and [β, ω] as its classes. On the lattice Λ, the K-relation is a ∧-congruence
with [ǫ, τ ] and [β, ω] as its classes. Hence δ1 preserves the K-relation.

(iv) implies (i). Easy inspection shows that any three elements of ΓΛ1
generate

a distributive lattice. This is carried over to Λ by δ1 so that any three elements of
ΓΛ generate a distributive lattice. �

Proposition 4.3. Let (Λ;K,T ) be a c-triple satisfying relations (D), (E), (F ).
Then

[ǫ, µ], [τ ∧ β, µ ∨ (τ ∧ β)], [τ, τ ∨ µ], [σ ∧ β, β], [σ ∧ (τ ∨ β), τ ∨ β], [σ, ω]

constitutes the complete set of T -classes (with possible collapsing).
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Proof. By the definition of a c-triple, [ǫ, µ] and [σ, ω] are T -classes. The re-
maining classes are obtained by meets and/or joins of ends of these intervals with
suitable elements, see Diagram 1. �

In Diagram 1, the K-relation, is the least possible, for it is obtained from
the definition of a c-triple by forming the meet of {β, ω} with suitable elements.
This is not the only possible K-relation. The T -relation follows the assertion of
Proposition 4.3.

5. The distributive case

We start with a representation of the lattice Λ2 by generators and relations. The
main result consists of several equivalent conditions one of which is the requirement
that in the c-triple (Λ;K,T ), Λ be distributive.

Lemma 5.1. The lattice Λ2 in Diagram 2 is a free lattice on Γ subject to
relations (C), (D), (F ), (G).

Proof. Let θ denote the congruence on the lattice Λ1 in Diagram 1 induced by
(G). Since the elements λ = σ ∧ (τ ∨ µ) ∧ β and ρ = (τ ∧ β) ∨ (σ ∧ µ) act the
same way on all other elements of Λ1, the θ-classes are {λ, ρ} and singletons. Now
noting that by Lemma 3.2, (G) implies (E), the assertion is a direct consequence
of Lemma 4.1. �

It was proved in [2, Theorem 4.2] that Λ2 is the free distributive lattice on
ΓΛ2

subject to relations (A) and (B) and that neither of these relations may be
omitted.

We can now establish the desired result.

Theorem 5.2. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) The lattice Λ is distributive.
(ii) The lattice Λ is T -modular.
(iii) Λ satisfies relations (D), (F ), (G).
(iv) The map γΛ2,Λ extends uniquely to a morphism δ2 : (Λ2;K2, T2)−→(Λ;K,T )

(see Diagram 2).

Proof. (i) implies (ii). Observe that T -modularity is a weakening of modularity
which is in turn a weakening of distributivity.

(ii) implies (iii). By Theorem 4.2, Λ satisfies relations (D) and (F ). Let
λ = (σ ∧ µ) ∨ (τ ∧ β) and ρ = σ ∧ (τ ∨ µ) ∧ β. By Lemma 3.1, we have λ ≤ ρ
and λT ρ. Further (A) implies

λ ∧ µ = [(σ ∧ µ) ∨ (τ ∧ β)] ∧ µ ≤ σ ∧ µ

≤ [(σ ∧ µ) ∨ (τ ∧ β)] ∧ µ = λ ∧ µ

and equality prevails;

ρ ∧ µ = [σ ∧ (τ ∨ µ) ∧ β] ∧ µ = σ ∧ µ
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Diagram 2. (Λ2;K2, T2).

and thus λ ∧ µ = σ ∧ µ = ρ ∧ µ. Also

λ ∨ µ = [(σ ∧ µ) ∨ (τ ∧ β)] ∨ µ = (τ ∧ β) ∨ µ,

and using condition (F ), we get

ρ ∨ µ = [σ ∧ (τ ∨ µ) ∧ β] ∨ µ ≤ β ∧ (τ ∨ µ) = µ ∨ (τ ∧ β)

≤ [σ ∧ (τ ∨ µ) ∧ β] ∨ µ = ρ ∨ µ

and equality prevails so that λ ∨µ = (τ ∧ β)∨ µ = ρ ∨ µ. The hypothesis implies
that λ = ρ and thus (G) holds.

(iii) implies (iv). By Lemma 3.2, (G) implies (E). Now applying Theorem 4.2,
part (iv) of that theorem guarantees the existence of a unique K-preserving homo-
morphism δ1 of Λ1 onto Λ extending γΛ1,Λ. In view of Lemma 5.1, since S satisfies
(G), δ1 factors into a homomorphism of Λ1 onto Λ2 and a homomorphism δ2 of
Λ2 onto Λ. It is clear that δ2 is the unique extension of γΛ2,Λ to a homomorphism
of Λ2 onto Λ. Since the K-relation on Λ2 in Diagram 2 is the least one possible,
it follows that δ2 is K-preserving.

(iv) implies (i). Since Λ2 is distributive, so is every of its homomorphic images.
�

In Diagram 2, the K-relation is the least K-relation but it is not the only
possible one. The T -relation has the classes listed in Proposition 4.3.
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6. The case when K is a congruence

We again establish equivalent conditions on a c-triple (Λ;K,T ) now with K being
a congruence on Λ. We start with a description of all c-triples (Λ2;K,T ) with Λ2

as in the preceding section.

Lemma 6.1. Let (Λ2;K,T ) be a c-triple with the lattice Λ2 depicted in Dia-
gram 2. Then T = T2 as in Diagram 2 and

[β, ω], [µ ∨ (σ ∧ β), σ ∨ µ], [σ ∧ β, σ], [ǫ, τ ](1)

are K-classes and for the remaining K-classes, one of the following cases occurs:

Case 1: [µ ∨ (τ ∧ β), τ ∨ µ], {µ}, [σ ∧ (τ ∨ µ) ∧ β, τ ∨ (σ ∧ µ)], {σ ∧ µ},

Case 2: [µ ∨ (τ ∧ β), τ ∨ µ], {µ}, [σ ∧ µ, τ ∨ (σ ∧ µ)],

Case 3: [µ, τ ∨ µ], [σ ∧ µ, τ ∨ (σ ∧ µ)].

Only in Case 3 is K a congruence.

Proof. The assertion that T = T2 follows directly from the restrictions on T
namely that [ǫ, µ] and [σ, ω] are T -classes and T is a congruence. From the re-
quirement that [ǫ, τ ] and [β, ω] are K-classes and K is a ∧-congruence, we ob-
tain that the intervals listed in (1) are K-classes and β ∧ (τ ∨ µ)K τ ∨ µ and
σ ∧ (τ ∨ µ) ∧ β K σ ∧ (τ ∨ µ). It is checked readily that in all three cases listed
above, the corresponding equivalence relations satisfy all the requisite conditions.
In Cases 1 and 2, we have ǫK τ but µK τ ∨ µ fails so K is not a congruence. In
Case 3 it is easy to see that K is a congruence (the same way as for T ). �

Notation 6.2. Let (Λ2;K
′

2, T2) be the triple with K ′

2 the equivalence relation
on Λ2 with classes as in Case 3 of Lemma 6.1. By Lemma 6.1, (Λ2;K

′

2, T2) is a
c-triple with K ′

2 a congruence.

We can now establish the desired result.

Theorem 6.3. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) K is a congruence.
(ii) Λ is distributive and satisfies relation (K).
(iii) Λ satisfies relations (D) and (K).
(iv) The map γΛ2,Λ extends uniquely to a morphism δ′2 : (Λ2;K

′

2, T2)−→(Λ;K,T )
(see Notation 6.2).

Proof. (i) implies (ii). Indeed,

β ∧ (σ ∨ µ) K ω ∧ (σ ∨ µ) = σ ∨ µ = (σ ∧ ω) ∨ µ K (σ ∧ β) ∨ µ

which together with Lemma 3.1(d) yields (D). Also τ ∨ µ K ǫ ∨ µ = µ so (H)
holds. Now Lemma 3.2 implies that (F ) and (G) are valid which by Theorem 5.2
gives that Λ is distributive.

(ii) implies (iii). This follows directly from Theorem 5.2.
(iii) implies (iv). By Lemma 3.2, (K) implies (F ) and (G). Now Theorem 5.2

implies that γΛ2,Λ can be extended uniquely to a morphism δ2 : (Λ2;K2, T2) −→
(Λ;K,T ). Hence (H) implies that δ2 : (Λ2;K

′

2, T2) −→ (Λ;K,T ) is a morphism.
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(iv) implies (i). Define a relation K by

λ K ρ⇐⇒ λδ2 K ρδ2 (λ, ρ ∈ Λ2).

By straightforward checking we see that K is a ∧-congruence

Diagram 3

on Λ. If λ, ρ ∈ Λ2 are such that λK ′

2 ρ, then by hypothesis
λδ2 K ρδ2 and thus λ K ρ. It follows that K ′

2 ⊆ K. Also
K-classes are convex and are unions of K ′

2-classes. The lattice
Λ2/K

′

2 is depicted in Diagram 3.
It now follows easily that by forming convex unions of

K ′

2-classes in Λ2 we obtain a congruence on Λ2. Therefore K is
a congruence.

Let λ, ρ, θ ∈ Λ2 be such that λδ2K ρδ2. Then λK ρ and thus
λ ∨ θ K ρ ∨ θ which implies that

λδ2 ∨ θδ2 = (λ ∨ θ)δ2 K (ρ ∨ θ)δ2 = ρδ2 ∨ θδ2.

Therefore K is a congruence on Λ. �

We have the following uniqueness statement.

Corollary 6.4. Let (Λ;K,T ) and (Λ;K ′, T ′) be c-triples satisfying relations
(D) and (K). Then K = K ′ and T = T ′.

Proof. In view of Theorem 6.3 and Lemma 6.1, the set listed in Lemma 6.1
under Case 3 constitutes the complete collection of K-classes. It follows that
K = K ′. The assertion T = T ′ is a consequence of Proposition 4.3. �

7. A special case

We consider here the case when K is a congruence and σ ∧ β ≤ τ ∨ µ. The
principal interest of this case is that for any ρ ∈ Γ, the values of ρK , ρT , ρK , ρT

can be given a simple explicit formula. We treat this case in the same manner as
we did the other cases; in addition we start and finish with some ramifications of
the restrictions involved.

Proposition 7.1. The lattice Λ3 in Diagram 3 is a free lattice on Γ subject to
relations (C), (D), (F ) and

(σ ∧ µ) ∨ (τ ∧ β) = σ ∧ β.(2)

Proof. Let ρ denote the congruence on the lattice Λ1 in Diagram 1 induced by
the relation (2). It is easy to see that the ρ-classes are the four vertical intervals
in the upper part of Diagram 1. By Lemma 3.2, (G) implies (E). The assertion
now follows from Lemma 4.1. �

For a c-triple (Λ;K,T ) and ρ ∈ Λ, we denote by ρK and ρT the K-and T -classes
of ρ, respectively. If these classes are intervals, we write

ρK = [ρK , ρ
K ], ρT = [ρT , ρ

T ].

We start with a condition on the K-relation.
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Lemma 7.2. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) Relations (D), (K) and (J) hold.
(ii) Relation (I) holds.
(iii) µK = σ ∨ µ.
(iv) σK = σ ∧ µ.

Proof. (i) implies (ii). By Theorem 6.3, K is a congruence which together with
(J) implies that (σ ∨ µ)K (σ ∧ µ) ∨ µ = µ and (I) holds.

(ii) implies (iii). Let θ ∈ Λ be such that θ K µ. Then

(σ ∨ µ) ∧ θK (σ ∨ µ) ∧ µ = µ K θ,

(σ ∨ µ) ∧ θ T (ω ∨ µ) ∧ θ = θ

and thus (σ ∨ µ) ∧ θ = θ so that θ ≤ σ ∨ µ. Therefore µK = σ ∨ µ.
(iii) implies (iv). The hypothesis implies that µK σ ∨ µ which yields

σ ∧ µK σ ∧ (σ ∨ µ) = σ.

Now tr (σ ∧ µ) = ε and σ ∧ µ has the least possible T -value. But then σK = σ ∧ µ.
(iv) implies (i). Since µ ≤ µ ∨ (σ ∧ β) ≤ µ ∨ σ and µK µ ∨ σ, we get

µ ∨ (σ ∧ β)K µ ∨ σ = ω ∧ (µ ∨ σ)K β ∧ (µ ∨ σ)

and (D) holds. Similarly, µ ≤ τ ∨ µ ≤ σ ∨ µ implies that µK τ ∨ µ and (K)
holds. Also µK σ ∨ µ implies that σ ∧ µK σ ∧(σ ∨ µ) = σ whence (J) holds. �

We consider next a condition on the T -relation.

Lemma 7.3. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) Relation (M) holds.
(ii) Relation (L) holds.
(iii) τT = τ ∨ β.
(iv) βT = τ ∧ β.

Proof. (i) implies (ii). Indeed, τ ∨ (τ ∧ β)T τ ∨ β whence τ T τ ∨ β and (L)
holds.

(ii) implies (iii). Let θ ∈ Λ be such that θ T τ . Then

(τ ∨ β) ∧ θ K ω ∧ θ = θ, (τ ∨ β) ∧ θ T (τ ∨ β) ∧ τ = τ T θ

and thus (τ ∨ β) ∧ θ = θ so that θ ≤ τ ∨ β. Therefore τT = τ ∨ β.
(iii) implies (iv). The hypothesis implies that τ T τ ∨ β which yields

τ ∧ β T (τ ∨ β) ∧ β = β

Now τ ∧ β K ǫ ∧ β = ǫ so τ ∧ β has the least possible K-value. But then
βT = τ ∧ β.

(iv) implies (i). This is trivial. �

Lemma 7.4. The identity mapping on Γ extends uniquely to a K-preserving
homomorphism ψ of Λ2 onto Λ3 inducing the congruence generated by the relation
σ ∧ β ≤ τ ∨ µ.
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Diagram 4. (Λ3;K3, T3).

Proof. Let ρ be the congruence on Λ2 induced by the relation σ ∧ β ≤ τ ∨ µ.
Then ρ is generated by the pair

(σ ∧ β, σ ∧ (τ ∨ µ) ∧ β).

From Diagram 2, we immediately see that ρ has classes the vertical intervals in
the diagram. It is now clear that Λ2/ρ ∼= Λ3. The induced homomorphism ψ of
Λ2 onto Λ3 is obviously a unique extension of γΛ2,Λ3

and is K-preserving. �

We are now ready for the main result of this section.

Theorem 7.5. The following conditions on a c-triple (Λ;K,T ) are equivalent.

(i) K is a congruence and σ ∧ β ≤ τ ∨ µ.
(ii) Λ satisfies relations (I) and (L).
(iii) µK = σ ∨ µ, τT = τ ∨ β.
(iv) The map γΛ3,Λ extends uniquely to a morphism δ3 : (Λ3;K3, T3)−→(Λ;K,T )

(see Diagram 4).

Proof. (i) implies (ii). By Theorem 6.3, we have that Λ satisfies (D) and (K).
The hypothesis implies that

σ = σ ∧ ω K σ ∧ β = σ ∧ β ∧ (τ ∨ µ) K σ ∧ ω ∧ (ǫ ∨ µ) = σ ∧ µ.

Now Lemma 7.2 yields that (I) holds. In addition,

β = ω ∧ β T σ ∧ β = σ ∧ β ∧ (τ ∨ µ) T ω ∧ β ∧ (τ ∨ ǫ) = β ∧ τ

which by Lemma 7.3 implies that (L) holds.
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(ii) implies (iii). This follows directly from Lemmas 7.2 and 7.3.
(iii) implies (i). By Lemmas 7.3 and 7.4, we have the validity of (D), (K), (J)

and (M). Hence Theorem 6.3 implies that K is a congruence and thus

σ ∧ β ∧ (τ ∨ µ) K σ ∧ ω ∧ (ǫ ∧ µ) = σ ∧ µ K σ = σ ∧ ω K σ ∧ β,

σ ∧ β ∧ (τ ∨ µ) T ω ∧ β ∧ (τ ∨ ǫ) = β ∧ τ T β = ω ∧ β T σ ∧ β

whence σ ∧ β ∧ (τ ∨ µ) = σ ∧ β, that is σ ∧ β ≤ τ ∨ µ.
(i) implies (iv). By Theorem 6.3, the map γΛ2,Λ extends uniquely to a K-

preserving homomorphism δ2 of Λ2 onto Λ. Since Λ satisfies σ ∧ β ≤ τ ∨ µ,
Lemma 7.4 implies that δ2 factors through the mapping ψ in that lemma which
implies that δ3 has the enunciated property.

(iv) implies (i). With the mapping ψ in Lemma 7.4, and the extension δ3 in the
hypothesis, we obtain that the composition ψδ3 is a unique extension of γΛ2,Λ to
a K-preserving homomorphism of Λ2 onto Λ. Now Theorem 6.3 implies that K is
a congruence. Since the lattice Λ3 obviously satisfies σ ∧ β ≤ τ ∨ µ, so does its
homomorphic image Λ. �

For a regular semigroup S, we may interpret ρK , ρT , ρ
K , ρT not only within

ΛS , as above, but also within the congruence lattice C(S) of S by an essentially
identical argument.

Any cryptogroup S (completely regular semigroup with H a congruence) satis-
fies the conditions of Theorem 7.5. Indeed, in S we have ker µ = S so σ ∨ µ K µ
and (I) holds, tr β = ǫ so τ ∨ β T τ and (J) holds. We also have β = µ which
implies that τ ∧ β = ǫ and σ ∨ µ = ω; see Diagram 4.

Independence of the relations and realization of c-triples by regular semigroups
will be the subject of a subsequent communication.
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